
DETERMINATION OF THE INITIATION OF DELAMINATION IN FIBER
COMPOSITES

J.-W. Simon∗, B. Stier, S. Reese

Institute of Applied Mechanics, RWTH Aachen University, Germany
∗ Corresponding author: jaan.simon@rwth-aachen.de

Abstract. Predicting the initiation of delamination is essential for the design of composite
structures, because delamination is a major failure mode of layered composites. The ac-
cording delamination onset criteria can be evaluated on the basis of stress-strength relations,
which requires an accurate representation of the through-the-thickness stress distribution,
which is delicate for thin shell-like structures. Thus, in this paper, a solid-shell finite ele-
ment is utilized, which allows for incorporating a fully three-dimensional, anisotropic, micro-
mechanically motivated material model, still being suited for application to thin structures.
Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and
numerical efficiency is ensured through reduced integration.

Keywords: Fiber-reinforced composite, Finite element technology, Solid-shell concept, En-
hanced strain formulation, Reduced integration.

1. INTRODUCTION

Fiber-reinforced composites are gaining importance in technical applications. Their
most beneficial characteristics –the very high Young’s modulus and low density– are particu-
larly leveraged in shell-like structures of lightweight constructions. The composites examined
in this paper consist of multiple layers, each of which is composed of a woven fabric, with
two families of fibers, embedded in a matrix material. Besides this anisotropic structure, the
stress-strain behavior of fiber composite materials is highly non-linear.

The majority of models accounting for anisotropic material behavior at finite strains
were developed in the field of biomechanics. For instance, axisymmetric orthotropic blood
vessels were investigated in [12], whereas biological soft tissues were modeled in [38] on the
basis of an incompressible transversely isotropic law for moderate deformations. A descrip-
tion of the transversely isotropic behavior of rubber was presented in [29], and orthotropic
constitutive equations were provided in [4] for the simulation of human leg impact prob-
lems. More recently, anisotropic material models were proposed incorporating the micro-
mechanical structure of wood, e.g. [21,22]. In the present paper, however, the model proposed
by Reese in [26] for fiber-reinforced rubber-like composites was adopted, in which the transi-
tion from the micro-scale to the macro-scale is formulated in a general manner. Therefore, this
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model is not restricted to rubber-like materials but also suitable for the carbon fibre-reinforced
plastics (CFRP) considered here.

Structural collapse in fiber composite structures is causedby the evolution of either
matrix transverse cracking, fiber fracture, or delamination. From these damage modes, the
delamination is particularly important, because it drastically reduces the bending stiffness of
the structure and promotes local buckling in case of compressive loads. Including delami-
nation into the computation of composite structures requires the definition of an appropriate
criterion for its onset as well as the prediction of its growth after an initial crack has evolved.

For the initiation of delamination, different criteria exist, formulated in dependence of
stress-resistance relations, e.g. [5, 9, 11, 36, 41]. Afteronset of delamination, the high stress
gradients appearing at the crack front prohibit employing solely stress-based criteria. Thus,
fracture mechanics approaches are often used for simulating the delamination propagation,
such as the virtual crack closure technique, [18, 19, 24, 35,42]. As an alternative, delam-
ination growth can be treated within the framework of damagemechanics using cohesive
zone models, which are incorporated into the finite element simulation by interface elements,
e.g. [2, 8, 10, 39]. However, in this paper, the onset of delamination is addressed based on
stress-resistance relations.

Since fibre-reinforced composites are mostly applied in thin shell-like structures, the
element formulation demands providing a suitable shape forthin structures while displaying
realistically the three-dimensional stress states. Although shell formulations exist, which take
into account the through-the-thickness stretching, see e.g. [6, 13, 16], the implementation of
three-dimensional material models is much simpler in the context of solid elements. On the
other hand, the latter typically provide a poor performancewhen being applied to thin shell-
like structures. In particular, there are different locking phenomena to be coped with, which
cause an overestimation of the stress state and an underestimation of the deformation. Using
solid-shell elements represents one strategy to overcome this problem by combining the ad-
vantages of both solid elements and shell elements at the same time. Further, applying the
enhanced assumed strain (EAS) concept eliminates the volumetric locking in case of (nearly)
incompressible materials as well as the Poisson thickness locking, which occurs in bending
problems of shell-like structures due to the non-constant distribution of transverse normal
strain over the thickness.

