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Abstract. CO2 sequestration in the underground is a valid alternative approach for mitigat-
ing the greenhouse effect. Nevertheless, very little is known about the effectiveness of CO2

storage over very long periods. In this work we introduce a methodology to model the gas
flow and monitor the storage. For this purpose, we integrate numerical simulators of CO2-
brine flow and seismic wave propagation. The simultaneous flow of brine and CO2 is modeled
with the Black-Oil formulation for two-phase flow in porous media, using PVT data as a sim-
plified thermodynamic model. Wave propagation is based on an equivalent viscoelastic model
that considers dispersion and attenuation effects. Densities and bulk and shear moduli are
assumed to be dependent on pressure and saturation. The spatial pressure and CO2 satura-
tion distributions computed with the flow simulator are used to determine the phase velocities
and attenuation coefficients of the P and S waves from White‘s model. Numerical examples
of CO2 injection and time-lapse seismograms are analyzed. The proposed methodology is
able to identify the spatio-temporal distribution of CO2 after its injection, and constitutes an
important tool to monitor the CO2 plume and analyze storage integrity, providing an early
warning in case should any leakage may occur.
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1. INTRODUCTION

Geologic storage of CO2 consists in injecting the gas into a geologic formation at
depths typically greater than 1000 m, where it is present at supercritical conditions [1]. Saline
aquifers are suitable as storage sites due to their large volume and their common occurrence
in nature. Numerical modeling of CO2 injection and seismic monitoring are important tools

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



to understand the behavior of CO2 after its injection and make long term predictions. The
CO2 injection operation at the Sleipner gas field in the North Sea, operated by Statoil and the
Sleipner partners, is the world first industrial scale CO2 injection project designed specifically
as a greenhouse gas mitigation measure [10]. Time-lapse seismic surveys aim to demonstrate
storage integrity. In recent works [16] [9], seismic modeling has been used to monitor the
spatio-temporal distribution of CO2 using synthetic generated CO2 saturation fields. Instead,
in this work we introduce a methodology to model the gas flow and monitor the storage. For
this purpose, we integrate numerical simulators of CO2-brine flow and seismic wave propaga-
tion. The simultaneous flow of brine and CO2 is modeled with the Black-Oil formulation for
two-phase flow in porous media [2].

Wave propagation is based on an equivalent viscoelastic model that considers disper-
sion and attenuation effects. In regions with partial CO2 saturation, following White‘s theory
[19], we consider P-wave attenuation due to wave-induced fluid flow at mesoscopic scales
using a model of porous layers alternately saturated with brine and CO2. The results of the
flow simulator are used to compute the phase velocities and attenuation coefficients of P and
S waves from White‘s model. Numerical examples of CO2 injection and time-lapse seismo-
grams in the Utsira Sand aquifer at Sleipner field are analyzed. We build a petrophysical
model of the Utsira formation based on fractal porosity and clay content and taking into ac-
count the variation of properties with pore pressure and CO2 saturation. This model is able to
simulate embedded mudstone layers of very low permeabilitythat accumulate CO2 but also
allow its migration. The proposed methodology is able to identify the spatio-temporal distri-
bution of CO2 after its injection. Attenuation and dispersion effects are clearly observed in
the snapshots and the recorded traces. This methodology is able to identify the horizontal and
vertical saturation distribution of CO2 over long periods of time.

2. THE BLACK-OIL FORMULATION OF TWO-PHASE FLOW IN POROUS MEDIA

The simultaneous flow of brine and CO2 in porous media is described by the well-
known Black-Oil formulation applied to two-phase, two component fluid flow [2]. We rep-
resent the brine (subindexb) by the oil phase and the CO2 (subindex CO2) by the gas phase.
In this way, CO2 component may dissolve in the brine phase but the brine is notallowed to
vaporize into the CO2 phase. The differential equations are obtained by combining the mass
conservation equations with Darcy’s empirical law.

