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Abstract. Predicting the initiation of delamination is essential for the design of composite
structures, because delamination is a major failure mode of layered composites. The ac-
cording delamination onset criteria can be evaluated on the basis of stress-strength relations,
which requires an accurate representation of the through-the-thickness stress distribution,
which is delicate for thin shell-like structures. Thus, in this paper, a solid-shell finite ele-
ment is utilized, which allows for incorporating a fully three-dimensional, anisotropic, micro-
mechanically motivated material model, still being suited for application to thin structures.
Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and
numerical efficiency is ensured through reduced integration.

Keywords: Fiber-reinforced composite, Finite element technology, Solid-shell concept, En-
hanced strain formulation, Reduced integration.

1. INTRODUCTION

Fiber-reinforced composites are gaining importance in technical applications. Their
most beneficial characteristics —the very high Young’s modulus and low density— are particu-
larly leveraged in shell-like structures of lightweight constructions. The composites examined
in this paper consist of multiple layers, each of which is composed of a woven fabric, with
two families of fibers, embedded in a matrix material. Besides this anisotropic structure, the
stress-strain behavior of fiber composite materials is highly non-linear.

The majority of models accounting for anisotropic material behavior at finite strains
were developed in the field of biomechanics. For instance, axisymmetric orthotropic blood
vessels were investigated in [12], whereas biological soft tissues were modeled in [38] on the
basis of an incompressible transversely isotropic law for moderate deformations. A descrip-
tion of the transversely isotropic behavior of rubber was presented in [29], and orthotropic
constitutive equations were provided in [4] for the simulation of human leg impact prob-
lems. More recently, anisotropic material models were proposed incorporating the micro-
mechanical structure of wood, e.g. [21,22]. In the present paper, however, the model proposed
by Reese in [26] for fiber-reinforced rubber-like composites was adopted, in which the transi-
tion from the micro-scale to the macro-scale is formulated in a general manner. Therefore, this



model is not restricted to rubber-like materials but alstesle for the carbon fibre-reinforced
plastics (CFRP) considered here.

Structural collapse in fiber composite structures is calmethe evolution of either
matrix transverse cracking, fiber fracture, or delamimatierom these damage modes, the
delamination is particularly important, because it diadly reduces the bending stiffness of
the structure and promotes local buckling in case of conspresoads. Including delami-
nation into the computation of composite structures rexguihe definition of an appropriate
criterion for its onset as well as the prediction of its griowaftter an initial crack has evolved.

For the initiation of delamination, different criteria skiformulated in dependence of
stress-resistance relations, e.g. [5,9, 11, 36, 41]. Afteset of delamination, the high stress
gradients appearing at the crack front prohibit employiolgly stress-based criteria. Thus,
fracture mechanics approaches are often used for simgltten delamination propagation,
such as the virtual crack closure technique, [18, 19, 2443pb, As an alternative, delam-
ination growth can be treated within the framework of damaggehanics using cohesive
zone models, which are incorporated into the finite elemiemiilgtion by interface elements,
e.g. [2, 8,10, 39]. However, in this paper, the onset of delation is addressed based on
stress-resistance relations.

Since fibre-reinforced composites are mostly applied in #hiell-like structures, the
element formulation demands providing a suitable shap#hforstructures while displaying
realistically the three-dimensional stress states. Aigfoshell formulations exist, which take
into account the through-the-thickness stretching, sge[@.13, 16], the implementation of
three-dimensional material models is much simpler in th&texd of solid elements. On the
other hand, the latter typically provide a poor performawben being applied to thin shell-
like structures. In particular, there are different lockphenomena to be coped with, which
cause an overestimation of the stress state and an undeagsh of the deformation. Using
solid-shell elements represents one strategy to overcbhim@itoblem by combining the ad-
vantages of both solid elements and shell elements at the sara. Further, applying the
enhanced assumed strain (EAS) concept eliminates the etliertocking in case of (nearly)
incompressible materials as well as the Poisson thickmessnlg, which occurs in bending
problems of shell-like structures due to the non-constasttidution of transverse normal
strain over the thickness.

In literature, one can find several solid-shell formulasiamcorporating the EAS con-
cept, see e.g. [1, 27, 37], to name only a few. To cure the weass shear locking, which
is present in standard eight-node hexahedral elementsashiemed natural strain (ANS)
method is applied. In the context of full integration formtibns, the ANS can be found
e.g. in [14,15,34], and for reduced integration solid-steeimulations e.g. in [7,30-32]. The
formulation presented in this paper is based on the workslofv@rze and Reese [30-32].

