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Abstract. This paper addresses to analysis of crack growth in quasi-brittle materials using 
the boundary element method (BEM) and cohesive models. BEM has been widely used to 
solve many complex engineering problems, especially those where its mesh dimension reduc-
tion includes advantages on the modelling. The non-linear formulations developed are based 
on the dual BEM, in which singular and hyper-singular integral equations are adopted. The 
first formulation uses the concept of constant operator, in which all corrections on the non-
linear system of equations are performed only by applying appropriate tractions along the 
crack surfaces. The second proposed BEM formulation is an implicit technique based on the 
use of a tangent operator. This formulation is accurate, stable and always requires less itera-
tions to reach the equilibrium within a given load increment in comparison with the classical 
approach. Examples of problems of crack growth are shown to illustrate the performance of 
these two formulations. 
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1. INTRODUCTION 

The crack growth phenomenon is one of the major factors affecting the structural be-
haviour of structures composed by important materials such as concrete, fibre-reinforced 
composites and wood. These materials belong to the group of quasi-brittle materials for which 
the process of cracking can be described using cohesive crack approaches [1–4]. Due to the 
inherent complex behaviour of these materials, reliable prognoses of serviceability and ulti-
mate states of structures made of quasi-brittle materials require robust computational non-
linear models. 

Computational modelling of crack growth has been carried out applying the finite 
element method (FEM) [5,6]. However, its domain mesh requires remeshing procedures at 
each crack length increment, which became this approach computationally costly due the 
transfer of data between the different meshes. Consequently, it makes this approach less at-
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tractive. In the past years, the extended finite element method (XFEM) and meshless methods 
appeared also as attractive alternatives to crack propagation analysis [7,8]. These techniques 
require only the description of the geometrical domain, and thus remeshing becomes unneces-
sary. However, it is still difficult to deal with multiple crack growth and coalescence phenom-
ena. 

The boundary element method (BEM) is an alternative numerical method widely ap-
plied in crack propagation simulation. In fracture mechanics problems, BEM requires only to 
discretize the boundary and the crack surfaces. Consequently, BEM requires less computa-
tional effort to generate new elements in order to model crack growth. Some classical BEM 
formulations were proposed in the literature demonstrating the efficiency and accuracy of this 
method in fracture problems. In this context, it is worth to mention [9] and [10], where 
Green’s functions and displacement discontinuity method were adopted, respectively. [11] 
developed the dual boundary element method (DBEM), in which singular and hyper-singular 
integral equations are written for collocation points positioned at the opposite crack surfaces. 
Considering multiple crack propagation, some BEM models can be found in the literature. 
The problems of multiple crack-hole interaction, [12,13] and multiple cracks interaction [14-
17], for instance, have been successfully analysed. In these applications, however, non-linear 
crack propagation has not been considered. 

Non-linear models with BEM have been developed since the 1970s. In the beginning, 
the works were simple but capable to demonstrate that BEM can be applied to simulate these 
kinds of complex problems [18]. The non-linear solution for the first BEM formulations was 
based on the application of a correcting stress field, keeping constant all relevant matrices and 
therefore leading to a large number of iterations. Recently, more reliable solution techniques 
based on the use of tangent operators have been proposed [19,20]. They require less iterations 
and are more stable and accurate than classical approaches. Considering non-linear crack 
growth analysis using BEM, the solution technique adopted for the majority of the researchers 
is based on iterative schemes that find traction values along crack surfaces that satisfy an 
adopted criterion [21]. This process is simple and all relevant matrices are kept constant dur-
ing the process. Again, this kind of technique requires a large number of iterations to achieve 
the equilibrium for a single load increment. Moreover, for the cases of complex pattern of 
cracks, for instance with a solid containing many micro-cracks, this process can be either in-
accurate or unstable.  

In this work, a non-linear BEM formulation applied to analysis of crack propagation in 
structures composed by quasi-brittle materials is presented. The proposed formulation, which 
is based on cohesive crack modelling, uses the DBEM, in which singular (displacement inte-
gral equation) and hyper-singular (traction integral equation) integral equations are adopted. 
The displacement integral equations are written for the collocation points along one crack 
surface, while traction integral equations are used for the collocation points along the opposite 
crack surface. This technique avoids singularities of the resulting algebraic system of equa-
tions, despite the fact that the collocation points on the opposite crack lips have the same co-
ordinates. 