The mass conservation equations are:

• For the CO2 component,

−∇ · (ρCO2 v̂CO2 + CCO2,b ρb v̂b) + qCO2 =
∂
[
φ (ρCO2SCO2 + CCO2,b ρb Sb)

]

∂t
, (1)

• For the brine component,

−∇ · (Cb,b ρb v̂b) + qb =
∂
[
φ(Cb,b ρb Sb)

]

∂t
, (2)



whereρ is density,̂v is Darcy velocity,S is saturation,q mass rate of injection per unit volume
andφ is porosity. CCO2,b, Cb,b are the mass fractions of CO2 and brine in the brine phase,
respectively. In the Black-Oil formulation these fractionsare computed using a simplified
thermodynamic model (PVT data), as

CCO2,b =
Rs ρCO2 BCO2

Bb ρb
(3)

Cb,b =
ρSCb
Bbρb

(4)

whereRs,BCO2 andBb are PVT data, defined as

• Rs =
V SC
dCO2

V SC
b

, CO2 solubility in brine;

• BCO2 =
V res
CO2

V SC
CO2

, CO2 formation volume factor;

• Bb =
(V res

dCO2 + V res
b )

V SC
b

, brine formation volume factor;

with V res
CO2, V

res
b andV res

dCO2 the volume of CO2, brine and dissolved CO2 in brine at reservoir
conditions; andV SC

CO2, V
SC
b andV SC

dCO2 are the volume of CO2, brine and dissolved CO2 in
brine at standard conditions, respectively. Also,ρSCb andρSCCO2 are the CO2 and brine densities
at standard conditions.

The empirical Darcy‘s Law gives the momentum balance for thefluids,

v̂CO2 = −κ
krCO2

ηCO2

(∇pCO2 − ρCO2g∇D), (5)

v̂b = −κ
krb
ηb

(∇pb − ρbg∇D), (6)

wherepCO2, pb are the fluid pressures andκ is the absolute permeability tensor. Also, for
β = CO2, b, the funcionskrβ andηβ are the relative permeability and viscosity of theβ-
phase, respectively.

Replacing (3)-(6) in (1)-(2) and dividing byρSCCO2 andρSCb , the following nonlinear
system of partial differential equation is obtained,

∇ · (κ(
krCO2

BCO2ηCO2

(∇pCO2 − ρCO2g∇D) +
Rskrb
Bbηb

(∇pb − ρbg∇D))) +
qCO2

ρSCCO2

(7)

=

∂
[
φ

(
SCO2

BCO2

+
RsSb

Bb

)]

∂t
,

∇ · (κ
krb
Bbηb

(∇pb − ρbg∇D) +
qb
ρSCb

=
∂
[
φ
Sb

Bb

]

∂t
. (8)



Two algebraic equations relating the saturations and pressures complete the system:

Sb + SCO2 = 1, pCO2 − pb = PC(Sb), (9)

wherePC is the capillary pressure.

The unknowns for the Black-Oil model are the fluid pressurespCO2, pb and the satura-
tionsSCO2, Sb for the CO2 and brine phases.

Rs andBb can be expressed in terms of the equilibrium properties obtained from an
equation of state [14]:

• Rs =
ρ̃SCb χCO2

ρ̃SCCO2(1− χCO2)

• Bb =
ρSCb

ρb(1− ωCO2)

whereρ̃SCb and ρ̃SCCO2 are the brine and CO2 molar density at standard conditions; andχCO2

andωCO2 are the CO2 mole fraction and the CO2 mass fraction in the brine phase. This
conversion from compositional data from equations of stateinto the black-oil PVT data is
performed applying an algorithm developed by Hassanzadeh et al [14],

The numerical solution was obtained employing the public domain software BOAST
[12]. BOAST solves the differential equations using IMPES (IMplicit Pressure Explicit Satu-
ration), a semi-implicit finite difference technique [17].

3. A VISCOELASTIC MODEL FOR WAVE PROPAGATION

The propagation of waves in porous media is described using an equivalent viscoelas-
tic model that takes into account the dispersion and attenuation effects due to the presence of
heterogeneities in the fluid and solid phase properties.

