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Abstract. The shells are structures which resist mainly by the inherent properties of its forms 

when they are requested by several actions, enabling constructions extremely slender and 

different architecture. The property of resistance is even more evident when the shapes of the 

shells are optimized to obtain the structural behavior in membrane regime with bending 

stresses no or negligible However, design of free-form shells   are complex due to the 

computational difficulties of its generation, since the three-dimensional structures with 

shapes optimized of shell cannot be represented by mathematical equations. This paper aims 

to present a computational approach to facilitate the generation of optimized shapes of shells 

through the development of a software generator of membranes with different polygonal 

plants. After the initial modeling of a flat mesh formed by triangular elements and 

automatically generated, the computational generation of the three-dimensional shapes is 

performed   by means of Finite Element Method considering the membranes subjected to 

large displacements and large deformations. The software for meshing initial plan through a 

standard set was developed in C programming language, with capacity to generate 

information relating to Finite Element Method such as the coordinates and nodal incidence of 

triangular elements with six degrees of freedom per node. The structures in shell generated 

through flexible membranes are polygonal projection with a minimum of three sides, and its 

boundary conditions are the regions of the vertices that remain fixed after the application of 

the loadings. The various models of optimized shapes depend of the numbers of fixed 

supports, and are obtained by varying the intensity of the load actions on the membrane. 

Several models of shapes obtained are presented to corroborate the results obtained. 
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1. INTRODUCTION 

The generation of optimized shapes of shell structures involves a very complicated 

mathematical analysis. A computational process to generate free-form shells through 

simulation of membranes by means of mathematical programming combined with the finite 

element technique is presented in the paper VIZOTTO [Automation in Construction, 2010]. 

The computational model simulates automatically a flexible membrane, initially in the 

horizontal plane surface, with any shape and boundary conditions. 

In this paper, is presented a computational approach to facilitate the generation of free-

form shells with different regular polygonal plants through the development of a software 

generator of finite element meshes. After the initial modeling of a flat mesh formed by 

triangular elements and automatically generated, the shell structures obtained from flexible 

membranes are polygonal projection with a minimum of three sides, and its boundary 

conditions are the regions of the vertices that remain fixed after the application of the loadings 

in the structures.  

2. DEVELOPMENT OF SOFTWARE TO GENERATION OF PLANE MESH OF 

FINITE ELEMENTS TO REGULAR POLYGONS 

The idea of software developed in this paper to generate plan membrane is basically 

determine the mesh projection of any shell in the plane inscribed in a circle of radius pre-

defined. The input of the software is the external radius, the internal radius, the number of 

divisions of the mesh and the number of fixed nodes for support. The external radius (R) is 

only one auxiliary parameter that must be greater than the internal radius that in fact is the 

effective radius of the structure, resulting in the rounded shape of the shell support. The 

structure span is determined by multiplying the effective radius (Ref) by two. The division of 

the mesh is established between supports and radially, the latter is limited by the difference 

between the external and effective radii. The software allows varying the width of the support 

with a fixed number of nodes which must always be odd to keep the structure symmetric. The 

work's challenge is create a mesh with the nodes’ coordinates and the nodal incidence of 

elements to any type of polygonal projection in the plane through the same software. For this 

it is required finding a standard in the mesh to facilitate the implementation of the algorithm 

for software development. 

2.1. Identifying the standard for generating  of  regular polygon  

The search for a standard present in any polygon led to exploration of symmetry around 

a central point. As shown in Figure 1, fixed to the origin of the coordinate system, P1 (0,0) on 

the center. A next point is obtained at the end of the line segment R, P2 (R, 0), where R is the 

external radius of the polygon, i.e. the radius of the circle that circumscribing the polygon. 

The edge formed by the segment connecting the origin to one of the vertices of the polygon 

contained in X axis,     ̅̅ ̅̅ ̅̅ ̅ is subjected to rotation through an angle  in a counterclockwise 



 

 

direction from the origin to determine another point P3 (Rcos, Rsin). The angle  can be 

expressed by the number of sides with: 

  
    

 
        (1) 

where N is the number of polygon sides which can vary from 3 without the upper limit. When 

N is large,  approaches zero and thus can be obtained circular plant to generate domes. 

