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Abstract. Fracture propagation in laminated shell structures, due to impact or cutting, is a
highly nonlinear problem which is more conveniently simulated using explicit finite element
approaches. Solid-shell elements are better suited for the discretization in the presence of
complex material behavior and delamination, since they allow for a correct representation of
the through the thickness stress. In the presence of cutting problems with sharp blades, classi-
cal crack-propagation approaches based on cohesive interfaces may prove inadequate. New
“directional” cohesive interface elements are here proposed to account for the interaction
with the cutter edge. The element small thickness leads to very high eigenfrequencies, which
imply overly small stable time-steps. A new selective mass scaling technique is here proposed
to increase the time-step without affecting accuracy.
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ments.

1. INTRODUCTION

Finite element simulation of crack propagation in shell structures is a timely topic in
computational mechanics [1, 2, 3, 4, 5]. The particular case of fracture initiated by contact
against a sharp blade deserves a specific attention [6]. In view of the high nonlinearity of
the problem, due to contact, plasticity, large strains, fracture initiation, crack propagation and
possible delamination, explicit dynamics simulations are generally preferred. An extremely
fine mesh may be required to resolve the blade tip curvature radius and to avoid interferences
with the process zone in the case that cohesive interface elements are used. Complex material
behavior, due to large strain plasticity and delamination requires an accurate description of
through the thickness stresses. For this reason, solid-shell elements rather than classical shell-
elements are often used. On the other hand, the simulation of complex material evolutions
(large strains, plasticity, delamination), to be enforced at Gauss points, entails significant
computational costs which suggest the adoption of reduced integration with hourglass control.
The conditional stability of explicit simulations, requiring small time-steps, also contributes
to increasing the computing burden. It is therefore particularly important that all operations
at the element level are carried out in a computationally effective way and that the stable
time-step is as large as possible.

In the present paper, some of the above mentioned computational issues are addressed.
The issue of the time-step size is tackled by means of the introduction of a selective mass scal-
ing technique, specifically conceived for solid-shell elements. A computationally inexpensive
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linear transformation of the element degrees of freedom, allows to scale only masses con-
nected to higher order element modes, while leaving those associated to rigid body modes
unaltered. This provision is shown to lead to substantial saving in computational costs, with
stable time-steps which can be of one to two orders of magnitude larger and with only marginal
accuracy loss. As for the simulation of the cutting of thin shells, the methodology recently
proposed in [7] is here implemented in combination with shell and solid-shell elements of the
type proposed in [8]. The methodology is based on the notion of directional cohesive elements
and is specially conceived for the simulation of crack development due to cutting with a sharp
blade.

2. SELECTIVE MASS SCALING

2.1. Selective mass scaling procedure

In solid-shell elements, the fact that the thickness dimension is always significantly
smaller than the in-plane dimensions leads to a very high finite element maximum eigenfre-
quency. This is particularly relevant when explicit time integration is used in dynamic anal-
yses, since the stable time-step size decreases with the maximum among element eigenfre-
quencies. This problem can be circumvented by adopting a mass scaling technique, whereby
masses are increased so as to reduce the element maximum eigenfrequency.

Since individual finite elements contribute to the lowest structural eigenmodes mainly
with the inertia associated to their rigid body modes, in inertia dominated problems more
accurate results can be obtained by selectively scaling element masses, in such a way that
masses associated to element rigid body modes are not modified. A theoretically motivated
scaling, which satisfies this requisite, can be obtained by summing to the mass matrix the
stiffness matrix multiplied by a scaling parameter [9, 10]. This scaling can be shown to se-
lectively reduce the higher structural eigenfrequencies, with little or zero modifications of the
lowest ones. The price to pay is that, after the scaling, the originally lumped mass matrix
becomes non-diagonal, which is a serious computational drawback in explicit dynamics. To
avoid this problem, the technique proposed in this paper is based on a linear transformation of
the solid-shell element nodal degrees of freedom, which allows to selectively apply the mass
scaling while preserving the mass lumping. This can be accomplished in a simple and com-
putationally inexpensive way, so that the time-step size can be shown to be governed almost
exclusively by the element in-plane dimensions (element in-plane traversal time), independent
of the element thickness.

