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Abstract. Discrete dynamic vibration absorbers (DVAs) are mechanical devices designed to 

attenuate the vibration level of different structures and machines. They have been used in sev-

eral engineering applications, such as ships, power lines, aeronautic structures, civil engi-

neering constructions subjected to seismic induced excitations, among other applications. 

Traditionally, different approaches based on optimization methods have been proposed to 

design dynamic vibration absorbers in the mono-objective context. In the present contribution 

a multi-objective optimization strategy based on the Line-up algorithm is proposed, asso-

ciated with the Pareto dominance criterion and the crowding distance operator. The test-case 

analyzed in this work focuses on the theoretical study and numerical simulations of a two 

degree-of-freedom nonlinear damped system, constituted of a primary mass attached to the 

ground by a linear spring and the secondary mass attached to the primary system by a nonli-

near spring (nDVA). The objectives are both to maximize the attenuation bandwidth and to 

minimize the amplitude of the system. The results indicate that the proposed approach cha-

racterizes an interesting alternative for multi-objective optimization problems as compared 

with other evolutionary strategies. 

Keywords: Discrete dynamic vibration absorbers, multi-objective optimization, Line-up al-

gorithm. 

1. INTRODUCTION 

Naturally, real-world problems involve the simultaneous optimization of two or more 
(often conflicting) objectives. The solution of the multi-objective optimization problem 
(MOOP) is different from that of a single-objective optimization problem. The main differ-
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ence is that multi-objective optimization problems normally have not one but a set of solu-
tions that are all equally good [1].  

Traditionally, the treatment of such problems is done by transforming the original 
MOOP into a mono-objective problem. However, the development of specific methodologies 
allows the formulation of the optimization problem in a way that various objectives can be 
taken into account simultaneously. In addition, as a number of points that constitutes the op-
timal solution are found, it is possible to explore these solutions according to the practical 
application studied [1]. In the literature, several methods for solving MOOP can be found [1]. 
These methods follow a preference-based approach, in which a relative preference vector is 
used to scalarize multiple objectives. Since classical searching and optimization methods use 
a point-by-point approach so that the solution is successively modified, the outcome of this 
classical optimization method is a single optimized solution. However, Evolutionary Algo-
rithms (EA) can find multiple optimal solutions in one single simulation run due to their pop-
ulation-based search approach. Thus, EA are ideally suited for multi-objective optimization 
problems. A detailed account of multi-objective optimization using EA and some of the appli-
cations using genetic algorithms can be widely found in the literature [1]. 
In the modern engineering context, the use of discrete dynamic vibration absorbers (DVAs) 
have an important application to reduce noise and vibration levels in various types of systems 
such as compressors, robots, ships, power lines, airplanes, helicopters, among others [2]. In 
the last two decades, a great deal of effort has been devoted to the development of mathemati-
cal models for characterizing the mechanical behavior of nonlinear dynamic vibration absor-
bers (nDVAs) accounting for their typical dependence on parameters that control the nonli-
nearities. A particular type of nDVA is the so called viscoelastic neutralizer as studied in [3]. 
Different techniques have been proposed to design viscoelastic vibration absorbers, as shown 
in [4] and [5]. Despite the known complexity in modeling the nonlinear dynamics involved in 
this type of absorber, some general methodologies have proved to be appropriate to treat this 
type of problem. This aspect makes them very attractive for the modeling of nonlinear dy-
namic vibration absorbers. Among these strategies, it should be mentioned the theoretical 
study proposed by Pai [6] and Schulz [7], in which techniques to improve the stability and 
efficiency of nDVAs into a frequency band of interest have been proposed, leading to refined 
nDVAs. Also, Rice [8] and Shaw [9] suggested optimization strategies to be applied to the 
design of nDVAs by applying an asymmetric nonlinear Duffing-type element incorporated in 
the suspension for narrow-band absorption applications.  

