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Abstract. An algorithm is proposed which can be applied to finite element models in or-
der to efficiently perform nonlinear harmonic analyses without neglecting nonlinear effects
due to joint friction and impacts. In order to decrease the size of the nonlinear differential
equation to be solved, the proposed algorithm reduces the structural matrices of the system
to be investigated using the Craig-Bampton method after importing them from commercially
available FE codes. Depending on the geometrical setup and materials of the system joints,
different discretization assumptions can be applied. The implemented contact model is based
on Coulomb friction and Newton impact constraints which are being determined by a linear
complementarity problem (LCP) formulation. The computation itself is performed in time
domain using a modified Newmark time stepping approach for numerical stability even if the
time step size chosen is fairly large. Both the mathematical approach itself as well as numer-
ical results are presented for the simple system of a cylindrical beam in contact with a rigid
wall in order to give an in-depth description of the proposed algorithm.
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1. INTRODUCTION

Finding the eigenfrequencies and corresponding mode shapes of systems undergoing
harmonic excitation is highly important for increasing the systems durability. In order to do
so, system developers generally use FE software - which is a quick and generally reliable
way to determine a system’s characteristics. Components can be imported from CAD soft-
ware or created directly with the FE software, several kinds of joints can be applied to certain
features of the structure to be analyzed, and finally the structure’s dynamic behavior can be
determined, e.g. by performing a harmonic analysis. However, the application of joints to a
structure generally means that the degrees of freedom (DOF) of the surfaces or bodies in con-
tact are limited in a way that mirrors the behavior of an ideal joint, that is without considering
impacts or friction. Thus, energy dissipation due to joint friction as well as certain kinds of
component wear cannot be analyzed since the causes of these phenomena do no longer exist
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within the simulation model. Most importantly, if designing a system or trying to improve
its behavior, joint components and surfaces should be chosen in a way that most efficiently
decreases vibrational amplitudes in order to extend the system’s lifetime as much as possible.
Therefore, a computation method is necessary that does not simulate joints as limited DOF,
but fully recognizes the nonlinear interaction of the involved body features as impacts with
friction. Since doing so entails a significant increase in computational effort, other assump-
tions, simplifications and discretizations should be applied in order to keep computation times
at a moderate level.
The algorithm proposed in this paper receives the structural information of the component
or system of interest from a commercial FE code. Thus, it should be seen as an extension
of the abilities of FE software rather than an entirely new program code. In a first step the
structural matrices, i.e. the nonlinear differential equations to be solved, are being modally
reduced using the Craig-Bampton method [1] in order to increase computational efficiency.
This particular type of modal reduction technique allows to physically preserve certain master
DOF while modally describing all other DOF whose physical information is not being needed
during computation. The proposed algorithm then solves the forced response problem without
neglecting nonlinear effects by utilizing a contact model depicting impacts as well as stick and
slip friction. Both impact and friction models are implemented in an LCP formulation. In ad-
dition, different rigid body assumptions for contact zone discretizations can be applied to the
interacting structures. Thus, the number of master DOF necessary to accurately describe the
components being in contact can be minimized to further decrease computation time. Since
all computations are being executed in time domain, the Newmark time stepping scheme [2],
which is popular among FE programmers due to its numerical stability, has been modified in
order to accurately follow both the Newton impact and Coulomb friction models. Since the
behavior of the system to be analyzed is nonlinear, subharmonic responses have to be expected
and recognized. In order to do so, periodic system responses are being determined utilizing
a modified Poincare mapping approach. Thus, the proposed algorithm represents an efficient
and important FE code extension for nonlinear harmonic analysis of both single components
and systems including joints with clearance.