In order to deal properly with the non-linear problem, two solution techniques were 
used. The first approach is the classical procedure, where the corrections on the cohesive 



 
 

crack tractions are performed by applying a non-equilibrated tractions vector. The second 
approach developed uses a tangent operator, which has been derived, and the system of equa-
tions is solved using the Newton–Raphson method. In this case, the non-linear system of 
equations is solved using an implicit procedure, where the corrections on the cohesive trac-
tions are calculated using the tangent operator. These models are used to analyze cohesive 
crack propagation problems where the stiffness reduction due the cracks growth is a major 
problem. Besides comparing the solutions obtained by using the two discussed technique, 
whenever possible the results are compared with experimental results. 

2. COHESIVE CRACK MODEL 

Fracture mechanics problems have received large interest by the scientific community, 
because crack growth can explain the collapse of structures. Due to the load values or im-
posed displacements beyond a critical level, micro-crack concentration increases as well as 
the structural damage. The linear elastic fracture mechanics has been an important approach 
to solve many problems in structural engineering, particularly those where the dissipation 
zone surrounding cracks are reduced enough to be possible to neglect its non-linear effects.  

However, for quasi-brittle and also for some ductile materials, the damaged zone 
ahead of the crack tip is large enough to produce non-linear effects that cannot be neglected. 
The cohesive model is an appropriate approach to take into account these effects. In this 
model, the dissipation phenomenon is assumed to occur along the crack path ahead of crack 
tip, therefore reducing by one the dimension of the dissipation zone. The first models where 
the dissipation zone was reduced either to a line for 2D problems or to a surface for 3D prob-
lems are due to [3] and [1] who have proposed crack models to represent particularly the duc-
tile material behaviour. The cohesive crack model appropriate to quasi-brittle materials is due 
to [4]. 

In this work, the dissipation process, which takes place on a region ahead of the crack 
tip, is approximated by a simple softening law, assumed along a fictitious crack. This law 
relates the fictitious crack opening displacement, u , to tensile surface forces or cohesive 
forces, tf , applied along the crack surfaces. Figure (1) illustrates the cohesive forces distribu-
tion for the [4] model. As can be seen in this figure, the cohesive forces acting along the ficti-
tious crack of length equal to fl disappear after a critical crack opening value, cu . The crack 
starts opening when the cohesive forces reaches a critical tensile value c

tf . For values of the 
tensile stresses lesser than c

tf  the crack remains closed. For values of the crack opening dis-
placement larger than cu , the cohesive forces are zero. 

 
 
 
 
 
 
 

Figure 1. Cohesive forces distribution [4]. 



 
 

Several cohesive crack laws relating cohesive forces and crack opening displacement 
have already been proposed in the literature. Three of them are often adopted to carry out 
crack growth analysis in quasi-brittle materials. The simplest law is given by a linear function 
relating the cohesive forces to the fictitious crack opening displacement smaller than the criti-
cal value, cu . For fictitious crack openings larger than cu , cohesive forces are assumed 
equal to zero, Figure (2a). The relations that represent the linear cohesive law are given by: 

 
 
 
                                                                                                                                (1) 
 
 
 
An alternative law relating cohesive forces and fictitious crack opening displacement 

is the bi-linear model, Figure (2b), which is given by the following equations: 
 
             
 
                                                                                                                                      (2) 
 
 
 
 
 
For the bi-linear model, the variables '' '',t cf u and u   are defined by the following 

expressions:  
 
 
                                                           (3) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Cohesive models. (a) linear model; (b) bi-linear model, (c) exponential model 
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The third cohesive crack model considered in this work is represented by an exponen-
tial law, Figure (2c). Equation (4) gives the analytical expressions for this cohesive model: 
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3. DUAL BOUNDARY ELEMENT METHOD (DBEM) 