The present work focuses the numerical optimization of a two degree-of-freedom non-
linear damped system, constituted of a primary mass attached to the ground by a linear spring 
and the secondary mass attached to the primary system by a nonlinear spring (nDVA) using 
the Line-up algorithm [10], associated with the following operators: non-dominated sorting 
and crowding distance. The objectives are both to maximize the bandwidth and to minimize 
the amplitude of the system. This work is organized as follows. The mathematical formulation 
of the non-linear dynamic system is presented in Section 2. A review of multi-objective opti-
mization and the Line-up algorithm are presented in Section 3. The results and discussion are 
described in Section 4.  Finally, the conclusions and suggestions for future work conclude the 
paper.  



 
 

2. MATHEMATICAL MODELING OF THE NON-LINEAR DYNAMIC SYSTEM 

Consider the vibratory system represented by the two degree-of-freedom model [11] 
shown in Fig. 1.  
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Figure 1 – Two degree-of-freedom non-linear mechanical system. 
 

The interest is focused on frequency domain responses. In this case, to calculate the 
steady-state harmonic responses in the frequency domain the following relation for the exter-
nal force ( )tcosf)t(f 0 ω=  is assumed (whereω  is the excitation frequency). The constitu-

tive forces of the springs are given as follows:  

 ( ) 3 ,   1, 2i i i i i is x k x k x i′= + =  (1) 

where 1x  and 2x  represent, respectively, the displacement of the primary system with respect 
to the ground and the displacement of the nDVA with respect to the primary mass. In the 
present case, the dampers are linear and the springs have nonlinear characteristics, where ik  

and ik ′  indicate, respectively, their linear and nonlinear coefficients. By applying the New-

ton’s second law, the following equations of motion of the nonlinear system are obtained: 
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Aiming at obtaining the dimensionless normalized equations of motion for the nonli-
near dynamic system, the displacements are normalized according to the following rela-
tion cii xxy = , where 10c kfx =  and 2,1i = . In addition, the following expressons are in-

troduced: ( )1111 mk2c=ζ , ( )2222 mk2c=ζ , ( )2
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nl
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After manipulations, the following matrix form of the normalized equations is obtained:  
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where the normalized mass, damping and stiffness matrices are expressed, respectively, as: 
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and the normalized displacement and force vectors are given, respectively, as follows: 
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2.1.  Steady-state harmonic responses of the nonlinear dynamic system. 

Various perturbation methods are based on averaging. This means that the unknown 
functions of the problem are considered as dependent variables by using a shift of variables 
from the original dependent variable [12], [13]. These methods encompass techniques such as 
the following [14]: Krylov-Bogoliubov method, Krylov-Bogoliubov-Mitropolsky method, 
and the method of the generalized average. In the present case, the Krylov-Bogoliubov me-
thod will be used to integrate Eq. (3), leading to an approximate solution of the nonlinear dif-
ferential equations of motion. Within this context, the Van der Pol Transformation [15], 
represented by expressions (6) and (7), are used to guarantee that the transformation is unique. 

 ( ) ( ) ( )cos sinτ τ τ τ τ= +y u v  (6) 

 ( ) ( ) ( )sin cosτ τ τ τ τ= − +y& u v  (7)     

where ( )T

1u 2u,u= and ( )T

1v 2v,v= are assumed to be slow functions of the normalized 
time tωτ = . 

After mathematical manipulation, we obtain a nonlinear algebraic system composed 
by four equations and four variables ( )2121 v,v,u,u : 
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Then, the obtained values of the parameters ( )2121 v,v,u,u  are used to calculate the am-
plitudes of vibrations of the nonlinear system shown in Fig. 1, by performing the following 

relations 2

1

2

11 vur +=  (for the primary mass) and 2

2

2

22 vur += (for the nDVA). Moreover, 

in the numerical computations, the following parameters of force and frequency are also con-

sidered: 2
1F ωβ =  (force parameter) and 1ωωΩ = (frequency parameter), so that in equa-

tions (8) one has Ωω 11 = and Ωρω =2 , where 12 ωωρ = (frequency ratio). 
 