In literature, one can find several solid-shell formulations incorporating the EAS con-
cept, see e.g. [1, 27, 37], to name only a few. To cure the transverse shear locking, which
is present in standard eight-node hexahedral elements, theassumed natural strain (ANS)
method is applied. In the context of full integration formulations, the ANS can be found
e.g. in [14,15,34], and for reduced integration solid-shell formulations e.g. in [7,30–32]. The
formulation presented in this paper is based on the works of Schwarze and Reese [30–32].

For laminated layered composites, the accurate determination of the through-the- thick-
ness stress distribution was recently investigated by several authors. For instance, in [28] an
improved shell formulation was used for this, whereas in [40] and [23] the investigations were
based on the solid-shell concept. For a more elaborate literature overview, the reader is re-
ferred to the review papers [17,20,25] and the references therein. However, to our knowledge
no solid-shell formulations exist, which consider the orthotropic behavior of fiber composites



with woven fabric accounting for different fiber directions.

2. Delamination onset criterion

The onset of delamination can be determined on the basis of stress-strength relations.
In particular, delamination occurs in pure interlaminar tension (mode I), pure interlaminar
sliding shear (mode II), and pure interlaminar scissoring shear (mode III), if the corresponding
interlaminar stress component exceeds the respective maximum interfacial strength. Here, the
interlaminar stress components are denoted byσ33, σ13, andσ23, respectively, where the3-
direction is normal to the considered interface. Then, the respective interfacial strengths are
Z33, Z13, andZ23.

To account for mixed-mode loading, the formulation of the onset criterion should in-
corporate the interaction of these modes. Due to the lack of available experimental data,
failure criteria predicting the initiation of delamination have not been fully validated, and
hence only few formulations exist. In this paper, the approach of Ye [41] is adopted, in which
a quadratic interaction of modes is assumed:

if σ33 > 0 :

(
σ33

Z33

)2

+

(
σ31

Z31

)2

+

(
σ32

Z32

)2

≥ 1 (1a)

if σ33 ≤ 0 :

(
σ31

Z31

)2

+

(
σ32

Z32

)2

≥ 1 (1b)

As the formulation presented in this paper is capable of taking into account finite
strains, it is important to accurately represent the according stress components. First of all,
the stresses calculated by the present solid-shell formulation are expressed by the second
Piola-Kirchhoff stress tensorS, which has to be pushed to the current configuration

σ =
1

detF
FSF

T (2)

whereσ denotes the Cauchy stress tensor. From this, the interlaminar tractionσn and the
interlaminar resultant shearτn can be achieved by

σn = nσn (3)

τn =
√

||nσ||2 − σ2
n (4)

denoting the normal vector of the considered interface byn. For consistency, the maximum
interfacial strength in tension and resultant shear are referred to asZσ andZτ , respectively.
Consequently, the condition for delamination onset reads

if σn > 0 :

(
σn

Zσ

)2

+

(
τn
Zτ

)2

≥ 1 (5a)

if σn ≤ 0 :

(
τn
Zτ

)2

≥ 1 (5b)

This condition has to be checked in each loading step and in each interface of the
laminated composite. Thus, the accurate prediction of the stress components in the interfaces



is essential for a reliable prediction of the initiation of debonding. Since the layers are usu-
ally rather thin, solid elements are not suitable to achievesufficient accuracy. To overcome
this problem, spline approximations for the through-the-thickness stresses can be applied, as
proposed in [5]. Even so, using solid elements in the thin shell-like applications should be
avoided, and solid-shell elements are preferable. Further, it should be noticed that this kind of
criterion is suitable to predict the delamination onset, but delamination growth is not covered.

