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Abstract. The natural frequencies and mode shapes of a vibrating structure are unique to the 

particular structure and are independent of the type or duration of the dynamic loading. They 

remain unchanged as long as the physical conditions of the structure are unchanged. Dam-

age, however, causes changes in the physical properties of the structure. The damage is 

usually localized and the extent of changes in physical properties is usually limited. However, 

those changes cause alteration to the global dynamic characteristics of the structure pre-

sented by its natural frequencies and mode shapes. The use of vibration characteristics as a 

global measure for damage identification has been recognized as an effective mean to detect 

the occurrence of damage in structures. While such measure can efficiently recognize damage 

occurrence, the accurate identification of damage location still largely unsolved issue. Natu-

ral frequencies alone cannot identify damage location and one must resort to vibrational 

modes as spatial characteristics that at least in-principal can locate damage. However, 

changes in vibration modes due to damage are insignificant and thus their use for damage 

allocation has been proven inefficient. This research considers examining the differential eq-

uation of motion which represents the dynamic equilibrium of the undamaged and damaged 

structure. Since equilibrium must be maintained at the differential level everywhere, changes 

due to damage would also causes alteration in the response at the differential level. In this 

paper closed form expressions of the vibration modes of structures with localized damage are 

determined using Galerkin’s approach. This allows for the examination of the higher deriva-

tives of the vibration modes which reveals that they can be used as effective measures for de-

tecting damage and identifying its location. Damage is modeled by reduction in stiffness over 

a limited length of the continuous structure. Different damage levels, damage extensions and 

damage locations are considered. The proposed methodology is applied to non-uniform 

beams modeling bridge-like structures. Different types and level of damage at different loca-

tions and over various length of the beams are considered in the paper. Damage location can 

be accurately identified using the proposed method as part of a long-term structural health 

monitoring and non-destructive evaluation scheme. 
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1. INTRODUCTION 

The free vibration characteristics of a structure, namely natural frequencies and mode 

shapes of vibrations, can be used as sensitive indicators of its structural integrity. Localized 

damage and deterioration in the structure alter its dynamic characteristics [1-4]. The shift in 

the natural frequencies caused by damage and changes in the structural properties is the most 

commonly used damage detection indicator. However, it cannot provide spatial information 

about structural changes. Alternatively, changes in the mode shapes, since they are spatially 

distributed quantities, can be used, at least in principle, for identifying the damage location. 

However, experimental studies showed that changes in mode shapes due to damage are not 

statistically significant from the undamaged case [5]. Farrar et al [6] suggested the use of 

mode shape curvatures as a spatially distributed sensitive indicator to localized damage. This 

is supported by the fact that higher derivatives of the mode shapes are much more sensitive to 

small changes in the structure. However, for accurate determination of higher derivatives, 

mathematical expressions for vibration modes which are sufficiently differentiable must be 

available. This offers valuable insight into the relationship between damage and mode shapes 

and their higher derivatives. 

Accurate determination of the free vibration characteristics of continuous system is the 

heart of most dynamic analysis methods used in practice. The powerful modal-analysis me-

thod for forced vibrations of continuous system is based on the expansion of the dynamic re-

sponse in terms of the mode shapes. The derivation of a closed form mathematical expression 

for the vibration modes of one dimensional continuous system with localized damage is con-

sidered in this paper. Galerkin’s approach is used where the mode shapes are expressed in 

terms of a set of simple functions which are easy to manipulate [7]. The accuracy of the me-

thod is verified by comparing the results with those of other well-established numerical me-

thods. The possibility of using the derived mode functions and their higher derivatives in 

identifying the existence of damage and its location is investigated in the paper. 

The applicability of using of vibration modes higher derivatives for locating damage in 

non-uniform system where mathematical expression for the modes are not available is pre-

sented in this paper. The free vibration problem of non-uniform steel beam with open web is 

studied using finite element method. Numerical values for the vibration modes are obtained. 

The calculated modes are numerically differentiated to obtain first, second, third, and fourth 

derivatives of the modes of vibration. Different damage types presented by failure of weld 

lines are introduced at different location for different lengths of damage. The proposed me-

thod was able to accurately identify the damage location and extent. 

  



 

 

 

 

 

 

 

 

 

 

Figure 1. Simply supported elastic beam with variable inertia and mass distribution. 