The dynamic equilibrium equations of the undamped discretized system are given by

Ma + f int = f ext (1)

where a is the vector of nodal accelerations, M is the mass matrix, f int and f ext the vectors of
equivalent internal and external nodal forces, respectively. The effect of prescribed displace-
ments is assumed to be incorporated in f ext. The implementation of the central difference
integration scheme requires that the accelerations are computed at each time-step as

a = M−1f (2)



Figure 1. Solid-shell element: definition of upper and lower surfaces.

where f = f ext − f int and for effective computations M is assumed to be diagonal.
Making reference to the eight-node solid-shell element with lumped masses shown in

Figure 1, the upper and lower surfaces of the element can be easily identified. If aup
i and

alow
i , i = 1, ...4, denote the accelerations of corresponding nodes on the two surfaces, the

accelerations aave
i governing the element rigid body modes can be defined using the following

linear transformation
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while the accelerations adiff
i , governing the higher order modes, are defined as
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with the inverse transformations
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In matrix form, one can write for element e
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where I is the 12 × 12 identity matrix. In (6), a superposed hat denotes vectors and matrices
expressed in terms of average and difference degrees of freedom.

For distorted elements, M̂e is in general not diagonal even when Me is lumped. A
diagonal mass matrix M̂e

lumped can be easily obtained e.g. using the HRZ lumping procedure
[11]
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Figure 2. Reference element for analytical computation of maximum eigenfrequency.

where

m̂e
i =

 m̂i 0 0
0 m̂i 0
0 0 m̂i

e

, i = 1, . . . 4 (8)

If the original mass matrix Me is already lumped, one simply has m̂i = mup
i +mlow

i .
At this point, the element maximum eigenfrequency can be scaled down, without af-

fecting the element rigid body modes, leaving Mave unaltered and multiplying Mdiff by a scale
factor α > 1 defined as

α = β
Aup + Alow

2h2
, ˆ̄Me

lumped =

[
Mave 0
0 αMdiff

]e
(9)

where Aup and Alow are the areas of the element upper and lower surfaces and h = 1
4

∑4
i=1 hi

is the average element thickness, hi being the distance between corresponding nodes on the
upper and lower surfaces. The factor β can be adjusted in such a way that the scaled critical
time-step size approaches the in-plane element traversal time.

To obtain a reduction of the maximum eigenfrequency, the new element degrees of
freedom with scaled masses need to be used also for the global structure. This is not a problem
since they are nodal degrees of freedom and can be assembled with the usual procedure. If the
transformed element matrices are assembled in the equation of motion, one simply obtains

ˆ̄Mˆ̄a = f̂ (10)

where a superposed bar denotes the scaled mass matrix and relative nodal accelerations. Re-
ferring to the j − th node in the mesh, once āave

j and ādiff
j have been computed as
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one can easily recover the nodal accelerations in terms of the original degrees of freedom
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j = āave
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j − ādiff
j =

(α− 1)fupj + (α + 1)f lowj

α(mup
j +mlow

j )

(12)

The simple expressions of the nodal accelerations in (12) show that the mass scaling can be
applied without actually implementing the variable transformation in (6). The modified nodal



acceleration values can be easily obtained from nodal quantities defined in a standard way,
which implies that an existing code requires only minimal modifications.

A conceptually almost identical scaling procedure was presented in [12]. In that case,
rather than to the masses, the scaling was applied directly to nodal accelerations. If mup

j =

mlow
j , the definition of adiff

j obtained according to the procedure proposed in [12], is coincident
with the definition (4) given here. In this case the two scaling methods are therefore identical.
The main advantage of the procedure proposed here is that it provides a consistent variable
transformation also for the stiffness matrix, so allowing for the analytical computation of
ωe
max. This can be achieved in closed form for elements of parallelepiped shape as follows.

Compute the coefficients (a, b, c being the element semi-dimensions, see Figure 2)
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Check discriminant. If (q
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then the maximum eigenfrequency is real and is given by
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ρ is the mass density and 0.8 is a reduction coefficient intended to provide a safety margin for
stability in the nonlinear case. In the case of slightly distorted elements, an estimate of the
stable time-step can be obtained by computing the maximum eigenfrequency of the largest
parallelepiped contained in the distorted element.