3. ORTHOTROPIC MATERIAL MODEL

The fiber composites examined in this paper consist of stacked layers, each of which
is composed of a woven fabric embedded in a matrix material. The anisotropic material
behavior of such composites is taken into account by using the micro-mechanically motivated
model proposed in [26]. The basics of the continuum model aresummarized in the following.
Therein, parameters are chosen to represent approximatelythe behavior of carbon fibers in an
epoxy resin matrix.

3.1. Concept of structural tensors

Introducing the deformation gradientF, the deformation of a continuous body is rep-
resented by the right Cauchy-Green tensor

C = F
T
F (6)

The characterization of a hyperelastic body is then given bythe existence of a scalar
potential, which is the stored energy functionW = W (C), such that

S = 2
∂W(C)

∂C
(7)

is the second Piola-Kirchhoff stress tensor. In the case of orthotropic material behavior, the
energy functionW (C) reduces to an isotropic function ofC and the structural tensorsM1

andM2, which are defined by

M1 = n1 ⊗ n1 and M2 = n2 ⊗ n2 (8)

where the vectorsn1 andn2 are oriented in parallel direction to the fibers. For a discussion
of the theoretical background, the reader is referred to [33] and the references therein. Then,
the strain energy functionW can be represented in dependence of the following invariants:

I1 = tr C I2 =
1

2

[
(tr C)2 − tr

(
C

2
)]

I3 = det C (9a)

I4 = tr (C ·M1) I5 = tr
(
C

2 ·M1

)
(9b)

I6 = tr (C ·M2) I7 = tr
(
C

2 ·M2

)
(9c)

3.2. Strain energy function

In this work, the anisotropic model from Reese [26] is adopted, which assumes that the
fibers do not carry any load in case of compression but only in tension, which is not realistic



for the CFRP considered here. Therefore, this model is slightly modified, such that the matrix
acts as an elastic continuous support for the embedded fibres. Moreover, the fibre volume
fractions0 ≤ ϕ1 and0 ≤ ϕ2 for the two families of fibres are introduced, whereϕ1 + ϕ2 ≤ 1

holds. Except of this, we adopt the mentioned model and use the following strain energy
function:

W = (1− ϕ1 − ϕ2)WNH(I1, I3) +Wani(ϕ1, ϕ2, I1, I2, I4, I5, I6, I7) (10)

Here,WNH denotes the Neo-Hookean part displaying the isotropic casein the small
strain regime. The strain energy function is given by

WNH(I1, I3) =
µ

2
(I1 − 3)− µ ln

√

I3 +
Λ

4

(

I3 − 1− 2 ln
√

I3

)

(11)

The anisotropic behavior of the fabric is introduced by the part

Wani(ϕ1, ϕ2, I1, I2, I4, I5, I6, I7) =Kiso
1 (I1 − 3)α1 +Kiso

2 (I2 − 3)α2

+ ϕ1

[
Kani 1

1 (I4 − 1)β1 +Kani 1
2 (I5 − 1)β2

]
(12)

+ ϕ2

[
Kani 2

1 (I6 − 1)γ1 +Kani 2
2 (I7 − 1)γ2

]

+Kcoup ani (I4 − 1)ξ(I6 − 1)ξ

Note that in [26] further coupling terms have been introduced, which have hardly
influenced the results, and therefore are dropped here. The exponentsαi, βi, γi, (i = 1, 2),
andξ are chosen to be integers larger than 2.

4. SOLID-SHELL ELEMENT FORMULATION

Using standard solid elements in thin structures would require a very high mesh den-
sity to predict the stress distribution with sufficient accuracy. Hence, the solid-shell element
formulation is used alternatively to avoid inefficient computations. Furthermore, the different
locking phenomena are cured by application of the EAS and ANSconcepts. The following is
based on the works of Schwarze and Reese [30–32].