2. ANALYTICAL MODELING AND CLOSED FORM SOLUTION 

Consider the simply supported beam of length l, mass per unit length m(x), and bend-

ing stiffness EI(x) shown in Figure 1. The beam may have one or more localized damage at xi 

over a damaged length of the beam. The damage may be represented by a reduction in the 

bending stiffness EI(x) over the damaged portion il of the beam length. The equation of mo-

tion for free vibration of the elastic beam of Figure 1 and the corresponding boundary condi-

tions, respectively, read: 
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where u(x,t) represents the displacement of the beam at any point x and at any time t.  

 In the formulation of Equations (1) and (2), EI(x) and m(x) are the expressions of the 

bending stiffness and mass distribution along the length of the beam. They are constants for 

uniform beam with constant elastic properties. For beams with variable cross-section and 

elastic properties or for uniform beam with localized damage, the length of the beam may be 

divided into small parts where the cross section and elastic properties in each portion of the 

beam are assumed constant. The accuracy of the solution depends on the ratio of the average 

to actual inertia and mass in each portion. The accuracy of the solution can be improved by 

increasing the divisions of the beam. So, for beam divided into n parts, each with uniform 

bending stiffness iEI, and n parts, each of uniform mass jm, the stiffness and mass distri-

bution reads 

                                       (3) 

                                     (4) 

Where EI and m are reference values for the stiffness and mass distribution, and i and j are 

factors representing the reduction in stiffness and mass due to damage respectively. 

 For small vibration and no damping, the following product solution may be assumed for 

the separation of space distribution and time function: 

l 

EI(x), m(x) x 

u(x,t) 

xi il 

Localized damage 
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Using product solution (5) in (1) and (2) yields the following eigenvalue problem: 
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 The solution of the eigenvalue problem (6) and (7) yields the natural frequencies k and 

the corresponding mode shapes of vibrations Uk(x), k=1,2,…. 

 Now let the eigenvectors or the vibration modes Uk(x), k=1,2,…, of the given system be 

expanded in the following series: 

                    (8) 

The functions  j(x), j=1,2,…. In (8) must satisfy all the boundary conditions. Using the prod-

uct solution (6) in the principle of virtual work as 
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yields the following equation of Galerkin [8] since akj are arbitrary: 
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Equations (10) can be rewritten as 

       
  

    r = 1,2,… (11) 

where    
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 A nontrivial solution for Eq. (11) exists only when the determinate of the coefficients 

vanishes, i.e. 

      
  

     (13) 

which yields the natural frequencies k and the corresponding vibration modes Uk(x), in terms 

of the coefficient akj, j=1,2,  , k=1,2,… Let the series expansion functions  j(x) be given by 

        
 

 
    

   

 
  j=1,2,…. (14) 

which satisfies all boundary conditions of the simply supported beam. Substituting Eq. (14) in 

(12) and carrying out the integration yields a mathematical expression for  rj, in which the 

natural frequencies k are expressed in terms of non-dimensional frequency parameter k, 

k=1,2,….  



 

 

              k=1,2,…. (15) 

The accuracy of the calculated natural frequencies and the obtained mathematical ex-

pression for the vibrational modes of the continuous elastic beam is illustrated in a previous 

publication by the author [9]. In this paper, the method is applied to a locally damaged beam 

where damage is presented by a variation or reduction in the bending stiffness EI over the 

damaged length of the beam. 

Now, let the beam of Figure 1 be of uniform mass m and uniform bending stiffness EI 

with a local damage at x=0.6l and extend over a length 0.1l to x=0.7l. The damage is pre-

sented by a reduced bending stiffness EI, <1, over the damaged length. 