With three known points can define a triangle which is the standard basis for the 

construction of the remaining of polygon through rotations of the first triangle in a 

counterclockwise direction. Following this pattern, it is not necessary directly determine the 

coordinates of all mesh nodes, optimizing the computational process. Figure 1 illustrates the 

standard found in three polygons represented with three, four and five sides. 

 

 

Figure 1: Outline of the pattern found in software development. 

2.2. Coordinates of nodal points  

For determining the coordinates of the nodal points of the finite element mesh 

membrane in the xy plane it is necessary to know the discretization mesh pattern. Keeping the 

standard described above, divide the angle  in smaller equals angles o. This operation is an 

angular division, and angle o can be determined by: 

   
 

  
        (2) 

where Na is a number of  angular divisions. 

Another division of mesh composition is the radial division represented by Nr, which 

divide the external radius, R in smaller parts of length, ro as following: 
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  Other important information to determine the coordinates is the angle,  formed 

between the segment (     ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the segment     ̅̅ ̅̅ ̅̅ ̅̅ ̅ . Another way  is the complement of  

and is written as: 
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From the information obtained in the equations 1-4 can be determined coordinates (x, y) 

of each nodal point of the mesh to the first triangle by intersections of lines. These lines are 

defined in two groups: the lines through the origin with slopes obtained with the o 

increments, and the lines parallel to the segment    ̅̅ ̅̅ ̅̅ ̅, i.e. with slope  and linear coefficients 

defined from increments ro. The equations of these lines are expressed by: 

                                                                             

                                                                             

where, 

                                                                (7) 
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with j e k represented by positive integers. 

Equating equations (5) and (6), has: 

   
      

              
                                                   

 

Figure 2: General scheme of rotation of the coordinates. 

As  is always different from zero, then its complement is always different from 90 ° 

(ninety degrees), so that the above equation (9) is satisfied. But the angle    can be equal to 



 

 

90° depending on the number of angular divisions, for this case, xi should receive the value 0 

(zero). However this occurs only for the three-sided polygon, because it is the only case that 

the internal angle is greater than 90 °. 

Substituting the value obtained from (9) in (5) can be obtained values yi. The others 

ordered pairs         for the first triangle are determined by varying    e   within the 

respective intervals. For all other points of the polygon, the coordinates are calculated by 

rotating the point with the same angle    by   as shown in Figure 2. 

Generically, 
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Repeating this procedure for the number of faces of the polygon, for all points of the 

first triangle to determine coordinates of all the nodal points of the mesh of the polygon in the 

plane. Figures 3 and 4 illustrate the coordinates obtained for some polygons.  

 

Figure 3: Representation of the coordinates to plants 

(a) triangular; (b) quadrilateral; (c) pentagonal and (d) hexagon. 



 

 

 

 

Figure 4: Representation of the coordinates to plants (a) heptagonal; (b) octagonal; (c) 

enneagonal and (d) hectagonal. 

2.3.  Automatic numbering of nodal points  

The numbering of nodal points starts from the center to the edges in a counterclockwise 

direction starting at the edge coincident positive x-axis. The exception is the central nodal 

point will be the last in the numbering to facilitate the algorithm. The identification numbers 

of each point are saved in a matrix    . The number of columns of the matrix is equal to the 

number of radial divisions and the number of rows is determined by the product of the angular 

division by the number of polygon sides, i.e. the matrix stores in the same line the numbers 

for all nodal points belonging the line segment with slope   , with this, all the nodal points of 

the first triangle defined as standard base of the polygon are numbered and this process is 

repeated N times, until all points are numbered. Thus, the same sequence established for 

calculation of the coordinates is used for numbering of the nodal points so as to simplify the 

algorithm in software. Maintaining this sequence, determining the nodal incidence of the 

elements is facilitated, since the matrix of nodal numeration always present the same pattern 



 

 

independently of the type of polygon. The nodal numbering for a small polygon example is 

shown in Figure 5. 