 



 
 

3. SENSITIVITY ANALYSIS OF STRUCTURAL RESPONSES 

 
In a mechanical system the parameters of mass, stiffness and damping establish the depen-

dence with respect to a set of design parameters, which include physical and geometrical cha-
racteristics and the parameters that control the nonlinearities [16]. Such functional depen-
dence can be expressed in a general form as follows: 

 ( ) ( ) ( )( ), ,=r r M p C p K p  (9) 

where r  and p  designate vectors of structural responses and design parameters, respectively. 
The sensitivity of the structural responses with respect to a given parameter pi, evaluated 

for a given set of values of the design parameter p0 is defined as the following partial deriva-
tive: 
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where ip∆  is an arbitrary variation applied to the current value of parameter pi

0, while all other 
parameters remain unchanged. The sensitivity with respect to pi can be estimated by finite 
differences by computing successively the responses corresponding to pi = pi

0 and pi = pi
0+∆ 

pi. 
Such procedure is an estimated approach enabling to calculate the sensitivity of the dynam-

ic system responses with respect to small modifications introduced in the design parameters. 
Moreover, the results depend upon the choice of the value of the parameter increment ∆ pi. 
Another strategy consists in computing the analytical derivatives, as possible, of the structural 
responses with respect to the parameters of interest. This approach is not considered herein 
because of the numerical procedures used to solve the nonlinear equations. 

3. MULTI-OBJECTIVE OPTIMIZATION LINE-UP ALGORITHM 

3.1. Multi-objective Optimization 

When dealing with MOOP, the notion of optimality needs to be extended. The most 
common one in the current literature is the one that was originally proposed in [17] and was 
later generalized by Pareto [18]. This notion is called Edgeworth-Pareto optimality, or simply 
Pareto optimality, and refers to finding good tradeoffs among all the objectives. This defini-
tion leads us to find a set of solutions that is called the Pareto optimal set, whose correspond-
ing elements are called non-dominated or non-inferior solutions. The concept of optimality in 
a single objective optimization is not directly applicable in MOOPs. For this reason a classifi-
cation of the solutions is introduced in terms of Pareto optimality, according to the following 
definitions [1]: 

• Definition 1: The Multi-objective Optimization Problem (MOOP) can be defined as: 

 ( ) ( ) ( ) ( )( )1 2,  ,  ...,   ,  1,  ...,mf x f x f x f x m M= =  (11) 



 
 

subject to 

 ( ) ( ) ( ) ( )( )1 2,  ,  ...,   ,  1,  ...,ih x h x h x h x i H= =  (12) 

 ( ) ( ) ( ) ( )( )1 2,  ,  ...,   ,  1,  ...,jg x g x g x g x j J= =  (13) 

 ( )1 2,  ,  ...,   ,  1,  ..., ,  nx x x x n N x X= = ∈  (14) 

where x is the vector of design (or decision) variables, f is the vector of objective functions 
and X is denoted as the design (or decision) space. The constraints h and g (≥ 0) determine the 
feasible region.  
 

• Definition 2: Pareto Dominance: For any two decision vectors u and v, u is said to do-

minate v, if u is not worse than v in all objectives and u is strictly better than v in at 

least one objective.  

 
• Definition 3: Pareto Optimality: When the set P is the entire search space, or P = S, 

the resulting non-dominated set P’ is called the Pareto-optimal set. Like global and 

local optimal solutions in the case of single-objective optimization, there could be 

global and local Pareto-optimal sets in multi-objective optimization. 
 

• Definition 4: Non-dominated Set: Among a set of solutions P, the non-dominated set of 

solutions P’ are those that are not dominated by any member of the set P. 

3.2. Line-up Algorithm 

The Line-up algorithm aims at approximating the global optimum of a nonlinear ob-
jective function consisting of N continuous decision variables where the only constraints that 
are taken into account are the restrictions of the decision variables regarding upper and lower 
limits. This algorithm starts with a population of L possible solutions, which are selected by 
assuming a uniform probability distribution for each variable. In some cases we can use an 
initial guess that is believed to be located close to the optimum. Basically, the idea is to line 
up the solutions in each generation in a descending order, according to the corresponding val-
ues of the objective function. The crossover and mutation operations are then applied to the 
solutions as follows: during the crossover operation, for each adjacent pair the difference vec-
tor is computed, weighted by a random number between 0 and 1 and added to the first vector 
of the pair. The produced solution replaces the first vector if it produces an objective function 
value that is lower than the fitness value of the second vector. At the end of the crossover op-
eration, the solutions are lined up again. Then the mutation operation is applied by taking into 
account that the worst members of the population should be altered substantially, while only 
small changes should be made in the best solutions. In order to achieve this, a different proba-
bility of mutation is calculated for each solution in the list, which is reduced from the top to 
the bottom. This probability defines the number of variables in each solution that will undergo 
the mutation operation. The reason for using non-uniform mutation is because it adds to the 
algorithm more local search capabilities. Using this approach, in the first iterations the va-
riables that are mutated can be located anywhere in the input space. As the algorithm 