The boundary element method has been widely applied in various engineering fields, 
such as contact problems, fatigue and fracture mechanics, due to its high precision and ro-
bustness in modelling strong stress concentration (i.e. singular stresses and displacements). 
Considering a two-dimensional homogeneous elastic domain, , with boundary, . The 
equilibrium equation, written in terms of displacements, is given by: 

                                                     , ,
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where   is the shear modulus,   is the Poisson’s ratio, iu  are components of the displace-
ment field, and ib are body forces. Using Betti’s theorem, the singular integral representation, 
written in terms of displacements can be obtained, with no body forces, as below: 

                      * *( , ) ( ) ( , ) ( ) ( ) ( , )lk k lk k k lkc f c u f P f c u c d P c u f c d
 

                          (6) 

where kP and ku are tractions and displacements on the boundary, respectively,      indicates 
the Cauchy principal value, the free term lkc  is equal to / 2lk  for smooth boundaries, and *

lkP  
and *

lku are the fundamental solutions for tractions and displacements.  
Equation (6) is sufficient to construct the system of algebraic equations to analyse 2D 

elastic domains.  For solids with cracks, however, using only this equation to assemble the 
system of equations will lead to a singular matrix as both crack surfaces are located along the 
same geometrical path. Although possible using only the singular integral representation, Eq. 
(6) requires the definition of a finite gap between the two crack surfaces and a very accurate 
integral scheme to compute the integral along the quasi singular elements.  

Several BEM formulations have been proposed in the literature to properly deal with 
crack problems, as discussed in the introduction part. The DBEM formulation is probably the 
most popular BEM formulation to analysis of arbitrary crack growth. In this formulation, sin-
gular integral representation, Eq. (6), is adopted to determine the algebraic representation re-
lated to the collocation points defined along one crack surface, while hyper-singular integral 
representation is chosen to obtain the algebraic representation related to the collocation points 
placed along the opposite crack surface. Singular representation is applied to the collocation 
points on the boundary, which is sufficient to obtain the required algebraic relations. 

The hyper-singular integral, written in terms of traction, is obtained from Eq. (6). First, 
this equation, written for an internal collocation point, is differentiated to obtain the integral 
representation in terms of strains. Then, using the Hooke’s law, the stress integral representa-
tion is achieved. Finally, the integral representation of stresses for a boundary collocation 
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point is obtained by carrying out the relevant limits. The Cauchy formula is applied to obtain 
the traction representation as follows: 

                   
1

( ) ( , ) ( ) ( , ) ( )
2 j k kij k k kij kP f S f c u c d D f c P c d 

 

                         (7) 

where     indicates the Hadamard finite part, and terms Skij and Dkij contain the new kernels 
computed from Plk

* and ulk
* .  

Equations (6) and (7) are, as usual, transformed to algebraic relations by dividing the 
boundary and the crack surfaces into elements along which displacements and tractions are 
approximated. Besides that, one has to select a convenient number of collocation points to 
obtain the algebraic representations. The algebraic equations for boundary nodes are calcu-
lated using boundary collocation points either at the element ends, therefore coincident with 
nodes, or along the element when displacement and traction discontinuities have to be en-
forced. Thus, using the discretized form of Eq. (6), applied only to boundary collocation 
points, the usual system of algebraic equations can be obtained, relating boundary values, as 
follows: 

                                     b f b f
b b b f b b b fH U H U G P G P                                              (8) 

where b fU and U are displacements assigned to boundary (b) and to crack surface nodes (f),

bP  gives the boundary tractions, while fP represents the tractions acting along the crack sur-
faces; , ,b f b f

b b b bH H G and G are the corresponding matrices to take into account displacements 
and tractions effects, the subscript b indicates that the collocation point is on the boundary and 
the superscripts specify the boundary (b) or crack surface (f) values. 