2.2. Application to a cylindrical shell hinged on two sides

A cylindrical shell hinged on two sides and free on the other two sides, subjected to
a transversal concentrated center load, has been analyzed using the 16 × 16 SHB8PS (see
[13]) solid-shell element mesh shown in Figure 3. The problem has been used in [14] to
test the application of the scaled director conditioning technique [15] in explicit dynamics
simulations. The shell has a radius of 5 meters, a thickness of 0.01 meters and a center



Figure 3. Cylindrical shell hinged on two sides: finite element mesh, boundary conditions and
load.

opening angle of 80◦. The material is assumed to be linear elastic with a Young’s modulus of
2.0 · 109 N/m2, Poisson’s ratio 0.0 and mass density 1.0 · 105 kg/m3. The load is applied with
a linear ramp from a zero initial value to 1 MN after 0.2 seconds, and then kept constant.

The analysis has been carried out using three different scaling factors α: α = 1.27·102,
α = 1.27 · 103 and α = 1.27 · 104 (see equation 9). A reference analysis has also been
carried out with the finite element code Abaqus, using a 32×32 mesh of fully integrated shell
elements (S4 element type from Abaqus element library). The results in terms of center point
displacement evolution are shown in Figure 4.

The center point displacement evolutions for the unscaled and the α = 1.27 · 102

analyses are very similar for the whole analysis duration. With α = 1.27 · 103 there is good
agreement up to the peak displacement. After the peak, the analysis with α = 1.27 · 103

exhibits a displacement reduction, which is not observed in the previous curves. It should
be noted however that the same displacement reduction is exhibited by the Abaqus reference
curve, which remains close to the α = 1.27 ·103 curve throughout the analysis. The last curve,
with α = 1.27 · 104, diverges significantly from the others, meaning that the adopted mass
scaling affects in an unacceptable way the shell dynamic response. Snapshots of the shell
deformation are shown in Figure 5 for the case α = 1.27 ·103. Another beneficial effect of the
mass scaling can be further observed noting that the α = 1.27 · 103 curve is smoother than the
unscaled curve, meaning that the spurious higher frequencies are reduced as a consequence of
the adopted mass scaling.

The initial time step-size used with the different analyses is reported in Table 1. While
in the unscaled case the time-step is computed using Gershgorin upper bound, in the scaled
cases it is computed using the analytical procedure illustrated in the previous section. In fact,
Gershgorin bound cannot be used when mass scaling is applied, since it returns the same value
∆tGershgorin = 4.64 · 10−4 for all the adopted values of α. From Table 1, it can be observed
that the α = 1.27 · 103 mass scaling provides a gain of almost two orders of magnitude with



Table 1. Cylindrical shell hinged on two sides: initial time-step size.

Unscaled α = 1.27 · 102 α = 1.27 · 103 α = 1.27 · 104 Abaqus-S4
∆t [sec] 6.71 · 10−5 7.96 · 10−4 2.52 · 10−3 3.09 · 10−3 ≈ 1. · 10−5

Figure 4. Cylindrical shell hinged on two sides: time evolution of center point deflection with
scaled and unscaled masses, for different scaling factors.

respect to the unscaled analysis. The Abaqus time-step is also significantly smaller, but one
should take into account that the Abaqus mesh is made of elements that are two times smaller
than those used in the α = 1.27 · 103 analysis. On the other hand, the additional gain obtained
with α = 1.27 · 104 is relatively small, and does not compensate for the accuracy loss.

3. “DIRECTIONAL” COHESIVE ELEMENTS FOR THE SIMULATION OF CRACK
PROPAGATION DUE TO CUTTING

In finite element approaches to fracture, the propagating discontinuity is often modeled
by introducing a cohesive interface between adjacent shell elements wherever a prescribed
propagation criterion is exceeded at a node [1]. In this case, opposite cohesive forces are
introduced across the discontinuity, their direction depending only on the direction of the
displacement jump and on the adopted cohesive law. When the material is quasi-brittle and/or
the impacting object is blunt, there is no interference between the object and the cohesive
region, because the ultimate cohesive opening displacement is much smaller than the typical
size of the object. On the contrary, when the material is very ductile, or the cutting blade
is sharp, it may well happen that the blade intersects the trajectory of the cohesive forces
(Figure 6), giving rise to inaccurate predictions of the crack propagation. This problem does
not occur when crack propagation is simulated by removing damaged elements from the mesh,
as it is currently done in advanced commercial finite element codes. In this case the contact
algorithm is active on the element until the element is removed and penetration of the blade is
not allowed. However, this approach requires a mesh of the shell body fine enough to conform