2. SYSTEM DESCRIPTION AND SIMPLIFICATION

To depict the functionality of the proposed algorithm in a vivid manner, every part
of the algorithm is being described on a representative model of a revolute joint which is
modeled as a cylindric beam inside a bushing (see Fig. 1 A). This setup shows the same
geometric features while cutting out possibly complex system properties which could distract
from the actual joint simulation task. For a further breakdown of the problem, the bushing has
additionally been substituted by a rigid wall - as shown in Fig. 1 B - in order to bring the basic
problem to the foreground: Modeling states of separation, impacts, stick and slip friction.
In our case, the structural matrices are being obtained from the FE software ANSYS, but could
also be generated using other available FE codes. This step should be followed by a reduction
of the structural matrices. In order to not lose all physical information about the system by
performing a regular modal reduction of the structural matrices, the Craig-Bampton reduction
method [1] was implemented which allows to preserve predefined master DOF as physical
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Figure 1. Simplified versions of a revolute joint showing a beam A) inside a cylindrical
bushing and B) next to a rigid contact wall

information within the reduced structural matrices while modally describing all other DOF.
For the system shown in Fig. 1, the master DOF are the ones belonging to the nodes labeled
as nc. While all nodal information along the two highlighted edges of the beam would be
necessary in case of the contact partner being the bushing (A), only the few nodes facing the
rigid wall have to be considered for case B. Fig. 1 shows three contact nodes per edge for
case B to also recognize a possible torsional deformation of the beam. Thus, if looking at a
nonlinear differential equation of motion of kind

Mq̈(t) + Dq̇(t) + Kq(t) = Fex(t) + R(t) (1)

with mass, damping and stiffness matrices M, D and K, harmonic excitation force Fex(t) and
contact force R(t), the vector containing the system’s DOF q(t) can be written as

q(t) =

[
qm(t)
qs(t)

]
(2)

where the indices m and s stand for master and slave DOF respectively. In order to built up
the transformation matrix according to [1], the constraint modes Ψ and component modes Φ

have to be determined using[
Kmm Kms

KT
ms Kss

] [
E
Ψ

]
=

[
Q
0

]
with Ψ = −K−1

ss KT
ms (3)

and
(Kss − ω2

i Mss) φi = 0 with Φ = [φ1 φ2 . . . φp]. (4)

Herein, the vector Φ controls the magnitude of the reduced order structural matrices depend-
ing on how many component modes φi are included. The resulting transformation matrix

T =

[
E 0
Ψ Φ

]
(5)

can then be applied to Eqn. (1) by multiplication according to

Θ̃ = TT Θ T (6)

Γ̃ = TT Γ (7)



in which Θ and Γ stand for the structural matrices M, D and K and the excitation and contact
force Fex(t) and R(t) respectively. The reduced order equation of motion can then be stated
as

M̃¨̃q + D̃ ˙̃q + K̃q̃ = F̃ex + R̃ (8)

with the new DOF vector

q̃ =

[
qm(t)
η(t)

]
(9)

now containing the modal DOF η(t) which replaced the original information qs(t) of the slave
nodes.

3. NEWMARK PREDICTOR CORRECTOR SCHEME

When simulating periodic responses for linear or nonlinear systems, it has to be de-
termined whether the computation should take place in frequency or time domain. In the
proposed case, the time domain was chosen since it is known beforehand that impacts will
occur - which are difficult to model and require high computational effort if represented by
superposition of harmonics. After comparing several different time stepping schemes, the
Newmark method was selected because of its high computational stability. Thus, forced re-
sponse calculations can be performed with rather large time step sizes which results in de-
creased computation times. If combining the regular Newmark method

q̇n+1 = q̇n + ∆t[γq̈n+1 + (1− γ)q̈n] (10)

qn+1 = qn + ∆tq̇n +
∆t2

2
[2βq̈n+1 + (1− 2β)q̈n] (11)

with the differential equation of motion Eqn. (8), the resulting equation

q̃n+1 = K̃−1
eff R̃ + f(F̃ex, q̃n, ˙̃qn, ¨̃qn) (12)

with
K̃eff =

1

β∆t2
M̃ +

γ

β∆t
D̃ + K̃ (13)