On the crack surfaces, boundary elements, nodes and collocation points at each crack 
lip have to be defined. Thus, for the crack surfaces one has two opposite collocations points 
that originate four algebraic independent relations, corresponding to four unknown crack sur-
face values, two displacements and two tractions. Moreover, as the hyper-singular representa-
tion Eq. (7) is considered, it is convenient to use collocation points defined along the element 
and not coincident with the discretization nodes. The node values of crack displacements and 
tractions are kept at the element end. Thus, from the discretized forms of Equations (6) and 
(7), the set of algebraic equations below can be written: 

                                      b f b f
f b f f f b f fH U H U G P G P                                      (9) 

where the subscript f in the matrices                indicates equation written for collocation 
points along the crack surface. 

The DBEM formulation adopted in this paper uses continuous and discontinuous lin-
ear elements along the external boundary and only discontinuous linear elements along the 
crack surfaces. The integrals in Eq. (6) are evaluated by using a Gauss–Legendre numerical 
scheme accomplished with a sub-element technique. The integrals appearing in Eq. (7) are 
calculated using analytical expressions. Based on these procedures, Equations (6) and (7) are 
transformed to algebraic representations with very low integration error. 

Using algebraic equations (8) and (9) together with the cohesive crack model de-
scribed in the previous section an appropriate algorithm to analyze crack growth problems can 
be developed. 
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4. SOLUTION TECHNIQUE. TANGENT OPERATOR 

The analysis of quasi-brittle fractured solids leads to the solution of a non-linear prob-
lem that always requires the use of an iterative procedure within each time interval or load 
step. In the context of BEM, a technique based on the use of constant matrices is often 
adopted, [21], with satisfactory results. At each load increment, the algebraic equations are 
kept constant. The only modification required is to re-apply a non-equilibrated traction vector 
along the crack surfaces to re-establish the equilibrium lost when the constitutive model was 
imposed. This technique is simple, but usually requires a large number of iterations to achieve 
the equilibrium within a load increment, which might lead to unstable solutions. Non-linear 
BEM formulations based on more elaborated solution techniques have shown to be more ac-
curate and stable. For instance, non-linear BEM formulations based on the use of tangent op-
erators have demonstrated to lead to accurate and stable solutions when modelling complex 
plastic and damaged solids characterized by exhibiting localization and bifurcation phenom-
ena [19,22]. 

To derive the formulation based on the use of tangent operator, Equations (8) and (9) 
have to be modified. The tractions and displacements values on the crack surfaces will be 
separated according its position, at the right or left crack surface. 

                   b fr f f f b fr f f f
b b b r b b b b r bH U H U H U G P G P G P     

                 (10) 

                   b fr f f f b fr f f f
f b f r f f b f r fH U H U H U G P G P G P     

                 (11) 

where the subscripts r and   are related to right and left crack surfaces, respectively, as illus-
trated in Figure (3). 

 

Figure 3. Right and left surface variables (n and s indicate normal and parallel directions to 
crack surface, respectively). 

 

Equations (10) and (11) can be further modified. First by transforming the crack sur-
face values, displacements and tractions, into local coordinates  ,n s , in which n  and s  are 
coordinate axes perpendicular and parallel to each crack surface, respectively: 

 



 
 

     b frs f frn f f s f f n f b frs f frn f f s f f n f
b b b rs b rn b s b n b b b rs b rn b s b nH U H U H U H U H U G P G P G P G P G P           

        (12) 

     b frs f frn f f s f f n f b frs f frn f f s f f n f
f b f rs f rn f s f n f b f rs f rn f s f nH U H U H U H U H U G P G P G P G P G P           

           (13) 

After these modifications, the relative displacements on the crack surfaces can be in-
cluded in the formulation. The crack relative displacements on directions parallel and perpen-
dicular to crack surfaces, su and nu  respectively, are used to replace the displacement compo-
nents along the left crack side. 