4.1. Finite element framework and interpolation

The solid-shell concept is predicated on the two-field variational functional

g1(u,Ee) =

∫

B0

S(E) : δEc dV + gext = 0 (13)

g2(u,Ee) =

∫

B0

S(E) : δEe dV = 0 (14)

wheregext denotes the virtual work of the external loading. For this formulation, the total
Green-Lagrange strain tensorE is split additively into the compatible partEc and the en-
hanced partEe coming from the EAS concept:

E = Ec + Ee (15)



The second Piola-Kirchhoff stress tensorS(E) is a function of the total Green-Lagrange
strain tensorE. Note thatS depends additionally on a set of internal variables in the elasto-
plastic case.

In this work, isoparametric eight-node hexahedral finite elements are considered, such
that both the position vector of the reference configurationX(ξ) = [X1,X2,X3]

T and the
displacement vectorU(ξ) = [U1,U2,U3]

T are approximated within the element by

Xi =
8∑

I=1

NI XiI and Ui =
8∑

I=1

NI UiI (i = 1, 2, 3) (16)

using tri-linear shape functions

NI = 1/8(1 + ξIξ)(1 + ηIη)(1 + ζIζ) (I = 1, ..., 8) (17)

The position vector of the current (deformed) configurationreads

x(ξ) = X(ξ) +U(ξ) (18)

Then, introducingD = ∂U/∂ξ, the Jacobian matricesJ and J̃ of the reference and
the current configuration, respectively, can be written as follows:

J =
∂X

∂ξ
= [J1,J2,J3] and J̃ =

∂x

∂ξ
= J+D =

[

J̃1, J̃2, J̃3

]

(19)

The columns ofJ andJ̃ represent the covariant base vectors with respect to the refer-
ence and current configuration, respectively. The polynomial form of the Jacobian matrices
defined in (19) is obtained by means of the polynomials

J = J
0 + ξ Jξ + η Jη + ζ Jζ + ξη Jξη + ηζ Jηζ + ξζ Jξζ (20)

D = D
0 + ξDξ + ηDη + ζDζ + ξηDξη + ηζDηζ + ξζDξζ (21)

The contravariant base vectors with respect to the initial configuration and the current
configuration are denoted by

Hi =
∂ξi
∂Xj

ej = jij ej and H̃i =
∂ξi
∂xj

ej = j̃ij ej (22)

These represent the rows of the inverse Jacobian matricesJ
−1 andJ̃−1, respectively,

the coefficients of which are denoted byjij = (J−1)ij and j̃ij = (J̃−1)ij. With this defini-
tion, the Green-Lagrange strain tensor can be written in terms of its Cartesian and covariant
componentsEij andĒij = Eξiξj, respectively,

E = Eij ei ⊗ ej = ĒijHi ⊗Hj (23)

Denoting the Voigt notation bŷ(•) and exploiting symmetry as well asΓij = 2Eij, the
latter can be stored into the6× 1 vectors

Ê = {E11, E22, E33, Γ12, Γ23, Γ13}T (24)

ˆ̄
E = {Eξξ, Eηη, Eζζ , Γξη, Γηζ , Γξζ}T (25)



These can be transformed one to the other with the relationÊ = T
ˆ̄
E, where

T =











j211 j221 j231 j11j21 j21j31 j11j31

j212 j222 j232 j12j22 j22j32 j12j32

j213 j223 j233 j13j23 j23j33 j13j33

2 j11j12 2 j21j22 2 j31j32 j12j21+j11j22 j22j31+j21j32 j12j31+j11j32

2 j12j13 2 j22j23 2 j32j33 j13j22+j12j23 j23j32+j22j33 j13j32+j12j33

2 j11j13 2 j21j23 2 j31j33 j13j21+j11j23 j23j31+j21j33 j13j31+j11j33











(26)

4.2. Green-Lagrange strain field

Consequently, the compatible Green-Lagrange strain is written in the formÊc = T
ˆ̄
Ec.