Figure 5. Cylindrical shell hinged on two sides: snapshots showing snap-through configura-
tions.

to the blade edge.
A new type of “directional” cohesive interface element, to be placed at the interface

between adjacent shell elements, has been developed in [7] for the simulation of blade cutting
of thin shells. In these elements, the cohesive forces acting on the two opposite sides of the
crack can have different directions whenever the cohesive region is crossed by the cutting
blade.

When the selected fracture criterion is met at a given node, the node is duplicated and
it is assumed that cohesive forces are transmitted between the newly created pair of nodes
by a massles “cable”, i.e. a truss element introduced ad hoc in the model in correspondence
of each pair of separating nodes. These cables are geometric entities, whose main purpose
is to detect contact against the cutting blade. They are initially straight segments, naturally
endowed with a length, which is simply given by the distance between the nodes, and by a
tension–elongation softening law, which accounts for the cohesive behavior. When a point of
a cable element is detected to be in contact with the blade, the cable element is subdivided into
two elements by introducing a joint in correspondence of the contact point, which is forced to
move along the cutting edge of the cutter (Figure 7). The length of the cable is now defined
as the sum of the lengths of the two constituent elements and the cohesive force is defined to
be inversely proportional to the cable current total length, according to the assumed cohesive
law.

Figure 6. Classical cohesive interfaces: interference between cohesive process zone and cut-
ting blade.



Figure 7. Directional cohesive interfaces: a) interaction between cohesive process zone and
cutting blade; b) transmission of cohesive forces to crack separating sides.

In the present contribution, the proposed approach has been implemented in conjunc-
tion with the solid-shell element of Schwarze and Reese [8] and has been applied to the cutting
of the elastic circular thin shell with a rotating blade shown in Figure 8, which was analyzed
in [7] using shell elements of the MITC4 type [16]. The results, expressed in terms of applied
torque vs. blade rotation, show that this type of elements can produce accurate results. The
figure shows the used mesh of solid-shell elements and a snapshot of the analyses where the
interaction between the blade and the cohesive process zone between separating solid-shell el-
ements can be clearly appreciated. The plot shows a comparison between the results obtained
in [16] with classical shell elements (dark blue curve) and the results obtained here (light blue
curve). Both analyses compare well with the experimental results (black curve). The discrep-
ancy in the initial part of the plot is due to two reasons. At the beginning of the analysis, the
cutting teeth are not contacting the sheet and therefore a zero resisting torque is computed in
the numerical analyses. In reality, the rotating cap has to win the resisting friction due to the
contact with the screwing system, which is not modeled here. Once contact with the cutting
blade is established, the shell deforms elastically until the fracture criterion is met for the first
time (no plasticity in the shell core is included in the model). This explains the steep slope in
the initial response of the numerical curves, which does not account for the shell elastoplastic
deformation preceding fracture initiation.

Figure 8. Blade cutting of a thin shell: comparison between experimental and numerical
torque vs. rotation curves.



4. CONCLUSIONS

In the present paper, two issues concerned with the simulation of the blade cutting
of thin shells have been addressed. First, a selective mass scaling technique, specifically
conceived for solid–shell elements has been proposed with the purpose of increasing the ele-
ment maximum stable time-step in explicit dynamics simulations, without affecting the global
structural response in inertia dominated problems. The scaling procedure merely consists of
a modification of nodal accelerations and therefore requires only minimal modifications of
existing codes. Closed form formulas for the consistent analytical derivation of the element
maximum eigenfrequency and, hence, for an accurate estimate of the critical time-step size
have also been provided for the case of parallelepiped elements. The procedure can also be
easily extended to slightly distorted elements. Extension to high distortion is currently under
study. Second, a “directional” interface cohesive element has been developed to correctly
account for the interaction between the sharp cutting blade and the cohesive process zone.
The simulation of a cutting experiment has shown that the proposed approach can accurately
reproduce the physical process.
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