 

 

Figure 5: Numbering scheme for the nodal points to pentagonal plant. 

The total number of nodal points of the mesh is calculated by: 

                                                           

where, col and lin are respectively the numbers of columns and rows of the matrix of nodal 

numbering. Any nodal point of matrix      can be determined from: 

                                                                         

with i and j represented by positive integers, such that: 



 

 

                                                                  

2.4.  Numbering of elements and nodal incidence 

Triangular finite elements were adopted for the composition of the mesh. The 

numbering is done in pairs with the same sequence as the numbering of the nodal points, with 

the exception of the central elements that are numbered latter. The total number of mesh 

elements and the number of nodal points is determined by the number of surfaces and 

divisions radial and between supports and can be calculated by: 

                                                              

The incidence is determined for each element in a counterclockwise direction, as well as 

the numbering of elements and in pairs. Using the matrix of the nodal points    , to 

determine the incidence of each element, because, as explained above, the matrix will always 

have the same pattern independently of the polygon and this turns possible to develop only 

one algorithm capable of determining the incidence of the nodal elements of any 

configuration. These data are stored in an incidence matrix      . The general form 

of        is presented below: 

     [             ]    [   ]  

     [             ]    [       ]                                        

     [             ]    [           ]  

 

     [             ]    [   ]  

     [             ]    [           ]                                

     [             ]    [       ]. 

 

 

with                     . 

 

The expressions 16 and 17 determine the three nodal points of each element in pairs 

with the exception of the central elements that have in common the last numbered point 

(NNOS) and are determined last. 

 

2.5.   Support constraints 

Since the ultimate objective is to determine the deformed membrane in which are 

known  the coordinates of nodal points and the incidence  nodal of the elements, it is 

necessary to determine the nodal points of support, for not moving while load is applied  on 

the membrane. 



 

 

The supports are located at the vertices of the polygon; however it is not recommended 

that only one nodal point is set for support, because the region of support is related to stress 

concentration. To minimize this effect, the software allows to extend support, considering 

more than one nodal point fixed per support. This information is another input for the 

software. To maintain symmetry, it is recommended that the number of fixed points of 

support is an odd number so that it is regarded the vertex, and the ends immediately preceding 

and immediately following the edges in counterclockwise. The software finds the wanted 

nodal points through the matrix of the nodal points     and applying restrictions of 

displacement in all three directions and leaving them free to rotate. 

2.6.  Mitigation of the vertices of the polygon  

The polygons with less  side, i.e., with the internal angles smaller, membranes exhibit 

unwanted shaped support in order to avoid this problem it is defined an effective radius (Ref) 

that turns rounded the vertex of the polygon. 

                                                                                   

 A care must be taken in the radial division, for the program does not generate 

coordinates outside the effective radius. This care is the smallest division of R cannot be less 

than or equal to the difference between the rays, because then the software would generate an 

element outside the projection of the effective radius or with the null area. Then: 

      
 

  
                                                                     

      

 

Figure 6: Scheme of mitigated nodal coordinates of vertices (a) quadrangle and (b) 

pentagonal. 



 

 

The coordinates near the vertices are recalculated through the intersection of straight 

lines with slope    with the circular curve of effective radius. Thus, if do not want to consider 

the effective radius, simply enter the software with external radius equals to effective. As the 

coordinates calculated on the basis in Ref are smaller than the calculated normally only for the 

vertices, the software compares the coordinates of Ref    to the edge of the polygon with 

coordinates previously calculated as a function of R, and adopting the smaller in absolute 

value. Figure 6 shows the smoothing of vertices to plant a quadrangle and a pentagon 

respectively. 

 

3. COMPUTATIONAL MODEL DEVELOPED BY VIZOTTO 

After generation of the membrane polygonal shape in plan, is used in an integrated way 

the software developed by Vizotto [2010] for generating free-form shell. 