 
 

proceeds, more conservative moves are preferred and thus, search is concentrated on a more 
local level. 

A pseudo-code description of the Line-up algorithm has the following steps (where 
itermax is the maximum number of iterations and iter is the current iteration): 

 
(1) Generate a population of L solutions xi, i=1, …, L, where the values for each deci-

sion variable are chosen randomly between the respective lower and upper bounds, assuming 
a uniform distribution. 

(2) Increase the number of iterations by 1, iter = iter + 1 (iteration current). 
(3) Compute the objective function value corresponding to each solution f(xi), i =1, …, 

L. 
(4) Arrange the solutions so that they formulate a line in a descending order: x1, x2, …, 

xL where xi precedes xj if f(xi)>f(xj), i, j = 1, …, L. 
(5) Apply the crossover operator: 

         FOR i = 1, …, L − 1 
          xi,new = xi + r(xi+1 − xi), where r is a random number between 0 and 1 
         if f(xi,new)<f(xi+1) then xi = xi,new 
         END 

(6) Arrange the solutions so that they formulate a line in a descending order: x1, x2, …, 
xL where xi precedes xj if f(xi)>f(xj), i, j = 1, …, L. 

(7) Apply the non-uniform mutation operation:     
FOR i=1, ..., L 

  pm,i=(L – i + 1)/L 

   FOR j=1, ..., N 

     generate a random number between 0 and 1. 
          IF r < pm,i 

                generate a binary number and a random number r between 0 and 1. 
             IF b=0 THEN xi,new(j)= xi(j) + (xU(j) – xi(j))r exp(–2 iter/itermax) END 
             IF b=1 THEN xi,new(j)= xi(j) – (xi(j) – xL(j))r exp(–2 iter/itermax) END 

       END 
   END 
 IF f(xi,new) < f(xi+1) THEN xi = xi,new END  

                  END 
(8) Replace the solution corresponding to the maximum objective function with the best 

solution found so far and increase the number of iterations by 1. 
(9) If the number of iterations is equal to the maximum number of iterations maxiter 

STOP. Otherwise go to step 2. 
 

The Line-up algorithm has been successfully applied to various fields such as mathe-
matical function optimization [19], [20]; separation process optimization [21]; optimal control 
problems [22], [23], among other applications. 

3.3. Multi-objective Optimization Line-up Algorithm 

Due to the success obtained by the Line-up algorithm in different applications in 
science and engineering, some attempts to extend this approach to solve multi-objective prob-



 
 

lems can be found in the literature. In this work, the MOLup (Multi-objective Optimization 
Line-up) is presented. This approach is based on the canonical Line-Up algorithm associated 
with the non-dominated sorting and crowding distance operators. Basically, the proposed 
strategy has the following structure: an initial population (P1) of size NP is randomly generat-
ed. All dominated solutions are removed from the population through the non-dominated sort-
ing operator. In this way, the population is sorted into non-dominated fronts Fj (sets of vectors 
that are non-dominated with respect to each other). This procedure is repeated until each vec-
tor is a member of a front. A new population (P2) with NP candidate is generated from the 
basic operations in the canonical Line-Up. Starting from population P3 ({P1;P2}) of size 
2×NP, the classification is performed according to the dominance criterion and only the first 
NP candidates are considered to form the non-dominated population (P4). If the number of 
individuals of the population P4 is larger than a number defined by the user it is truncated 
according to the criterion named the crowding distance operator [1]. This operator describes 
the density of solutions surrounding a vector. To compute the crowding distance for a set of 
population members the vectors are sorted according to their objective function value for each 
objective function. To the vectors with the smallest or largest values an infinite crowding dis-
tance (or an arbitrarily large number for practical purposes) is assigned. For all other vectors 
the crowding distance is calculated according to: 
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where fj corresponds to the j-th objective function and m equals the number of objective func-
tions. 