For laminated layered composites, the accurate detenmimnaitthe through-the- thick-
ness stress distribution was recently investigated byrakaathors. For instance, in [28] an
improved shell formulation was used for this, whereas ir} @ [23] the investigations were
based on the solid-shell concept. For a more elaboratatiitex overview, the reader is re-
ferred to the review papers [17, 20, 25] and the referene@gith However, to our knowledge
no solid-shell formulations exist, which consider the ottbpic behavior of fiber composites



with woven fabric accounting for different fiber directions

2. Delamination onset criterion

The onset of delamination can be determined on the basisasissstrength relations.
In particular, delamination occurs in pure interlaminarsien (mode I), pure interlaminar
sliding shear (mode II), and pure interlaminar scissorheps (mode Ill), if the corresponding
interlaminar stress component exceeds the respectivemnaxinterfacial strength. Here, the
interlaminar stress components are denotedyos;3, andoys, respectively, where thg-
direction is normal to the considered interface. Then, #@spective interfacial strengths are
Zss, Z13, andZys.

To account for mixed-mode loading, the formulation of theetrcriterion should in-
corporate the interaction of these modes. Due to the lackvaifadble experimental data,
failure criteria predicting the initiation of delaminatidiave not been fully validated, and
hence only few formulations exist. In this paper, the appinazf Ye [41] is adopted, in which
a quadratic interaction of modes is assumed:
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As the formulation presented in this paper is capable ofntakinto account finite
strains, it is important to accurately represent the agogrdtress components. First of all,
the stresses calculated by the present solid-shell fotroolare expressed by the second
Piola-Kirchhoff stress tens®, which has to be pushed to the current configuration

B 1
~ detF

whereo denotes the Cauchy stress tensor. From this, the interdartriactions,, and the
interlaminar resultant shear can be achieved by

o FSF"' (2)

Op=Nnomn (3)

™ = Vlnol|]? - a3 (4)

denoting the normal vector of the considered interfac&byor consistency, the maximum
interfacial strength in tension and resultant shear aermed to asZ, and 7., respectively.
Consequently, the condition for delamination onset reads
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This condition has to be checked in each loading step anddh iesierface of the
laminated composite. Thus, the accurate prediction oftiess components in the interfaces



is essential for a reliable prediction of the initiation aftibnding. Since the layers are usu-
ally rather thin, solid elements are not suitable to achsw@cient accuracy. To overcome
this problem, spline approximations for the through-thiekness stresses can be applied, as
proposed in [5]. Even so, using solid elements in the thidldike applications should be
avoided, and solid-shell elements are preferable. Fyrtrsdrould be noticed that this kind of
criterion is suitable to predict the delamination onset,dalamination growth is not covered.

3. ORTHOTROPIC MATERIAL MODEL

The fiber composites examined in this paper consist of sthlekeers, each of which
is composed of a woven fabric embedded in a matrix materidde dnisotropic material
behavior of such composites is taken into account by usiagiilcro-mechanically motivated
model proposed in [26]. The basics of the continuum modesanemarized in the following.
Therein, parameters are chosen to represent approxintlagebehavior of carbon fibers in an
epoxy resin matrix.

3.1. Concept of structural tensors

Introducing the deformation gradieRt the deformation of a continuous body is rep-
resented by the right Cauchy-Green tensor

C=F'F (6)

The characterization of a hyperelastic body is then givethbyexistence of a scalar
potential, which is the stored energy functidgh= W (C), such that

OW(C)
oC
is the second Piola-Kirchhoff stress tensor. In the casetbbtropic material behavior, the

energy function//(C) reduces to an isotropic function @ and the structural tensobd;
andM;, which are defined by

S=2

(7)

M, =n®ny and M, =n, @1y (8)

where the vectora, andn, are oriented in parallel direction to the fibers. For a distus
of the theoretical background, the reader is referred th488 the references therein. Then,
the strain energy functioil’ can be represented in dependence of the following invariant

I, =trC I, = % [(tr C)* —tr (C*)] I; = det C (9a)
I, = tr(C . Ml) Is=1tr (C2 . Ml) (9b)
Ig = tr (C . Mg) I; =1tr (C2 . Mg) (9C)