                                  f f f f
s s rs s s rsu U U U u U                              (14) 

                                  f f f f
n n rn n n rnu U U U u U                      (15) 

After these modifications, Equations (12) and (13) can be rewritten as follow: 

   b frs f s f frn f n f f s f n
b b b b rs b b rn b s b nH U H H U H H U H u H u                                            

b frs f frn f f s f f n f
b b b rs b rn b s b nG P G P G P G P G P     

                    (16) 

   b frs f s f frn f n f f s f n
f b f f rs f f rn f s f nH U H H U H H U H u H u               

b frs f frn f f s f f n f
f b f rs f rn f s f nG P G P G P G P G P     

                            (17) 

Equations (16) and (17) represent the equilibrium of solid containing cracks. For the 
case of non-linear fracture problems, these two last equations have to be written and solved 
within the context of incremental problems. Thus, Equations (16) and (17) have to be conven-
iently rewritten in its incremental forms. Firstly, these equations have to be written in rates 
and then transformed into their incremental forms by performing the relevant time integrals 
over a typical time increment 1n nt t t    . For the postulated problem, the corresponding 
incremental forms of Equations (16) and (17) is simple and obtained by replacing all bound-
ary and crack values x by their increments x . 

For a given load increment, Equations (16) and (17) can be further modified by apply-
ing the known boundary conditions. As usual in BEM formulations, all unknown boundary 
values are stored in a vector x  and cumulate the known boundary values effects into inde-
pendent vectors bf and ff . After these modifications, the functions below can be written, to 
express the equilibrium of solid containing cracks: 

   frs f s f frn f n f f s f n
b b b b rs b b rn b s b nY a x H H U H H U H u H u                 

   frs f s f frn f s f
b b b s b b nf G G f G G f                                            (18) 

   frs f s f frn f n f f s f n
f f f f rs f f rn f s f nY a x H H U H H U H u H u                  

   frs f s f frn f s f
f f f s f f nf G G f G G f                                            (19) 

In Equations (18) and (19), the matrices ba and fa contain the coefficients of matrices 
referred to unknown boundary displacements and tractions. These two last equations can be 
further modified to emphasize the variables related to cohesive criterion in the non-linear 
process. These variables are the crack relative displacement and the traction, both in n direc-
tion. Then, the two last equations above can be rewritten as: 



 
 

                             f n frn f n f
b b b n b b b nY A X H u F G G f                                          (20) 

                             f n frn f n f
f f f n f f f nY A X H u F G G f                                          (21) 

In these equations, the matrices bA and fA contain the coefficients of matrices referred 
to unknown boundary and right crack displacements increments ( , f

b rsU U   and f
rnU ), 

boundary tractions ( bP ) and the crack relative displacement at the s direction    ( su ). The 
known boundary and crack values, this last one only at the s direction, are taken into account 
with independent vectors bF and fF . Along the crack surfaces, only the traction compo-
nents in n direction are considered in the non-linear process. The traction components in di-
rection s are neglected according to the cohesive crack model. 

The non-linear system of equations given in (20) and (21) can be solved by applying 
Newton–Raphson’s scheme, for which an iterative process may be required to achieve the 
equilibrium. By linearizing Equations (20) and (21) and using only the first term of Taylor’s 
expansion one has: 
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The derivative terms in Equations (22) and (23) give the global tangent operator [C]. 
Thus, carrying out all indicated derivates in these two last equations, the tangent operator for 
the case of cohesive crack can be obtained. Therefore: 
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where the derivate f
n nf u  is obtained by differentiating properly the cohesive crack laws 

presented in section 2. Thus, the corrections i
kX  and i

nku are obtained by solving the lin-
earized system represented by equations (22) and (23): 
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                                  (25) 

Within a given load increment k the solution is obtained by cumulating the corrections 
calculated using Equation (25): 

                                                   1i i i
k k kX X X                                                        (26) 

                                                   1i i i
nk nk nku u u                                                        (27) 

After solving the implicit non-linear system of equations using tangent operator in 
terms of kX  and nku  all variables have to be updated before applying the next load incre-
ment. The tolerance to stop the iterative process within an increment of load is applied on the 
variation of the crack opening displacement corrections, i.e, 1i iu u tolerance  . 

 



 
 

5. CRACK GROWTH SCHEME 

In order to determine when the cracks grow, the real stress state at the crack tip is 
compared with an ultimate stress state, given by an adopted criterion. In this paper, the ulti-
mate stresses are calculated using the Rankine’s model, which has also been used by [21]. To 
achieve accurately the stress state at the tip, a polynomial interpolation process has been 
adopted to take into account the continuity of the stresses along all points surrounding the 
crack tip. Several internal points are defined ahead of crack tip, as shown in Figure (4). 