4. RESULTS AND DISCUSSION 

In this work both the maximization of the attenuation bandwidth and the minimization 
of the amplitude of the two degree-of-freedom nonlinear damped system are considered. As 
previously mentioned, the system is constituted of a primary mass attached to the ground by a 
linear spring and a secondary mass attached to the primary system by a nonlinear spring 
(nDVA). For design purposes the following steps are established: 
 

• Objective functions: maximization of the bandwidth and minimization of the amplitude. 
• Design variables (normalized structural parameters): 0.9 ≤ ρ ≤ 1.1, 0.045 ≤ µ ≤ 0.055, 

0.09 ≤ β ≤ 0.11 and 0.009 ≤ ε2 ≤ 0.011. 
• To solve the optimization problem the following heuristics are used for comparison 

purposes: Genetic Algorithm (NSGA) parameters [1]: population size (50), type of se-
lection (normal geometric in the range [0 0.08]), type of crossover Arithmetic, 2), type 
of mutation (non-uniform [2 100 3]); Differential Evolution (MODE) parameters [24]: 
population size (50), perturbation rate and crossover probability both equal to 0.8 and 
DE/rand/1/bin strategy; and Line-up Algorithm parameters: population size (50). 

• Stopping criterion: maximum number of generations (150). 



 
 

• Each algorithm was run 10 times by using 10 different seeds for the random generation 
of the initial population.  

• To solve the non-linear equation system, the Newton Method is used. 
 

Figure 1 present the Pareto’s Curve considering all evolutionary strategies. 
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Figure 1. Pareto’s Curve. 

 
In this figure it is possible to observe that all evolutionary strategies considered in the 

present analysis are able to estimate satisfactory the Pareto’s Curve, resulting a similar num-
ber of objective function evaluations for all the techniques conveyed. 

Table 1 present some points (“best” value in terms of the maximization of the band-
width and “best” value in terms of the minimization of the amplitude) of the Pareto’s Curve 
obtained by the Line-up algorithm.  
 

Table1. Some points of the Pareto’s Curve. 
ρ µ β ε2 Bandwidth -Amplitude 

0.900   0.053   0.090   0.009   4.655  -0.0362 

1.098  0.055 0.110  0.011   6.020  -0.1611 

5. CONCLUSIONS 

In this work the numerical optimization of a two degree-of-freedom nonlinear damped 
system composed of a primary mass attached to the ground by a linear spring and a secondary 
mass attached to the primary system by a nonlinear spring was studied. The system design 
was oriented so that both the maximization of the attenuation frequency bandwidth and the 
minimization of the amplitude response were taken into account. For this aim, a strategy 
based on the Line-up algorithm associated with the non-dominated sorting and crowding dis-
tance operators was proposed to obtain the optimal design of the system. 

The numerical applications showed that the sensitivities of dynamic responses convey 
valuable information about the influence of the design parameters on the dynamic behavior of 



 
 

the nonlinear structure, being also a useful tool for design and analysis of modified systems 
and structural optimization. The choice of the design variables was based on previous knowl-
edge regarding their sensitivities with respect to the amplitude peak and suppression band-
width. It is worth mentioning that these parameters are directly associated with the effective-
ness of the nDVA.  

As demonstrated by the results, the nonlinearity factor is an important parameter to be 
investigated during the design procedure of nonlinear dynamic vibration absorbers, due to its 
contribution to the reduction of the vibration level. This point motivates an important proce-
dure regarding the presented methodology, namely to obtain the optimal spring nonlinear 
coefficient that guarantees the best stable solution for a given system. 

Finally, the results obtained show that the methodology used represents an interesting 
approach to the treatment of the formulated optimization problem as compared with other 
evolutionary strategies.  
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