To get the components of the compatible Green-Lagrange strain tensorˆ̄Ec in polynomial form,
both the Jacobian matrixJ and the displacement gradientD are split column-wise:

J1 =J
0
1 + η Jη

1 + ζ Jζ
1 + ηζ Jηζ

1 D1 =D
0
1 + ηDη

1 + ζDζ
1 + ηζDηζ

1 (27a)

J2 =J
0
2 + ξ Jξ

2 + ζ Jζ
2 + ξζ Jξζ

2 D2 =D
0
2 + ξDξ

2 + ζDζ
2 + ξζDξζ

2 (27b)

J3 =J
0
3 + ξ Jξ

3 + η Jη
3 + ξη Jξη

3 D3 =D
0
3 + ξDξ

3 + ηDη
3 + ξηDξη

3 (27c)

Hence, the covariant compatible Green-Lagrange strain components are given by

Ec ξξ =J
T
1D1 + 1/2DT

1D1 Γc ξη =J
T
1D2 + J

T
2D1 +D

T
1D2 (28a)

Ec ηη =J
T
2D2 + 1/2DT

2D2 Γc ηζ =J
T
2D3 + J

T
3D2 +D

T
2D3 (28b)

Ec ζζ =J
T
3D3 + 1/2DT

3D3 Γc ξζ =J
T
1D3 + J

T
3D1 +D

T
1D3 (28c)

To cure curvature thickness locking, the ANS concept is implemented. For this,
the covariant compatible strain termsEc ζζ|ξK := EK

c ζζ are evaluated at the sampling points
K = A, ..., D, see Fig. 1, as proposed in [3].

A B

D C

E F

GH

J

K

L

M

z
h

x

ξA = (−1,−1, 0)T ξE = (−1, 0,−1)T ξJ = (0,−1,−1)T

ξB = (1,−1, 0)T ξF = (1, 0,−1)T ξK = (0, 1,−1)T

ξC = (1, 1, 0)T ξG = (1, 0, 1)T ξL = (0, 1, 1)T

ξD = (−1, 1, 0)T ξH = (−1, 0, 1)T ξM = (0,−1, 1)T

Figure 1. Sampling points of the ANS concept at reference element.

Thereby, the covariant compatible strains can be interpolated within the shell mid
plane of the reference element by means of bilinear ansatz functions

N̄K = 1/4(1 + ξKξ)(1 + ηKη) (29)

to be evaluated in the pointsK = A, ..., D. In consequence, the assumed transverse normal
strain distribution reads

EANS
c ζζ = N̄AE

A
c ζζ + N̄BE

B
c ζζ + N̄CE

C
c ζζ + N̄DE

D
c ζζ =

D∑

K=A

N̄KE
K
c ζζ (30)



In order to overcome the transverse shear locking, following [7], four sampling points
K = E, ..., H are used for the transverse shear termΓc ηζ |ξK := ΓK

c ηζ andK = J, ..., M for
Γc ξζ|ξK := ΓK

c ξζ, see again Fig. 1. Using the ansatz functions (29) for the respective points,
the assumed transverse shear terms read

ΓANS
c ηζ =

H∑

K=E

N̄KΓ
K
c ηζ and ΓANS

c ξζ =
M∑

K=J

N̄KΓ
K
c ξζ (31)

The present solid-shell formulation utilizes a reduced integration scheme within the
shell plane (using one integration point), whereas a full integration is used in thickness direc-
tion, which allows for choosing arbitrary numbers of integration points (at least two), see Fig.
2. Thus, all integration points are located on the normal through the center of the element
defined byξ⋆ := (0, 0, ζ)T .

65

7

3

21

8

4
ξ

ζ η

Figure 2. Solid-shell element with integration points atξ = ξ⋆ := (0, 0, ζ)T.