 
Figure 4. Distribution of internal points ahead of the crack tip 

 

The number of semi-circles and the internal points along each one can be chosen ac-
cording to the desired accuracy. The polynomial degree is chosen according the number of the 
semi-circles. For the case illustrated in Figure (4), the interpolation process is performed us-
ing third degree polynomial. The interpolation is performed for each radial line and then the 
stress state at the tip is obtained by extrapolation. The real stress state at the tip is then ob-
tained by averaging the values of all calculated values. The direction of the new crack length 
increment is given by the direction perpendicular to the maximum circumferential tensile 
stress, i.e., maximum circumferential stress theory. According this criterion, the crack growth 
direction is given by: 

                                                 
1

xy
p

y

ArcTan



 
 

    
                                                (28) 

where 1  is the maximum tensile stress value. 
The new crack appears when the tensile stress at the crack tip is larger than the ulti-

mate tensile value given by Rankine’s criterion. The crack length increment is determined 



 
 

adjusting the size of the element in such a way that the stress state at the new crack tip, calcu-
lated by the maximum tensile stress criterion, is equal to the ultimate tensile. 

6. APPLICATIONS 

Three examples were chosen to illustrate the efficiency and robustness of the proposed 
BEM formulation in modelling non-linear cohesive crack propagation analysis. The first ex-
ample presents the analysis of crack growth in a three point bending concrete beam. A four 
point bending concrete structure is analyzed in the second application, while a four point 
bending multi-fractured concrete structure is considered as last application. 

6.1. Concrete three point bending beam 

The structure considered in this example is illustrated in Figure (5). It is a three point 
bending concrete structure which has 800 mm of length, 200 mm of height and contains a 
central notch of 50 mm. The experimental results of this example are given by [21], from 
which the following material parameters were chosen: ultimate tensile stress 3.0c

tf MPa ; 
Young's modulus E=30,000 MPa; Poisson's ν=0.15; and fracture energy Gf=75 N/m. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Three point bending beam 

 
The analysis of this example was performed considering the three cohesive laws dis-

cussed earlier (linear, bi-linear and exponential). The load has been applied in 25 load incre-
ments and the convergence has been verified with a tolerance of 10−5. 

Figure (6) shows the comparative among experimental result obtained by [21] and 
numerical responses achieved by the BEM formulations described earlier. In this figure, the 
suffix CTO identifies the results obtained using tangent operator.  According the results 
shown in Figure (6) good agreement is observed among the experimental and numerical re-
sults. Figure (7) describes the crack growth path observed in this analysis.  

The number of iterations required by each model and cohesive crack law to achieve 
the convergence is illustrated in Figure (8). According this figure, the formulation based on 
tangent operator has demonstrated be faster than the classical procedure (constant operator). 



 
 

The tangent operator formulation is faster even in the beginning of the analysis, when the 
non-linear cohesive crack length is small. This behaviour occurs because the tangent operator 
is constant when linear and bi-linear cohesive laws are adopted. Then, the non-linear process 
may achieve the convergence using only one iteration. This situation is observed when no 
changes occur in the cohesive zone, i.e, none node leaves the cohesive zone from one iteration 
to the next. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Load × displacement curves. 

 

 

 

Figure 7. Crack growth path. Initial notch and final crack path. 

 

 

 



 
 

 

Figure 8. Number of iterations required to reach the convergence. 

6.2. Concrete three point bending beam 

The four point beam considered in this example is shown in Figure (9). The geometry 
is given by its length of 675mm, height of 150mm and central notch 75mm deep. The material 
properties were taken from [23], who have performed a laboratory test: tensile strength

3.0c
tf MPa , Young’s modulus 37.000E MPa , Poisson’s ratio 0.20   and fracture energy

69fG N m . 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Four point bending beam. Dimensions in mm. 