The equation of motion in a 2D isotropic viscoelastic domainΩ with boundary∂Ω can
be stated in the space-frequency domain as

−ω2ρu−∇ · σ(u) = f(x, ω), Ω (10)

−σ(u)ν = iωDu, ∂Ω, (11)

whereu = (ux, uy) is the displacement vector. Hereρ is the bulk density and (11) is a first-
order absorbing boundary condition using the positive definite matrixD.

The stress tensorσ(u) is defined in the space-frequency domain by

σjk(u) = λG(ω)∇ · uδjk + 2µm(ω)εjk(u), Ω, (12)

whereεjk(u) denotes the strain tensor andδjk is the Kroenecker delta.
The coefficientµm in (12) is the shear modulus of the dry matrix, while the Lamé

coefficient isλG = KG − 2
3
µm in 3D andλG = KG − µm in 2D. KG is the Gassmann’s



undrained bulk modulus, computed as follows [5]:

KG = Km + α2M

α = 1−
Km

Ks

,

M =

[
α− φ

Ks

+
φ

Kf

]
−1

.

where

• Km: bulk modulus of the dry matrix

• Ks: bulk modulus of the solid grains

• Kf : bulk modulus of the saturant fluid

To introduce viscoelasticity we use thecorrespondence principlestated by M. Biot
[3],[4], i.e. we replace the real poroelastic coefficients in the constitutive relations by complex
frequency dependent poroviscoelastic moduli satisfying the same relations as in the elastic
case, with some necessary thermodynamic restrictions.

In this work we use the linear viscoelastic model presented in [13] to make the undrained
bulk modulusKG and the shear modulusµm complex and frequency dependent. Thus, we take

KG(ω) =
Kre

G

RKG
(ω)− iTKG

(ω)
, µm(ω) =

µre
m

Rµm
(ω)− iTµm

(ω)
, (13)

whereω = 2πf : angular frequency andKre
G , µ

re
m are the relaxed Gassmann’s and shear mod-

ulus.
The functionsRl andTl, l = KG, µm, associated with a continuous spectrum of relax-

ation times, characterize the viscoelastic behaviour and are given by [13]

Rl(ω) = 1−
1

πQ̂l

ln
1 + ω2T 2

1,l

1 + ω2T 2
2,l

, Tl(ω) =
2

πQ̂l

tan−1 ω(T1,l − T2,l)

1 + ω2T1,lT2,l
.

The model parameterŝQl, T1,l andT2,l are taken such that the quality factorsQl(ω) = Tl/Rl

are approximately equal tôQl in the range of frequencies where the equations are solved,
which makes this model convenient for geophysical applications.

The approximate solution of (10) with the boundary conditions (11) is obtained using
a finite element procedure employing a uniform partitionT h of the computational domainΩ
into square subdomainsΩm,m = 1, · · · , L of side lengthh. To approximate each component
of the solid displacement vector we employed the nonconforming finite element space, since
it generates less numerical dispersion than the standard bilinear elements [11], [21]. It can be
demonstrated that the error associated with this numericalprocedure measured in the energy
norm is of orderh.



4. THE ITERATIVE DOMAIN DECOMPOSITION ALGORITHM

4.1. Weak Formulation

We proceed to formulate the variational form for viscoelastic waves: Find̂u ∈ [H1(Ω)]N such
that

−(ρω2û, ϕ) +
∑

pq

(τpq(û), εpq(ϕ)) + iω 〈Aû, ϕ〉Γ = (f̂ , ϕ), ϕ ∈ [H1(Ω)]N .

Here(f, g) =
∫
Ω
fg dx and〈f, g〉 =

∫
Γ
fg dΓ denote the complex[L2(Ω)]N and [L2(Γ)]N

inner products. Also,H1(Ω) denotes the usual Sobolev space of functions inL2(Ω) with first
derivatives inL2(Ω).

