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topology optimization of element-wise stress constraints as well as the various static and dy-
namic failure criteria, which are mathematically not differentiable with respect to both the TO 
design variables and the principal stresses. Consequently, this paper presents a new TO 
framework that utilizes the STOM for the static failures by introducing differentiable formula-
tions of these static criteria using differentiable maximum and minimum operators. 

2. STRESS BASED TOPOLOGY OPTIMIZATION FOR NON DIFFERENTIABLE 
FAILURE CRITERIA 

2.1. Topology optimization formulation with static failure criteria 

By following [9-11], the topology optimization to minimize material usage subject to 
failure criteria can be stated as follows. 
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where the maximum value of stress constraints in the kth region is denoted by max k
g

and the number of subdivided regions for the stress constraint evaluation is RN. In (2), the 
maximum operator is replaced by the p-norm approximation multiplied by a correction factor 
at the iterth optimization iteration as follows from [9-11]: 
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where iter
kc , max,

iter
kg  and   are the correction factor at the iterth optimization iteration, 

the real maximum value of the constraint functions in the kth region, and the damping factor, 
respectively. The p value is set to 4 in this research by following [9]. The damping factor,   
used in equation (5), is fixed to a value of 0.5 by following the work in [9] . 



 
 

2.2. Formulations of static failure criteria with phenomenological failure theories 

In this subsection, a short explanation and associated formulations of the static failure 
theories are presented. A thorough description of these failure theories can be found in [12]. 
In the case of ductile materials, there are three failure theories: the DE theory, the MSS theory, 
and the DCM theory. The criteria of these theories are given in (6-8). In the case of brittle 
materials, there are two failure theories: the MM theory and the BCM theory. The criteria of 
these theories are given in (9-13). Note that, the other criteria except for the criterion based on 
the DE theory are not differentiable with respect to principal stress due to maximum, 
minimum, and the logical if operator. Therefore the differentiable maximum and minimum 
operators among three principal stresses are developed [11]. 

 
The Distortion Energy (DE) Theory for Ductile Materials 
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The Maximum Shear Stress (MSS) Theory for Ductile Materials 
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The Ductile Coulomb-Mohr (DCM) Theory for Ductile Materials 
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The Brittle Coulomb-Mohr (BCM) Theory for Brittle Materials 
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The Modified Mohr (MM) Theory for Brittle Materials 
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