To cure volumetric locking as well as Poisson thickness locking, the EAS concept is
adopted. These locking effects are treated on the level of the integration points, which can
be expressed bŷEe = Ê

⋆
e, indicating values to be evaluated in the integration points by ⋆.

Since in (30) the assumed transverse normal strainEANS
e ζζ has been defined independently ofζ ,

the according valueEe ζζ is constructed as being linear inζ in order to overcome the locking
effects, which reads

Êe = Ê
⋆
e = T

0
B̄

⋆
e We (32)

in which the interpolation matrix̄B⋆
e = [0, 0, ζ, 0, 0, 0]T requires only one EAS degree-of-

freedomWe. Here,T0 is the transformation matrix (26) evaluated in the center ofthe element.
In order to achieve a polynomial decoupling of the compatible Green-Lagrange strain

tensor,Êc = T
ˆ̄
Ec, a Taylor expansion of the inverse Jacobian matrix is carried out with

respect to the center of the element

J
−1 ≈ J

−1
∣
∣
∣
ξ=0

+

3∑

i=1

J
−1
,ξi

∣
∣
ξ=0

ξi = J
−1
∣
∣
∣
ξ=0

+

3∑

i=1

(J0)−1
J
ξi(J0)−1 ξi (33)

up to the linear terms. The goal is reached by exploiting the Taylor expansion of

JJ
−1 ≈ (JJ−1)

∣
∣
ξ=0

+
3∑

i=1

(JJ−1),ξi
∣
∣
ξ=0

ξi (34)

as well asJJ−1 = I, which must hold for arbitraryξ = (ξ, η, ζ)T = (ξ1, ξ2, ξ3)
T. Introducing

the coefficients of (33) into (26), the transformation matrix is given by

T ≈ T
0 + ξTξ + ηTη + ζ Tζ (35)



in polynomial form, where terms of higher order have been dropped, as has been shown to
be sufficient in [30]. Nevertheless, using the approximation (26), the Cartesian compatible
strain still represents a polynomial of high order. For thisreason, a Taylor expansion of the
Cartesian compatible Green-Lagrange strain

Êc = T
ˆ̄
Ec ≈ Êc

∣
∣
∣
ξ=0

+
3∑

i=1

Êc,ξi

∣
∣
∣
ξ=0

ξi + 1/2
3∑

i=1

3∑

j 6=i=1

Êc,ξiξj

∣
∣
∣
ξ=0

ξiξj (36)

:= Ê
0
c + ζÊζ

c
︸ ︷︷ ︸

Ê
⋆
c

+ ξÊξ
c + ηÊη

c + ξηÊξη
c + ηζÊηζ

c + ξζÊξζ
c

︸ ︷︷ ︸

Ê
hg
c

(37)

is also carried out with respect to the center of the element.The hourglass strain term̂Ehg
c

represents an excellent basis for the construction of the hourglass stabilization. However,̂E⋆
c

is no longer quadratic inζ . Thus, the according quadratic term is added:

Ê
⋆
c := Ê

0
c + ζÊζ

c + ζ2Êζζ
c (38)

4.3. 2nd Piola-Kirchhoff stress tensor

In this section, an efficient stress stateŜ := Ŝ
⋆ + Ŝ

hg is derived for the reduced
integration, which is represented by the second Piola-Kirchhoff stress tensor. Here,̂S⋆ is
computed at the integration points placed atξ = ξ⋆ and must be able to take into account
the highly nonlinear stress distributions in thickness direction. The hourglass stress partŜ

hg

has to guarantee that the element is free of hourglass instabilities. Following [27], a Taylor
expansion of the stress field is carried out with respect toξ = ξ⋆.