4.2. Finite Element Method

The nonconforming finite element space used in this paper wasfirst described in [9]. For
h > 0, let Th be a quasiregular partition ofΩ such thatΩ = ∪J

j=1Ωj with Ωj beingN -
rectangles of diameter bounded byh. SetΓj = ∂Ω ∩ ∂Ωj andΓjk = Γkj = ∂Ωj ∩ ∂Ωk, we
denote byξj andξjk the centroids ofΓj andΓjk, respectively.

We consider a nonconforming finite element space constructed using the following
reference rectangular element

R̂ = [−1, 1]2 S2(R̂) = Span

{
1

4
±

1

2
x−

3

8

(
(x2 −

5

3
x4)− (y2 −

5

3
y4)

)
,

1

4
±

1

2
y +

3

8

(
(x2 −

5

3
x4)− (y2 −

5

3
y4)

)}
.

The four degrees of freedom associated withS2(R̂) are the values at the mid points of the
faces ofR̂, i.e., the values at the nodal pointsa1 = (−1, 0), a2 = (0,−1), a3 = (1, 0) and
a4 = (0, 1). For example the basis functionψ1(x, y) =

1
4
− 1

2
x− 3

8

(
(x2 − 5

3
x4)− (y2 − 5

3
y4)

)

is such thatψ1(a1) = 1 andψ1(aj) = 0, j = 2, 3, 4.
One of the main advantages of using nonconforming elements to solve wave propaga-

tion phenomena is that the amount of information exchanged among processors in a domain
decomposition iterative procedure is considerable reduced as compared to the case when con-
forming elements are employed. Another property of the nonconforming elements is that it is
possible to obtain an estimate on the speed of convergence ofthe iterative domain decompo-
sition procedure as a function of the mesh sizeh.

SetNCh
j = SN(Ωj), N = 2, 3 and define a nonconforming finite element space in

the following manner

NCh =

{
v | vj : = v |Ωj

∈ NCh
j , j = 1, . . . , J ; vj(ξjk) = vk(ξjk), ∀{j, k}

}
.

The global nonconforming Galerkin procedure is defined as follows: findûh ∈ [NCh]2

such that

−(ρω2ûh, ϕ) +
∑

pq

(τpq(û
h), εpq(ϕ)) + iω

〈〈
Aûh, ϕ

〉〉
Γ
= (f̂ , ϕ), ϕ ∈ [NCh]2.



Next, we will define a discrete domain decomposition iterative hybridized procedure.
For this purpose, we introduce a new setΛ̃h of Lagrange multipliersλhjk associated with the
stress values−τ(ûj)νjk(ξjk):

Λ̃h = {λh : λh|Γjk
= λhjk ∈ [P0(Γjk)]

N = [Λh
jk]

N}.

Then, given an initial guess
(
ûh,0j , λh,0jk , λ

h,0
kj

)
∈ [NCh

j ]
N×[Λh

jk]
N×[Λh

kj]
N , compute

(
ûh,nj , λh,njk

)
∈

[NCh
j ]

N × [Λh
jk]

N as the solution of the equations

−(ρω2ûh,nj , ϕ)j +
∑

pq

(τpq(û
h,n), εpq(ϕ))j + iω

〈〈
Aûh,nj , ϕ

〉〉
Γj

+
∑

k

〈〈
λh,njk , ϕ

〉〉
Γjk

= (f̂ , ϕ)j , ϕ ∈ [NCh
j ]

N , (14)

λh,njk = −λh,n−1
kj + iβjk[û

h,n
j (ξjk)− ûh,n−1

k (ξjk)], onΓjk. (15)

It can be shown that

[̂uh,n − ûh]2 → 0 in [L2(Ω)]2 when n→ ∞,

so that in the limit the global nonconforming Galerkin approximation is obtained [13].