The frequency parameters i, i=1,2,.., for the various modes, are calculated for different 

level of damage  and compared with the results of finite element model (FEM) as shown in 

Table 1. The results of the present analysis are in good agreement with the finite element me-

thod. However, Galerkin’s method used herein is has the advantage of providing mathemati-

cal expressions for the modes of vibrations Eq. (10). This allows for obtaining closed form 

mathematical expressions for the vibration modes Uk(x) and its higher derivatives dUk(x)/dx, 

d
2
Uk(x)/dx

2
, d

3
Uk(x)/dx3 and d

4
Uk(x)/dx

4
 as follows: 

        
 

 
         

   

 
   k=1,2,.. (16) 

 
      

  
  

 

 
     

  

 
    

   

 
   k=1,2,.. (17) 

 
       

      
 

 
      

  

 
 
 

    
   

 
   k=1,2,.. (18) 

 
       

      
 

 
      

  

 
 
 

    
   

 
   k=1,2,.. (19) 

 
       

     
 

 
      

  

 
 
 

    
   

 
   k=1,2,.. (20) 

The vibration modes and their derivatives given by Egs (16)-(20) can be plotted for fur-

ther examination. 

 

Table 1: Frequency parameter  for different damage levels. 

Mode 
No. 

Damage reduction  = 0.8 Damage reduction  = 0.6 

FEM Galerkin Diff.%. FEM Galerkin Diff.% 

1 93.7 93.741 0.04 88.237 88.292 0.06 

2 1513.7 1512.0 -0.11 1456.8 1447.8 -0.62 

3 7726.6 7855.2 1.66 7726.6 7801.4 0.97 

4 24084.2 24026.0 -0.24 23274.7 22839.0 -1.87 

5 57874.7 59533.0 2.87 57874.7 57839.0 -0.06 



 

 

Figure 2 shows the first mode and its higher derivatives for the case of small damage 

localized over a length 10% of the beam length from 0.6l to 0.7l. The damage is represented 

by reduction 20% of the bending stiffness EI (i.e. =0.80) over the damaged length. As antic-

ipated, the variation in the mode shape is insignificant, and thus cannot identify the location 

of damage. The curvature of the first mode shows slight deviation from the undamaged case 

in the vicinity of damage. The curves show also smaller deviation elsewhere. Similar effect is 

observed in the first derivative of the curvature of the mode shapes. However, the fourth de-

rivative of the mode indicates clearly the location of damage. 

First mode of vibration 

Second derivative of the first mode of vibration 

Third derivative of the first mode of vibration 
 

Fourth derivative of the first mode of vibration 

Figure 2. First mode of vibration and its derivatives for damaged and undamaged beam 

           Undamaged beam,            Damaged beam ( = 0.8) 
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3. NUMERICAL MODELING OF NON-UNIFORM BEAM WITH LOCAL DAMAGE 

In this section of the paper a non-uniform steel beam with open web is considered. The 

beam length is 15 m with web height 500 mm and thickness 14 mm. The top and bottom 

flanges are 20 mm thick and 300 mm wide each. The beam bending stiffness is increased in 

the middle 10 m by providing top and bottom cover plates each of thickness 20 mm and width 

200 mm. The cover plates are attached to the top and bottom flanges through continuous weld 

lines along their edges. The detailed geometry of the beam is shown in Figure 3. 

Figure 3. Non-uniform steel beam with open web 

 

Figure 4. Finite element model using shell element 

 

A finite element model of the beam is constructed using shell elements of size 50x50 

mm for the open web, the top and bottom flange, and the top and bottom cover plate. The 

weld line between the different plates is modeled by complete restraining the joints at the 

edge of the two plates. Free vibration analysis of the beam is carried out using SAP2000 

commercial structural analysis software. The displacement along the line connecting the top 

of the web with the center of the top flange is selected to represent the bending modes of vi-

bration of the beam as shown in Figure 5. The first two bending modes for the undamaged 

beam are calculated as 8.4109 Hz and 30.647 Hz, respectively.  



 

 

 

Figure 5. First two bending modes for the undamaged non-uniform open web steel beam 

 

The damage introduced to the beam is represented by failure along the weld line be-

tween the different plates. Failure of weld line connecting the cover plates to the flanges is 

introduced. The extend of weld failure is introduced to the right end of the cover plate over a 

length equal 500 mm, 1000 mm, and 1500 mm. The damage could be on the top cover plate, 

the bottom cover plate, or both top and bottom cover plates. Other type of damage is intro-

duced along the weld line in the center of the web at different locations.  