3.2. Strain energy function

In this work, the anisotropic model from Reese [26] is addptéhich assumes that the
fibers do not carry any load in case of compression but onlgnsion, which is not realistic



for the CFRP considered here. Therefore, this model istfjighodified, such that the matrix
acts as an elastic continuous support for the embedded.fibfescover, the fibre volume
fractionsO < ¢; and0 < ¢, for the two families of fibres are introduced, wherge+ ¢, < 1
holds. Except of this, we adopt the mentioned model and usdallowing strain energy
function:

W= (1 — Y1 — 802) WNH([la [3) + Wam(@l, P2, L, Iy, 14, I, I, [7) (10)

Here, Wy denotes the Neo-Hookean part displaying the isotropic ratdee small
strain regime. The strain energy function is given by

A
WNH(Il,[g):g([l—?))—uln [3+Z<[3—1—21n\/73> (11)

The anisotropic behavior of the fabric is introduced by the p

Woni(@1, 02, 11, Io, Iy, I, I, I;) =K1*°(I, — 3)** + KY¥°(I, — 3)*
+on [K{M (=) + K™ (L= 1)) (12)
+on [K™2 (Io — 1) + K™% (I — 1)7°]
+ Koo (Iy = 1)5 (g — 1)

Note that in [26] further coupling terms have been introdijoghich have hardly
influenced the results, and therefore are dropped here. Ap@nentsa;, 5;,v:, (i = 1,2),
and¢ are chosen to be integers larger than 2.

4. SOLID-SHELL ELEMENT FORMULATION

Using standard solid elements in thin structures wouldirecquvery high mesh den-
sity to predict the stress distribution with sufficient a@ay. Hence, the solid-shell element
formulation is used alternatively to avoid inefficient camgtions. Furthermore, the different
locking phenomena are cured by application of the EAS and Adifepts. The following is
based on the works of Schwarze and Reese [30-32].

4.1. Finite element framework and interpolation

The solid-shell concept is predicated on the two-field wemmeal functional
gi(w,E,) = /B S(E) : 0E.dV + gext =0 (13)
0
2w, E,) = /B S(E): 0E.dV =0 (14)
0
whereg.,; denotes the virtual work of the external loading. For thigrfolation, the total

Green-Lagrange strain tensBris split additively into the compatible paK. and the en-
hanced parE, coming from the EAS concept:

E=E. +E. (15)



The second Piola-Kirchhoff stress tenSOE ) is a function of the total Green-Lagrange
strain tensoiE. Note thatS depends additionally on a set of internal variables in thstet
plastic case.

In this work, isoparametric eight-node hexahedral finierednts are considered, such
that both the position vector of the reference configuralitig) = [X;,X,, X;]" and the
displacement vectdd (¢) = [Uy, Uy, Us]" are approximated within the element by

8 8
Xi = Z NI XiI and Ui = Z NI UiI (1 - 17 27 3) (16)
=1 I=1

using tri-linear shape functions

Np=1/81+& )X +nm)(1+¢¢) (I=1,..,8) (17)
The position vector of the current (deformed) configuratesds
x(§) = X(§) + U(¢) (18)

Then, introducingD = 0U/0¢, the Jacobian matricek andJ of the reference and
the current configuration, respectively, can be writteroéisws:
0X = 0x x o
T= ¢ =1ndndi] and J=50=J4D= [Jl,Jz,Jg} (19)
The columns off andJ represent the covariant base vectors with respect to the ref
ence and current configuration, respectively. The polyabform of the Jacobian matrices
defined in (19) is obtained by means of the polynomials

J = JO4 I+ I+ I+ T+ ¢ I + EC T (20)
D = D" +¢DS + D7+ (D¢ +&nD + ¢ D™ + £ D (21)

The contravariant base vectors with respect to the iniGafiguration and the current
configuration are denoted by
0¢; x

8& ] and I:Ii = = e = jij €; (22)

H; = ¢ =jje;
ox; i o,

These represent the rows of the inverse Jacobian maffideandJ !, respectively,

the coefficients of which are denoted py = (J~!);; andj; = (J71),;. With this defini-
tion, the Green-Lagrange strain tensor can be written mdeof its Cartesian and covariant
components; andE; = Eg,, respectively,