can be used do calculate the deflection at the end of the time step q̃n+1 in the linear case,
i.e. for R̃ = 0, since all necessary parameters are known. In the proposed method, this step
- which is defined as the predictor step - is performed at the beginning of every time step.
The vector q̃n+1 is then employed to check if a contact is closed. If that is not the case, q̃n+1

represents the true values at the end of the step. However, if contact is determined, the contact
force vector R̃ must be determined and a corrector step must be performed with a modified
Newmark scheme of kind

q̇n+1 = q̇n + ∆t[γq̈n+1 + (1− γ)q̈n] + ∆tq̈c (14)

qn+1 = qn + ∆tq̇n +
∆t2

2
[2βq̈n+1 + (1− 2β)q̈n] +

∆t2

2
q̈c (15)

and a new differential equation of motion

M[¨̃qn+1 + ¨̃qc] + D ˙̃qn+1 + Kq̃n+1 = F̃ex + R̃. (16)



The introduction of ¨̃qC, which can be interpreted as a contact acceleration, is necessary to not
introduce energy into the system. When performing the corrector step, the vector ¨̃qn+1 must
be adopted from the predictor step. Thus, the corrector step equation can be stated as

q̃n+1 = K̃−1
eff,cR̃ + f(F̃ex, q̃n, ˙̃qn, ¨̃qn, ¨̃qn+1) (17)

with
K̃eff,c =

2

∆t2
M̃ +

2

∆t
D̃ + K̃ (18)

and serves as the true DOF vector at the end of the time step.

4. THE CONTACT MODEL

The proposed algorithm computes contact forces as Lagrangian multipliers by solving
a LCP formulation. This formulation basically represents an enhanced combination of the
methods proposed in [3] and [4] which the authors applied to rigid body structures. Since
the systems simulated in these publications were neither FE based nor very stiff, factors like
computation time and stability did not have to be payed attention to. That is why their for-
mulations had to be rewritten, and the novel time stepping approach described in the previous
chapter had to be included.
In order to enable the contact force computation by a LCP formulation, the contact force
vector R̃ has to be stated as follows:

R̃ =
∑
i

wN,iΛ̃N,i + wT,iΛ̃T,i

= WNΛ̃N + WTΛ̃T.

(19)

Herein, the vectors wN,i and wT,i stand for the normal and tangential contact force direction
vectors which are being multiplied with the scalar force magnitudes Λ̃N,i and Λ̃T,i. While the
normal force direction vectors wN,i can simply be obtained by a geometric analysis of the
cylindrical contact bodies involved, finding the tangential direction vectors wT,i must be done
by projecting the velocity vector of the nodes in contact onto the friction plane defined by the
normal vector wN,i. Fig. 2 shows the tip of the beam depicted in Fig. 1 including a possible
contact setup with the node touching the contact geometry marked black. The normal vector
of the contact plane wN is facing towards the middle axis of the beam whereas wT is the
projection of q̇nc onto the grey friction plane. Obviously, this method is only applicable for
|q̇nc| 6= 0, that is for slip friction. In case of sticking, the acceleration q̈nc has to be used
instead.
A brief description of the original LCP derivation and its modification will be given in the
following. For a more detailed explanation see also [3], [5] and [6]. In a first step, the
Coulomb friction as well as the normal and tangential Newton impact models have to be
stated as

Λ̃T = µΛ̃N, (20)

ξN = WT
N

˙̃qn+1 + εNWT
N

˙̃qn, (21)

ξT = WT
T

˙̃qn+1 + εTWT
T

˙̃qn (22)
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Figure 2. Beam tip showing a possible contact setup with the resulting force direction vectors
and the three nodes necessary to describe the cylinder location

with normal and tangential force magnitudes ΛN and ΛT, relative velocities in the contact
point γN and γT and the coefficients of friction and restitution µ and ε. The parameters ξi

have to be equal to zero for the Newton impact definition to be fulfilled. This formulation was
stated by the authors of [3] - especially designed for the LCP formulation. Since the sign of
the tangential force magnitude is not known yet, additional definitions have to be stated:

Λ̃R = µΛ̃N + Λ̃T, (23)

Λ̃L = µΛ̃N − Λ̃T, (24)

ξT = ξR − ξL. (25)

Thus, the contact force vector R̃ can be rewritten as

R̃ = (WN − µWT)Λ̃N + WTΛ̃R. (26)

If now using Eqn. (14) to Eqn. (16), an expression for ˙̃qn+1 can be determined and employed
into Eqn. (21) and Eqn. (22). The result is the linear equationξN

ξR

ΛL

 =

WT
ND̃−1

eff (WN −WTµ) WT
ND̃−1

eff WT 0

WT
TD̃−1

eff (WN −WTµ) WT
TD̃−1

eff WT E
2µE −E 0

ΛN

ΛR

ξL


+

WT
ND̃−1

eff f(F̃ex, q̃n, ˙̃qn, ¨̃qn, ¨̃qn+1) + εNWT
N

˙̃qn

WT
TD̃−1

eff f(F̃ex, q̃n, ˙̃qn, ¨̃qn, ¨̃qn+1) + εTWT
T

˙̃qn

0

 (27)

with
D̃eff =

1

∆t
M̃ + D̃ +

∆t

2
K̃ (28)

of kind y = Ax + b with the complementary vectors y and x, which can be solved utilizing
algorithms like the one proposed by Lemke [7, 8]. Thus, the contact force vector can be
determined according to Eqn. (26), and the time step solution may be obtained by Eqn. (17).
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Figure 3. Distribution of the contact force on the virtual contact node among the master nodes

5. CONTACT GEOMETRY DISCRETIZATION

As mentioned before, the reduced order equation of motion still contains physical
information about the nodes necessary to determine wether the beam is in contact with the
bushing or wall. The number of these physical DOF should be kept at a minimum in order
to decrease the size of the reduced structural matrices and thus, the computation time. That
is why it makes sense to determine beforehand what kind and magnitude of deformation can
be expected and which assumptions can be made to describe the locations and profiles of the
contact surfaces involved with sufficient accuracy.
In the proposed case the component to be analyzed is a 300mm steel alloy beam with a rela-
tively small diameter of 9mm (Fig. 1 is not true to scale). Since the rigid wall is located in a
way that only the tip of the beam (last 20mm of its length) can get in contact with it, it is valid
to assume the deformations of the tip - radial as well as axial - to be negligible, i.e. the contact
geometry to be a perfect cylinder. Position and orientation of this cylindrical geometry can be
determined at every time step knowing the location of three of its nodes, which were chosen
to be the ones at the top and bottom of its middle axis as well as an arbitrary one on its top
edge (see Fig. 2). The proposed algorithm interpolates a user-defined number of virtual nodes
along the two edges and checks these node locations for closed contacts. Note that the virtual
node coordinates do not exist within the reduced DOF vector q̃, which is why the force direc-
tion vectors wN and wT cannot be stated directly. That is why, after determining the contact
force directions according to the previous chapter, these direction vectors must be applied to
the according middle nodes in order to be able to build up the LCP. After determining the con-
tact force R̃, this force vector should not immediately be applied to Eqn. (17), but distributed
first among the physically available DOF of the three master nodes shown in Fig. 2 and Fig. 3
adhering static equivalence of the contact force effect onto the cylinder:∑

i

F̃i = R̃, (29)∑
i

ri × F̃i = rc × R̃. (30)

If the original FE model only consisted of translational DOF, as is the case for the proposed
beam model, nine DOF are available when considering three master nodes. However, only



six force components are necessary in order to fulfill the static requirements stated above,
which is why Fig. 3 only shows six contact force components of the nodal contact forces Fi.
The three remaining components were set to zero. The resulting contact force vector which
applicable to Eqn. (17) can finally be stated as