For the present analysis three cohesive laws were used: linear, bi-linear and exponen-
tial. The load was applied for all cases in 24 increments and the adopted tolerance within each 
increment was 510 . The two non-linear system solution techniques discussed previously were 
tested: (a) using constant operator (b) using tangent operator. The results obtained are given in 



 
 

Figure (10) where the tangent operator solutions are identified by the symbol CTO. The other 
curves are obtained by using the constant operator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Load x Displacement curves. 
 

Although all obtained results are in accordance with the experimental values, it seems 
that the solutions obtained by the tangent operator are more accurate. Moreover, the tangent 
operator gives always more stable solution requiring a reduced number of iteration at each 
load increment. It can be seen that the descendent branch obtained by using constant operator 
is slightly different due to the cumulated errors coming from the large number of post-pick 
iterations. Figure (11) illustrates the crack growth path during the beam loading, leading to 
rupture surfaces similar than the ones experimentally obtained. To emphasize the large differ-
ences between these two system solution schemes, the iteration numbers to reach the equilib-
rium at some specific load increments are given in Figure (12). It is important to observe that 
the constant operator scheme requires a very large number of iterations after pick, and this 
may lead to less accurate solutions. 

 
 
 
 
 
 
 
 
 

Figure 11. Crack growth path during the loading process. 



 
 

 
 

Figure 12. Required number of iterations for the tested solution techniques. 

6.3. Multi-fractured concrete structure 

In this application, the structure presented in Figure (13) is analyzed. This is a concrete 
beam subjected to a four bending test. This structure has 1.5 m of length and 0.50 m of high 
as shown in the same figure. The material properties adopted for this application were: tensile 
strength 3.0c

tf MPa , Young’s modulus 30,000E MPa , Poisson’s ratio 0.20   and fracture 
energy 75fG N m . 

In this analysis, eleven cracks were distributed along the lower structural boundary as 
illustrated in Figure (14). In the same figure is also presented the BEM mesh considered for 
this analysis. Therefore, the performance of the proposed non-linear formulation in the case of 
multiple cracks is evaluated. Only two cohesive crack laws were considered in this example: 
linear and bi-linear. Both cohesive laws were coupled with tangent operator formulation. The 
load was applied in 25 increments and the adopted tolerance within each increment was 510 . 

 
 
 
 
 
 
 
 
 
 
 

Figure 13. Dimensions and boundary conditions for the structure. 
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The load displacement curves obtained in the analysis are shown in Figure (15). Ac-
cording this figure, it can be observed very similar results from those illustrated in Figure 
(10), i.e, the structural behaviour achieved by the linear CTO model is more rigid than those 
obtained by bi-linear CTO model. In both cases the softening branch was verified, after equal 
results for pre-pick structural behaviour. 

 

 
Figure 14. Crack distribution and BEM mesh adopted.  

 

 
Figure 15. Load x Displacement curves. 

 

Figure (16) illustrates the crack growth path observed until the last load step applied. 
According this figure, it can be observed that only five of eleven cracks have propagated. 

 

  

  
Figure 16. Crack growth path. 



 
 

7. CONCLUSION 

In this paper, crack propagation process in quasi-brittle materials has been studied. 
The complex structural behaviour arising from these materials can be modelled by solving a 
non-linear system of equations which appears due the dependency between crack opening 
displacement and tractions along the normal direction to the crack lips. To simulate this non-
linear structural problem, BEM has shown to be an accurate and efficient alternative. Two 
non-linear BEM formulations have been developed and implemented in this paper. The first 
applies a constant operator, where the non-linear problem is solved by keeping constant all 
relevant matrices and calculating, at each load step, the non-equilibrated vector force. The 
second approach is developed by using a tangent operator. In this case, the derivative set of 
the non-linear equations is used and the problem is faster solved. In this case the problem is 
solved implicitly using the tangent operator expression. The formulation based on the tangent 
operator has shown to be more stable and lead to more accurate results in comparison with the 
classical procedure (constant operator). The use of tangent operator has shown to be always 
recommended to analyze crack propagation problems, particularly for the cases where the 
after pick region is reached. 

This kind of formulation may be applied in other non-linear problems in the future. 
Contact problems and crack growth in reinforced structures, for instance, can be modelled 
using this efficient approach. 
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