E = Eij €; X ej = Eij Hi X Hj (23)

Denoting the Voigt notation byﬁ) and exploiting symmetry as well &% = 2 E;;, the
latter can be stored into tliex 1 vectors

E - {E117 E227 E337 F127 F237 F13}T (24)
E = {Ee, Epy, e, Tepy Ty, Tec}” (25)



These can be transformed one to the other with the rel&ienT E, where
% 2 i Jjitj21 j21js1 J11js1
2, 2, % j12j22 j22j32 j12j32
T — 2, 2, 2, j13j23 j23j33 j13j33 (26)
2j11j12 2j21j22  2js1js2  Jjizj2itiiijee  j2ejsiti21ise ji2isi+jiiise

2j12j13  2j22j23  2j32j33  Jjiszjee-Hji12j23  jesisej22js3  jisjsetjiziss

| 2juji3 2j21j23 2js1jss Jisjer-Hjinjes  jesjsitjeiiss jisjsitjitiss |

4.2. Green-Lagrange strain field

Consequently, the compatible Green-Lagrange strain tamrin the formi. = T ﬁ)c.
To get the components of the compatible Green-Lagrange séresorE, in polynomial form,
both the Jacobian matrik and the displacement gradidntare split column-wise:

T =30+ J7+ ¢TS5 +nC TP D, =D! + 5D} + ¢ D + n¢ D} (27a)
Jo =J5 +£J5 + CI5 + €C TS D, =D} + ¢D5 + (Dj + ¢ DS (27b)
Ty =5+ €35 +nJ0+&nd5 D; =D} + ¢D§ + DI + &n DY (27c¢)

Hence, the covariant compatible Green-Lagrange strainpooents are given by

Ecee =J{D1 +1/2D] Dy
E.py =33 Do +1/2D; Dy
Eccc =J3 D3+ 1/2D;D;

Ty =31 Dy +Jy;D; + DDy (28a)

Lepe =35 D3+ J3Dy + Dy Dy
Teee =31 D3 +J3D; + DID;

(28b)
(28c)

To cure curvature thickness locking, the ANS concept is enmnted. For this,
the covariant compatible strain tern‘t’?@cc\E = gk «cc are evaluated at the sampling points

K=A, ..., D, seeFig. 1, as proposed in [3].
L
H/! G
Di - ) €= (-1,-1,007 €p=(-1,0,—1)" & =(0,—1,—1)7
| L €5=01,-1,0" & =(10,-1)" £=(0,1,-1)"
A L & =(1,1,0)" £ =(1,0,1)" &= (0,1,1)7"
i o= (-1,1,0)" & =(-1,0)7 €u=(0,-11)

Figure 1. Sampling points of the ANS concept at referenceete.

Thereby, the covariant compatible strains can be intetpdlavithin the shell mid
plane of the reference element by means of bilinear ansatzifuns

Nk = 1/4(1 + &&)(1 + nxn) (29)

to be evaluated in the points = A, ...,
strain distribution reads

D. In consequence, the assumed transverse normal

D



In order to overcome the transverse shear locking, follgWi, four sampling points
K = E, ..., H are used for the transverse shear teﬁmdgK = anc andK = J, ..., M for
FC§<|£K = ngc, see again Fig. 1. Using the ansatz functions (29) for thee/e points,
the assumed transverse shear terms read
M

H
PANS =" NiT¥, and A =" NkI'i (31)
K=E K=J

The present solid-shell formulation utilizes a reduceegnation scheme within the
shell plane (using one integration point), whereas a faélgnation is used in thickness direc-
tion, which allows for choosing arbitrary numbers of int&tgon points (at least two), see Fig.
2. Thus, all integration points are located on the normaugh the center of the element
defined by¢* := (0,0, ¢)7.

4;---..-7: -------- 3
s R

Figure 2. Solid-shell element with integration pointgat ¢* := (0,0,¢)T.

To cure volumetric locking as well as Poisson thicknessitogkthe EAS concept is
adopted. These locking effects are treated on the leveleintegration points, which can
be expressed bi. = E?, indicating values to be evaluated in the integration Eohy *.
Since in (30) the assumed transverse normal sE@jﬁ has been defined independentlyof
the according valug. .. is constructed as being linear{nn order to overcome the locking
effects, which reads

E.=E:=T'B*W, (32)
in which the interpolation matrilB* = [0,0,¢,0,0,0]" requires only one EAS degree-of-
freedomW.. Here, T? is the transformation matrix (26) evaluated in the centéhefelement.