Ŝ ≈ Ŝ

∣
∣
∣
∣
∣
ξ=ξ⋆

+
∂Ŝ

∂ξ

∣
∣
∣
∣
∣
ξ=ξ⋆

(ξ − 0) +
∂Ŝ

∂η

∣
∣
∣
∣
∣
ξ=ξ⋆

(η − 0) (39)

= Ŝ(Ê⋆) +
∂Ŝ(Ê)

∂Ê

∣
∣
∣
∣
∣
ξ=ξ⋆

︸ ︷︷ ︸

Ĉ
⋆




∂Ê

∂ξ

∣
∣
∣
∣
∣
ξ=ξ⋆

ξ +
∂Ê

∂η

∣
∣
∣
∣
∣
ξ=ξ⋆

η



 (40)

= Ŝ
⋆ + Ĉ

⋆(ξÊξ
c + ηÊη

c + ηζÊηζ
c + ξζÊξζ

c )
︸ ︷︷ ︸

:= Ŝ
hg

(41)

The tangent̂C⋆ is nonlinear in the thickness directionζ but independent ofξ andη. In order
to enable an analytical integration of the hourglass stabilization terms,Ĉ⋆ is replaced by the
deviatoric part of the linear-elastic material tangentĈ

hg, which in Voigt notation reads

Ĉ
hg = µhg











4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











(42)



and which only depends on the artificial hourglass shear modulusµhg. In elastic problemsµhg

is equal to the elastic shear modulusµ = E/(2(1 + ν)), whereas in elastoplasticity it reads as
follows:

µhg =
1

2

√

S⋆dev : S⋆ dev

E⋆dev : E⋆dev
(43)

Here, the superscript “dev” indicates the deviatoric part of the considered term. Sum-
ming up over the number of integration points (i = 1, ..., nip) leads to the following effective
hourglass shear modulus

µhg
eff =

nip∑

i=1

µhg
i ωi =

1

2

nip∑

i=1

(√

S⋆dev : S⋆dev

E⋆dev : E⋆dev

) ∣
∣
∣
∣
∣
i

ωi (44)

where the weighting factorsωi are scaled, such that
∑nip

i=1 ωi = 1 holds.

4.4. Discretized weak form

Introducing the virtual form of the Cartesian enhanced Green-Lagrange strainδÊe

together with (41), Eq. (14) reads

ge2 ≈
∫

Ωe

δÊT
e Ŝ J0 dΩe =

∫

Ωe

δÊ⋆T
e Ŝ

⋆ J0 dΩe = δWeR
⋆
w = 0 (45)

Note that the infinitesimal volume elementdVe = JdΩe has been approximated by
means ofdVe ≈ J0 dΩe. Thereby, the integral

∫

Ωe δÊ
⋆T
e Ŝ

⋆ J0 dΩe vanishes, because (32) is
only linear inζ . Further, the virtual forms of (37) and (38) together with (41) are incorporated
into (13), which –on the element level– can be written as

ge1 − geext ≈
∫

Ωe

δET
c Ŝ J0 dΩe (46)

=

∫

Ωe

δE⋆T
c Ŝ

⋆ J0 dΩe +

∫

Ωe

δEhgT
c Ŝ

hg J0 dΩe (47)

= δUT
e R

⋆
u + δUT

e R
hg
u (48)

Again, all terms being linear in the natural coordinates drop out. This leads to the
desired decoupling of the parts corresponding to the integration point and the hourglass sta-
bilization. Since the hourglass stress has deviatoric character (see Eqs. (41) and (42)), the
hourglass residual vectorRhg

u simplifies to

R
hg
u =

∫ 1

−1

∫ 1

−1

∫ 1

−1

B
hg dev T
c Ŝ

hg J0 dξ dη dζ

=
8

3
J0Bξ devT

c Ĉ
hg
Ê

ξ dev
c

︸ ︷︷ ︸

:= R
ξ hg
u

+
8

3
J0Bη devT

c Ĉ
hg
Ê

η dev
c

︸ ︷︷ ︸

:= R
η hg
u

+
8

9
J0Bηζ dev T

c Ĉ
hg
Ê

ηζ dev
c

︸ ︷︷ ︸

:= R
ηζ hg
u

+
8

9
J0Bξζ dev T

c Ĉ
hg
Ê

ξζ dev
c

︸ ︷︷ ︸

:= R
ξζ hg
u

(49)

in which the integration over the element domain is performed analytically. Further, terms
being bilinear inξη drop out, becausêShg does not include any summand depending on that.