The hypothesis adopted for the material is a linear stress-strain relationship and, with 

Young’s modulus E and Poisson’s ratio , the linear constitutive relationship is: 

σ = D ε.                                                            (20) 

with σ and ε vectors and D matrix for the plane state of stress given by: 
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The finite element adopted was the CST (Constant Strain Triangle), in which the 

hypothesis of strain and the stress constant are considered. The element was modified to 

enable displacements orthogonal to its plane, resulting in an element with nine degrees of 

freedom, three displacements by nodal point at the vertices of the triangle. The initial 

configuration of the element is represented in the xy plane of the tri-orthogonal system of 

reference adopted, which, after deformation, occupies a final equilibrium position in the Oxyz 

system. The nodal variables are the displacements of translation uk (k=1, …, 9) in x, y, and z 

directions, as shown in Figure.7.  



 

 

 

Figure 7: Modified finite element CST (Constant Strain Triangle). 

 

The interpolating functions from using the coordinates x and y for the displacement field 

on the domain of the element are given by: 

 

ux (x,y) = 1 x + 1 y + 1; 

uy (x,y) = 2 x + 2 y + 2;                        (24) 

uz (x,y) = 3 x + 3 y + 3. 

 

with expressions k , k  and k (k=1, 2, 3) written as functions of the initial coordinates and 

displacements of the nodal points of the element. 

Considering the nodal displacements in respective directions x, y, and z for element 

nodal points, the expressions for k, k, and k (k=1, 2, 3) can be written as: 

 

αk = c11 uk + c12 uk+3 + c13 uk+6, 

βk = c21 uk + c22 uk+3 + c23 uk+6,              (25) 

γk = c31 uk + c32 uk+3 + c33 uk+6, 

 

with cij constants (i=1, 2, 3; j=1, 2, 3) presented in Table 1. 



 

 

 

Table 1: Constants cij (i=1, 2, 3; j=1, 2, 3) for the expressions k , βk  and k (k=1, 2, 3). 

c11 = (y2 - y3)  c12 = (y3 - y1)  c13 = (y1 - y2)  

c21 = (x3 - x2)  c22 = (x1 - x3)  c23 = (x2 - x1)  

c13 = (x2 y3 - x3 y2)  c23 = (x3 y1 - x1 y3)  c33 = (x1 y2 - x2 y1)  

 = 1 / [(x1 y2 + x2 y3 + x3 y1) - (x1 y3 + x2 y1 + x3 y2)] 

 

 

With these equations, it is possible to write ux(x,y), uy(x,y) and uz(x,y) as functions of the 

initial coordinates and displacements at nodal points, as in the interpolating equations adopted 

initially. 

In this computational model, can be considered the actions of self-weight, concentrated 

forces, uniformly and linearly distributed forces, and uniform pressure. It is also possible to 

impose known displacements to the membrane to obtain geometric shapes simply by 

distorting the initial configuration.  

The concentrated forces can be applied on the nodal points in x, y and z directions. The 

simulation effect due to self-weight and forces uniformly distributed can be applied only on 

the element in a vertical line (direction of z-axis). The pressure forces always act 

perpendicularly to the element surface from initial configuration, in which loading begins to 

act, through to final equilibrium configuration. 

As boundary conditions it is possible to impose any displacements (zero or nonzero) to 

the finite element nodal points. Thus, for a given nodal point, can be simulated from the full 

freedom of movement to a complete fixed support, and also impose prescribed displacements 

(nonzero) to provide various configurations for the equilibrium of structures. 

Considering the plane stress state for homogeneous and isotropic materials with quadratic 

strain definition of Green (in which large displacements and large strains in exact approach 

are assumed), the strain components can be written as: 
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which can be written as: 
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resulting in: 

 

εxx = (c11 u1 + c12 u4 + c13 u7) + [ (c11 u1 + c12 u4 + c13 u7)
2
 + 

+ (c11 u2 + c12 u5 + c13 u8)
2
 + (c11 u3 + c12 u6 + c13 u9)

2
 ] / 2; 

εyy = (c21 u1 + c22 u5 + c23 u8) + [ (c21 u1 + c22 u4 + c23 u7)
2
 + 

+ (c21 u2 + c22 u5 + c23 u8)
2
 + (c21 u3 + c22 u6 + c23 u9)