In order to achieve a polynomial decoupling of the compet{Bteen-Lagrange strain
tensor,E, = TE,, a Taylor expansion of the inverse Jacobian matrix is caroiet with
respect to the center of the element

3

3
o T2 Talleg =7+ 2 (0TI TG @9)

i=1 i=1

J gt

up to the linear terms. The goal is reached by exploiting #ndoF expansion of
3
I3 (33N + )] (BI Nal, & (34)
i=1

as well as]J~! = I, which must hold for arbitrarg = (¢,7, ()T = (&, &, &)T. Introducing
the coefficients of (33) into (26), the transformation maisigiven by

TrT + 6T 4+ T+ (¢ TC (35)



in polynomial form, where terms of higher order have beerpgdeal, as has been shown to
be sufficient in [30]. Nevertheless, using the approxinma{®6), the Cartesian compatible
strain still represents a polynomial of high order. For tleigson, a Taylor expansion of the
Cartesian compatible Green-Lagrange strain

3
E.=TE. ~ Y E $+1/2ZZ |, &6 (36)
i=1 i=1 j#i=
= E°+—<E< +¢B —%nﬁm—%fnﬁﬁﬂ+n<E?*+£<E§? (37)

~
* hg
Ec Ec

is also carried out with respect to the center of the elem&he hourglass strain terdi}s
represents an excellent basis for the construction of theghass stabilization. Howevdr
is no longer quadratic ig. Thus, the according quadratic term is added:

B = E + (ES + CCES (38)

4.3. 2nd Piola-Kirchhoff stress tensor

In this section, an efficient stress st&e:= S* + S is derived for the reduced
integration, which is represented by the second Piolakfioff stress tensor. Her&* is
computed at the integration points placecat £* and must be able to take into account
the highly nonlinear stress distributions in thicknesection. The hourglass stress p&f¢
has to guarantee that the element is free of hourglass iliségb Following [27], a Taylor
expansion of the stress field is carried out with respegtto&*.

. . oS oS
S ~ S| += -0+ 00 (39)
o0& an
£=¢r £=¢r £=¢r
. OS(E Ok Ok
= S(E") + 853) ) %€ £+ T n (40)
g=¢ g=¢ g=¢
é*
= §*+ C*(¢EL + B! + nCEY + ((EY) (41)
::vShg

The tangenC* is nonlinear in the thickness directigrbut independent of andr. In order
to enable an analytical integration of the hourglass sttibn termsC* is replaced by the
deviatoric part of the linear-elastic material tang€f¢, which in Voigt notation reads

4/3 —2/3 —2/3
—2/3  4/3 —2/3
—2/3 —2/3 4/3
0 0 0
0 0 0
0 0 0

Che = he (42)

OO = O OO
o= O O OO
_ o O O o o




and which only depends on the artificial hourglass shear tegis. In elastic problemg"s
is equal to the elastic shear modujus= E/(2(1 + v)), whereas in elastoplasticity it reads as

follows:
S* dev . S* dev

2 E*dev E*dev

Here, the superscript “dev” indicates the deviatoric pathe considered term. Sum-

ming up over the number of integration points<{ 1, ..., n;,) leads to the following effective
hourglass shear modulus

Mip 1 Mip Sxdev . Qxdev
hg __ hg
“eﬁ_zui wi_§Z< E*deV:E*deV
=1

i=1

hg_

(43)

Wi (44)

i

where the weighting factots; are scaled, such that ", w; = 1 holds.

4 .4. Discretized weak form

Introducing the virtual form of the Cartesian enhanced Giieagrange straink,
together with (41), Eq. (14) reads

ot & / SETS 1040 — / SEFT S J0dO° — WL R, = 0 (45)

Note that the infinitesimal volume elemeht® = J dQ2® has been approximated by
means oflV® ~ J° dQ°. Thereby, the integra),,. JE:T S* J° dQ° vanishes, because (32) is
only linear in¢. Further, the virtual forms of (37) and (38) together withh Y 4re incorporated
into (13), which —on the element level- can be written as