5. PETROPHYSICAL MODEL

The petrophysical model assumes a shaly sand and is generated from the initial poros-
ity φ0 (at hydrostatic pore pressurepH) and clay contentC. We model fractal variations ofφ0

andC.
The pressure dependence of properties is based on the following relationship between

porosity and pore pressurep,

(1− φc)

Ks

(p− pH) = φ0 − φ+ φc ln
φ

φ0

, (16)

whereφc is a critical porosity.
The bulk modulus of the dry matrix is estimated from the pressure dependent porosity

using the Krief equation [9],

Km = Ks(1− φ)A/(1−φ), (17)

where the bulk modulus of the solid grainsKs is the arithmetic average of the Hashin Shtrik-
man upper and lower bounds. The rock is formed with quartz (bulk modulus of 40 GPa) and
clay (bulk modulus of 15 GPa).

We assume the grain to be a Poisson medium, then the shear modulus of the solid
grains isµs = 3Ks/5 and we set

µm = µs(1− φ)A/(1−φ). (18)



The black-oil simulator needs the compressibilityCpp defined by Zimmerman et al.
[20], which is given by

Cpp =
1

φ

(
1

Km

−
1 + φ

Ks

)
(19)

As permeability is anisotropic, we consider horizontal permeability κx and vertical
permeabilityκz. Carcione et al. [7] derived a model depending on porosity andclay content,
assuming that a shaly sandstone is composed of a sandy matrixand a shaly matrix with partial
permeabilities

κq =
R2

qφ
3

45(1− φ)2(1− C)
and κc =

R2
cφ

3

45(1− φ)2C
(20)

whereRq andRc denote the average radii of sand and clay particles, respectively.
Therefore, the average permeability of the shaly sandstonealong the horizontal direc-

tion is given by

1

κz
=

1− C

κq
+
C

κc
(21)

Following Carcione et al. [8] , we assume

κx
κz

=
1− (1− 0.3a) sin πSw

a(1− 0.5 sin πSw)
, (22)

wherea is a permeability-anisotropy parameter andSw is the brine saturation.
Note that forSw = 0 or 1, κz = aκx. It is κx > κz at full water saturation, due to pore

cross sections which are larger in thex-direction.
As water saturation is reduced, and the larger pores drainedfirst, a saturation is reached

at whichκx = κz. Then, as saturation is further reduced,κx < κz. At the other end (full gas
saturation), we have againκx > κz.

6. NUMERICAL EXPERIMENTS

6.1. Idealized model of the Utsira formation

To test the proposed methodology, we consider an idealized model of the Utsira for-
mation. It has300 m thickness (top at800 m and bottom1100 m b.s.l.). Within the formation,
there are two mudstone layers of4 m thickness located at860 m and1010 m.

The pressure-temperature conditions areT = 31.7z+3.4 , whereT is the temperature
(in degrees Celsius) andz is the depth (in km b.s.l.);pH = ρwgz is the hydrostatic pressure,
with ρw = 1040 kg/m3 the density of brine andg the constant gravity. In the Utsira sandstone,
ρ = (1 − φ)ρs + φρf , whereφ(z) is the porosity,ρs is the grain density andρf is the fluid
density. The Utsira grain density isρs = 2550 kg/m3 (both quartz and clay), whileρf =

(1 − Sw)ρg + Swρw, whereSw is the water saturation andρg is the CO2 density, which is
obtained from the Peng-Robinson equations as a function ofT andp, wherep is the pore
pressure [9].



We defineφ0 = φ(pH) fractal for the Utsira, with an average value of37% and a
variation of±3%. In the mudstone layersφ0 = 24% constant. In the same way, the clay
content is estimated asC = 5% for the Utsira, with a fractal variation of5% andC = 85%

(uniform) for the mudstone layers. The initial porosity distribution and clay content are shown
in Figure 1.
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Figure 1. (a) Initial porosity and (b) clay content fractal distributions

Then we include the porosity variation as function of pressure (eq. (16)). Figure 2
shows the resulting initial porosity and compressibility distribution (eq. (19)).
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Figure 2. (a) Porosity and (b) compressibility distributions

Horizontal and vertical permeabilty distributions computed with eqs. (21), (22) can
be seen in Figure 3. Initially, asSw = 1, vertical permeability is a fraction of horizontal
permeability.
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Figure 3. (a) Horizontal and (b) vertical permeability distributions

We consider wave propagation in this poroelastic medium. The bulk modulus and the
shear modulus of the dry matrix for the initial pressure are shown in Figure 4.