5. NUMERICAL EXAMPLE

The proposed method was applied to a panel with a co-cured stiffener, which had al-
ready been investigated in [36]. The panel’s length and width were 203 mm and 25.4 mm,
respectively, while the stiffener’s length was 50 mm at the panel’s skin and 42 mm at the upper-
most layer. The flange was composed of 10 plies with a lay-up of(45◦/90◦/− 45◦/0◦/90◦)s,
whereas the panel consisted of 14 plies with an(0◦/45◦/90◦/−45◦/45◦/−45◦/0◦)s assembly.
All layers were made of unidirectional CFRP, the propertiesof which are given in Table 1.

Table 1. Material properties

Tensile modulus fibre [GPa] 230
Tensile modulus matrix [GPa] 3.9
Shear modulus matrix [GPa] 3.4
Poisson’s ratio matrix 0.45

From these mechanical properties, the non-zero parametersfor the described model
were calculated, taking into account the fibre volume fractionϕ1 = 62◦.

Λ = 6300 MPa µ = 1383 MPa Kani 1
1 = 1.15× 105 MPa β1 = 2 (50)

For the interfacial strengths, the following values were adopted

Z33 = 76 MPa Z13 = 79 MPa Z23 = 79 MPa (51)

giving the following parameters for the delamination onsetcriterion (5):

Zσ = 76 MPa Zτ = 79
√
2 MPa (52)

The panel was clamped at the left end, while it was loaded by a force in longitudinal
direction at its right end. Since the onset of debonding was expected at the tip of the stiffener
flange, the mesh was refined in this region as illustrated in Figures 3 and 4. In order to
incorporate delamination, interface elements were located between all layers, which were
furnished with material properties of the matrix alone. Thelatter were assumed to be ten
times thinner than the layers. The described solid-shell element was used for both layers and
interfaces, leading to a total number of 9825 solid-shell elements with 25152 nodes.

The location of delamination initiation is shown in Fig. 5, which corresponds to the
time step, in which the delamination onset condition was metfirst. As one can see, delam-
ination occurred at first at the tip of the stiffener flange, aswas expected. This location of
delamination is reasonable and in agreement with the results presented in [36].

Furthermore, experimental data for this problem can be found in [36]. Therein, the
maximum displacements from extensometer measurements corresponding to delamination
onset are reported to be in the range of 0.11 mm to 0.15 mm. Unfortunately, the exact location
of the measurement is not given, which does not allow a quantitative comparison. However,
in the current calculation, the computed displacements at delamination onset are in a higher
range up to 0.18 mm. This difference can be explained by the fact that residual stresses are
present in the specimens, which have not been taken into account in the present calculation.



Figure 3. Geometry and mesh

Figure 4. Detailed view on panel and flanged stiffener

6. Conclusion

For many technical applications of fiber-reinforced composites, predicting the onset
of delamination is essential for appropriately designing the considered structure. For this, a
delamination onset criterion based on stress-strength relations has been suggested in this pa-
per, which requires an accurate representation of the through-the-thickness stress distribution.
The proposed solid-shell element is particularly suitableto achieve the required accuracy espe-
cially in the thin shell-like applications considered here. The formulation allows for including
woven fabrics with two different families of fibers, incorporating a fully three-dimensional,
anisotropic, micro-mechanically motivated material model. Concluding, the proposed method
is capable of predicting the initiation of delamination of fiber-reinforced composites in shell-
like structures accounting for the anisotropic material behavior.



Figure 5. Resulting zone of delamination onset
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