B - b~ [ OETS S (46)
Qe
SE:TS* 10 d0e + / SEPsT She 30 4O (47)
Qe e
=SUI'R: + SUI R (48)

Again, all terms being linear in the natural coordinatespdoat. This leads to the
desired decoupling of the parts corresponding to the iatemr point and the hourglass sta-
bilization. Since the hourglass stress has deviatoricadher (see Eqgs. (41) and (42)), the
hourglass residual vect®"¢ simplifies to

Rﬁg _ / / / BhgdevT Shg JO dg dndC
—1J-1J41

— JOBE devT Chg Ef dev 4= 8 JOBT] devT Chg En dev
3 5]

. J/ J/

- h L h
= Rg g = Rg g

+ SJOBZC devT Chg E?CyC dev + SJOBEC dev T Chg EEC dev (49)

J J

:ch g — Rﬁ( g

in which the integration over the element domain is perfatrapalytically. Further, terms
being bilinear intn drop out, becausgs does not include any summand depending on that.



5. NUMERICAL EXAMPLE

The proposed method was applied to a panel with a co-curiéehsti, which had al-
ready been investigated in [36]. The panel’s length andiwadtre 203 mm and 25.4 mm,
respectively, while the stiffener’s length was 50 mm at thegd’s skin and 42 mm at the upper-
most layer. The flange was composed of 10 plies with a lay-ypif/90°/ — 45°/0°/90°),,
whereas the panel consisted of 14 plies withi@n45°/90°/ —45°/45° / —45° /0°) ; assembly.
All layers were made of unidirectional CFRP, the propertieahich are given in Table 1.

Table 1. Material properties

Tensile modulus fibre [GPa] 230
Tensile modulus matrix [GPa] 3.9
Shear modulus matrix [GPa] 3.4
Poisson’s ratio matrix 0.45

From these mechanical properties, the non-zero paranfetetise described model
were calculated, taking into account the fibre volume foacii; = 62°.

A=6300MPa  p=1383MPa  K{!'=115x10°MPa (3 =2 (50)
For the interfacial strengths, the following values weregdd
Z33 = 76 MPa Z13 =79 MPa Zo3 = 79 MPa (51)
giving the following parameters for the delamination orgéerion (5):
Z, =76 MPa Z. =792 MPa (52)

The panel was clamped at the left end, while it was loaded loycefin longitudinal
direction at its right end. Since the onset of debonding wageted at the tip of the stiffener
flange, the mesh was refined in this region as illustrated gurés 3 and 4. In order to
incorporate delamination, interface elements were lacattween all layers, which were
furnished with material properties of the matrix alone. Thiger were assumed to be ten
times thinner than the layers. The described solid-shetheht was used for both layers and
interfaces, leading to a total number of 9825 solid-shelradnts with 25152 nodes.

The location of delamination initiation is shown in Fig. 5hieh corresponds to the
time step, in which the delamination onset condition was fingt As one can see, delam-
ination occurred at first at the tip of the stiffener flangeywas expected. This location of
delamination is reasonable and in agreement with the segrdsented in [36].

Furthermore, experimental data for this problem can bedanr{36]. Therein, the
maximum displacements from extensometer measurementssponding to delamination
onset are reported to be in the range of 0.11 mm to 0.15 mm.rtunfately, the exact location
of the measurement is not given, which does not allow a giaive comparison. However,
in the current calculation, the computed displacementglangnation onset are in a higher
range up to 0.18 mm. This difference can be explained by ttietiat residual stresses are
present in the specimens, which have not been taken intaatoothe present calculation.



Figure 4. Detailed view on panel and flanged stiffener

6. Conclusion

For many technical applications of fiber-reinforced conif@ss predicting the onset
of delamination is essential for appropriately designimg ¢onsidered structure. For this, a
delamination onset criterion based on stress-strengitioas has been suggested in this pa-
per, which requires an accurate representation of the givtloe-thickness stress distribution.
The proposed solid-shell element is particularly suitédkchieve the required accuracy espe-
cially in the thin shell-like applications considered heFae formulation allows for including
woven fabrics with two different families of fibers, incomating a fully three-dimensional,
anisotropic, micro-mechanically motivated material mMmo@®ncluding, the proposed method
is capable of predicting the initiation of delamination difdi-reinforced composites in shell-
like structures accounting for the anisotropic materididwor.



Figure 5. Resulting zone of delamination onset
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