Bulk modulus of the dry matrix (Pa)
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Figure 4. (a) Bulk modulus and (b) shear modulus of the dry matrix

It is convenient first to approximate a saturated porous medium Ω by a viscoelastic
solid and use the concept of complex velocity as follows. Recall that in a viscoelastic solid,
the quality factorQ(ω) is defined by the relation

Q(ω) =
Re(v2P )
Im(v2P )

,

wherevP is the complex compressional velocity given by

vP (ω) =

√
E

ρb
. (23)



In (23) ρb is the average bulk density overΩ andE = E(ω) = |E|eiθ is the complex plane
wave modulus associated with the domainΩ as defined by White et al [19]. The quality factor
is related to the loss angleθ by the formula

Q−1(ω) = tanθ.

The source functionf is a compressional point source located inside the region at
x = 400 m, z = 710 m. The iterative procedure was used to find the time Fourier transforms
of the displacement vectors of the solid and fluid phases for 100 equally spaced temporal
frequencies in the interval[0, 60Hz].

6.2. Injection Modeling

CO2 is injected at a constant flow rate of 5000 SCF/d. The injectionpoint is located at
the bottom of the Utsira formation:x = 400 m, z = 1060 m. Results are computed applying
the BOAST simulator. The evolution of CO2 saturation distribution is illustrated in Figure
5 which shows CO2 saturation after 1 year , 5 years and 10 years of CO2 injection. In the
left column the results are obtained without considering variation of properties as function
of pressure and saturation. On the other hand, in the right column, the results are computed
updating the properties every two years. It can be observed that after one year of injection
there is a CO2 accumulation below the bottom mudstone layer. But this layeris not sealed, it
has a very low permeabilty so, as time increases, part of the injected fluid migrates through it.
Therefore, at 5 years, another CO2 accumulation appears below the mudstone layer located
at 860 m. After 10 years of injection, there are 3 zones of CO2 accumulation: below the
lower and upper mudstone layers and below the top of the Utsira formation. The accumula-
tion is more important when the variation of properies is taken into account. The reason of
this behavior is the increment of vertical permeability as CO2 saturation increases, following
equation (22). The vertical permeability variation is illustrated in Figure 6.

Figure 7 displays the distribution of P-wave phase velocityafter 10 years of CO2 injec-
tion and Figure 8 the vertical profile of the P-wave phase velocity corresponding tox = 200

m. The velocity changes due to the presence of the mudstone layers and CO2 accumulation
are clearly observed.

6.2.1 Seismic Monitoring

The objective of this section is to analyze the capability ofseismic monitoring to
identify zones of CO2 accumulation. With this purpose, the media is excited with the point
source located atx = 400 m, z = 710 m.

Time histories measured near the surface are shown in Figure9, before CO2 injection
(a) and after 10 years of CO2 injection (b). The upper reflection in both figures is due to
the direct wave coming from the point source. Two other reflections appear: the lower is
generated by the CO2 accumulations below the mudstone layer at depthz = 1010 m, the third
reflection (the upper one) is due to the accumulation below the upper mudstone layer.
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Figure 5. CO2 saturation distribution after 1, 5 and 10 years of CO2 injection, disregarding
(left) or considering (right) variation of properties

7. CONCLUSIONS

In this work we integrate numerical simulators of CO2-brine flow and seismic wave
propagation to model and monitor CO2 storage in saline aquifers. We also build a petrophysi-
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Figure 6. Vertical permeability distribution after 4 years(a) and 8 years (b) of CO2 injection
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Figure 7. P-wave phase velocity after 10 years of CO2 injection

cal model of a shaly sandstone based on fractal porosity and clay content and considering the
variation of properties with pore pressure and fluid saturation. Numerical examples show the
effectiveness of this metodology to detect the spatio-temporal distribution of CO2. Therefore,
it constitutes an important tool to monitor the migration and dispersal of the CO2 plume and
to make long term predictions.
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