 

Table 2. Natural frequencies of the first two bending modes for different damaged cases 

Case Damage description First Mode 

(Hz) 

Second 

Mode  (Hz) 

Undamaged Undamaged beam 8.4109 30.467 

Damage 1 weld damage at first 0.50 m of top cover plate 8.3827 30.192 

Damage 2 weld damage at first 0.50 m of top & bottom cover plate 8.3523 29.913 

Damage 3 weld damage at first 1.00 m of top cover plate 8.3401 23.831 

Damage 4 weld damage at first 1.00 m of top & bottom cover plate 8.2635 16.591 

Damage 5 weld damage at first 1.50 m of top cover plate 7.0021 23.574 

Damage 6 weld damage at first 1.50 m of top & bottom cover plate 6.9119 16.379 

 

Damage introduces changes in the dynamic characteristics of the structure represented 

by its natural frequencies and mode shape. As shown in Table 2, changes in the natural fre-

quencies depend on the level and extent of damage. Such alteration in the natural frequencies 

can be insignificant for small damage. For damage case 1, 0.50 m weld damage only in the 

top cover plate, the changes in the natural frequencies are 0.3% and 0.9% in the first and 

second mode, respectively. For higher levels of damage, changes in the natural frequencies 

become more pronounced. However, those changes do not help in identifying the location of 

damage.   
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Damage location can be identified by examining changes in the modes of vibration and 

their higher derivatives. The numerically calculated mode shapes represented by the deforma-

tion along the center of the top flange are numerically differentiated to get the first, the 

second, the third and fourth derivative as shown in Figures 6-9, respectively, for the first 

mode. For the considered non-uniform beam, the bending stiffness EI of a section through the 

web opening is much less than that of a complete section between the openings. Furthermore, 

sudden and large change in the bending stiffness exists at the beginning of the top and bottom 

cover plates. As explained earlier such changes in the bending stiffness distribution results in 

corresponding changes in the higher derivatives of the vibration modes, particularly the fourth 

derivative. This effect is obvious in Figures 8 and 9. Figures 6-9 shows the first mode and its 

higher derivative for the undamaged case and the damaged case 1 for small damage only in 

the top cover plate at its right hand side end. The deviation in the higher derivatives due to 

such small damage is clearly observed which accurately identify the location of damage.  

 

 

Figure 6. First bending mode for undamaged and damaged case 1. 

 

 

Figure 7. First derivative of the first bending mode for undamaged and damaged case 1. 

 

 

Figure 8. Second derivative of the first bending mode for undamaged and damaged case 1 
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Figure 9. Third derivative of the first bending mode for undamaged and damaged case 1 

 

 

Figure 10. Fourth derivative of the first bending mode for undamaged and damaged case 1. 

 

4. SUMMARY AND CONCLUSIONS 

The free vibration analysis of beams with local damage is presented in this paper. Local 

damage over a small portion of the beam is modeled as a local reduction in its bending stiff-

ness EI(x). Simple mathematical expressions for the modes of vibration of damaged beams 

are obtained using Galerkin’s approach. The accuracy of the solution was illustrated by corre-

lating the results to those of the finite element method. 

The derived expression for the vibration modes are used to study the effect of localized 

damage on the free vibration characteristics. Local damage causes small changes in the de-

rived vibration modes which are insignificant, particularly for small damage, to locate the 

damage. It is found that the curvatures of the derived modes of vibration are more sensitive 

measures that indicate the damage location when compared with those for the undamaged 

beam. This is particularly true for high level of damage. The fourth derivative of the vibration 

mode is very sensitive for changes in the physical condition of the beam due to damage. 

Therefore, the fourth derivative of the mode shapes of vibration is the sensitive indica-

tor to use for locating damages. This fact is explained by examining the differential equation 

of free vibrations. The equation consists of two general terms; the elastic force containing the 

fourth derivative of deflection (mode) multiplied by EI(x), and the inertia force containing the 

mass, frequency and deflection (mode). These two terms must satisfy equilibrium every-

where. Since changes in the modes due to local damage are insignificant, local changes in the 
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stiffness EI(x) must be associated with local changes in the fourth derivative of the mode to 

maintain equilibrium. This effect clearly locates the position of damage. 

The method is examined in a non-uniform open-web steel beam where the modes are 

calculated numerically using finite element method. The modes are numerically differentiated 

and plotted for damaged and damaged beams. The correlating the higher derivatives of the 

vibration modes for the damaged and undamaged cases accurately identifies the location of 

damage even for small level of damage over limited extent of the beam. 
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