2
 ] / 2;              (28) 

ε xy = [ (c11 u2 + c12 u5 + c13 u8) + (c21 u1 + c22 u4 + c23 u7) + 

+ (c11 u1 + c12 u4 + c13 u7) (c21 u1 + c22 u4 + c23 u7) + 

+ (c11 u2 + c12 u5 + c13 u8) (c21 u2 + c22 u5 + c23 u8) + 

+ (c11 u3 + c12 u6 + c13 u9) (c21 u3 + c22 u6 + c23 u9) ] / 2. 

 

 

Defining V as the element undeformed volume and considering the element to have 

constant thickness, the potential strain energy (u) can be written as: 
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The Gradient of potential strain energy, known as the internal forces vector, and the 

Hessian of potential strain energy, known as the stiffness matrix connected to the internal 

forces vector, can be computed with vector component derivatives helping in the calculation 

of the nodal displacements. Thus: 
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Under the principle of minimum total potential energy, steady equilibrium positions 

correspond to the local minimum points of the total potential energy function. By applying 

mathematical techniques to optimize nonlinear functions, it is possible to determine such local 

minimum points. 

The model considered here presents two distinct situations. The first relates to structures 

with total potential energy known. The second relates to structures without total potential 

energy. 



 

 

When the total potential energy function exists, the stable equilibrium configurations 

correspond to local minimum points of this function. It is advisable to use a quasi-Newton-

type method to find these local minima. When the total potential energy function does not 

exist, it is advisable to use an incremental Newton-Raphson-type method to find nonlinear 

system solutions for equations given by the equilibrium equations: 

This process of optimized form finding results directly in numerical data derived from 

the generated shape, which can be further processed in a structural analysis. 

4. RESULTS  

The results obtained with the software developed are the finite element meshes of flat 

membranes for regular polygons. The software generator of membrane appears efficient to be 

able to generate any polygonal, however the description of the mesh should be improved so 

that elements close to the origin of the coordinate system are not adopted with flattened 

shapes. 

Integration with the software developed by Vizotto for generating free-form shells 

enables the analysis of the membranes to generate the three-dimensional shapes. The proof of 

these results can be verified through the images of the membranes in the plan and its 

respective spatial form. Were generated membranes with plants triangular, quadrangle, 

pentagonal, hexagonal, heptagonal, octagonal, enneagonal, decagonal, hectagonal which are 

presented respectively in Figures 8-16. 

 

 

 
Figure 8: (a) Representation in the plane of the triangular membrane; (b) three 

dimensional view of the shell; (c) Front view of shell with triangular plant. 



 

 

 

 

Figure 9: (a) Representation in the plane of the quadrangle membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with quadrangle plant. 

 

Figure 10: (a) Representation in the plane of the pentagonal membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with pentagonal plant. 

 



 

 

 

Figure 11: (a) Representation in the plane of the hexagonal membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with hexagonal plant. 

 

Figure 12: (a) Representation in the plane of the heptagonal membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with heptagonal plant. 



 

 

 

Figure 13: (a) Representation in the plane of the octagonal membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with octagonal plant.  

 

Figure 14: (a) Representation in the plane of the enneagonal membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with enneagonal plant. 



 

 

 

Figure 15: (a) Representation in the plane of the decagonal membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with decagonal plant.  

 

Figure 16: (a) Representation in the plane of the hectagonal membrane; (b) three dimensional 

view of the shell; (c) Front view of shell with hectagonal plant. 

 



 

 

5. CONCLUSIONS 

 With developed software it is possible the automatically generation of meshes of finite 

elements with polygonal plants and integrated with software developed by Vizotto to 

generation of free form shells. The shells structures with polygonal plants can be used as 

coverage for many architectural projects with different purposes. 

The standard to calculate coordinates and numbering the nodes and elements developed 

in this paper was comproved with presented results. Although, it is proposed for future work, 

studies for improving the mesh for generating best elements in the center and near the 

supports.  
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