R̃fin =
∑
i

F̃i. (31)

6. DETECTION OF PERIODICITY

The previously described methods alone are sufficient for the simulation. However,
the simulation should stop automatically as soon as the system reached the steady state ac-
cording to its harmonic excitation. Thus, periodic responses must be detected. That is why,
starting with the second excitation period, the system’s deflection and velocity vectors q1 and
q̇1 at the beginning of every period are being compared to the previous ones, and their rela-
tive compliance c is being calculated. It is obvious that, in case of a periodic response over
a single excitation period, the relative compliance approaches c = 100% (case A). If, how-
ever, a subharmonic response over several excitation periods appears, the compliance values
will repeat (case B). Thus, subharmonic responses can be detected by locating these repeating
compliance values. Examples of these two different cases are shown in Fig. 4.
After detecting the steady state response for a certain excitation frequency, the proposed al-
gorithm locates the maximal response amplitude of certain predefined response nodes. These
are, in case of the proposed structure, all nodes along the beam’s middle axis. By plotting
these maximal response amplitudes over the excitation frequency for varying clearances, re-
sponse changes can be monitored and the clearance optimized.
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Figure 4. Examples for periodicity detection over A) one and B) two excitation periods
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Figure 5. Periodic response behavior of the linear system

7. SIMULATION RESULTS

In the following chapter results are presented for the cylindrical beam with a rigid con-
tact wall (Fig. 1B). The analysis leading to these results focussed on the first eigenfrequency
of the beam located at approximately 90Hz. Since waiting for the steady state response to
occur can, especially for metal structures with low damping coefficients, be fairly time con-
suming, additional frequency sweep simulations were performed. Herein, the same excitation
frequency range was covered by excitations according to

Fex(t) = F̂ sin(2π(f0 +
1

2
mft)t) (32)

with frequency gain factors of mf = 5Hz
s

, mf = 50Hz
s

and mf = 200Hz
s

. Both harmonic
and transient excitation forces were applied to the structure in a 45o angle at note nexc (see
Fig. 1B). Fig. 5 shows the response behavior of the linear system. The label ”range” indicates
the true steady state response whereas the three other curves represent the different sweep
responses. As to be expected, the deviation of the swept amplitude frequency behavior from
the steady state one increases for increasing frequency gain factors mf . Although the curves
seem to converge for small values of mf , it shall be noted here that this convergence strongly
depends on the structural damping.
In Fig. 6A and Fig. 6B, the same frequency range was simulated for the nonlinear system
with the distances between beam and wall of xclear = 2.4 · 10−4m and xclear = 2.1 · 10−4m.
While the nonlinear behavior becomes increasingly distinctive as the clearance decreases,
the frequency value showing the maximal amplitude does not noticeably shift. If looking at
the actual movement of the beam, the reason for the absence of a frequency shift becomes
obvious as the wall changes the orientation of the beam movement rather than blocking it, i.e.
the beam’s swinging orientation adjusts to the wall’s contact surface.
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Figure 6. Periodic response behavior of nonlinear systems

8. CONCLUSIONS AND PROSPECTS

The proposed simulation method is capable of efficiently computing the forced re-
sponse behavior of nonlinear structures. While commercial FE and multibody system soft-
ware tools often neglect or significantly simplify the contact dynamics or structural properties,
the proposed algorithms use the strength of FE models - which is the accurate description of
the structure - and combine it with a dynamic simulation method which considers separation,
stick and slip friction as well as impacts occurring after separation intervals. The functionality
has been demonstrated on a simple structure of a cylindrical beam with a rigid contact wall in
order to give a detailed description of the implemented algorithms.
Future work will focus on the experimental validation of the simulation model on both sim-
ple structures and true machinery components. Possible improvements like the utilization of
shooting approaches (see e.g. [9] and [10]) for a further efficiency increase through computa-
tion time minimization will be discussed before applying the code to full machinery systems.
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