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Abstract. The laminar incompressible fluid flow by computational numerical simulation often 
appears in numerical analysis in academic and industrial activities. In order to solve this kind 
of flow, it is necessary to determine the velocity and pressure fields which are the variables of 
Navier-Stockes equations [11,15,21]. However, to solve the equations of fluid flow with losses 
there is no simple equation to carry out velocity and pressure coupling, hence, it is necessary 
to use a coupling method to obtain velocity and pressure fields consistent [1,2,3]. This work 
deals with the presentation of a numerical method to calculate velocity and pressure fields to 
computational numerical simulation of laminar fluid incompressible flow with losses. The 
Navier-Stockes equations were discretized by the Finite Volume Method [11,15,21], using 
explicit MacCormack Method [21] in co-localized and structured mesh [11,15,21], where 
velocity and pressure coupling was made by SIMPLE method [11,21]. The MacCormack 
method is a two-steps method (predictor-corrector) of second-order accuracy in both space 
and time and this method is commonly utilized in the resolution of compressible fluids prob-
lems [21]. The numerical results of velocity fields were obtained for bi-dimensional case and 
it was compared with analytical results for parallel plates. 

Keywords: incompressible fluid; finite volume method; MacCormack Method; SIMPLE; ve-
locity field.  

1. INTRODUCTION 

The computational numerical simulation, nowadays, is an indisputable reality in aca-
demic and industrial environment. How can be seen through of number scientific paper pub-
lished in appropriate magazine or through commercial software used in specific projects of 
industries [11]. In the fluid dynamic the reality is not different. Because, the quantity of scien-

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



 
 

tific paper and industries that use private or commercial software to solve problems of com-
pressible or incompressible fluid flow show this. 

By [19] a viscous fluid is defined when the viscosity effects or internal shear stresses 
cannot be neglected in the fluid flow. According [19] incompressible fluid is defined by den-
sity must remain constant in the fluid flow. [11] define incompressible fluid as a fluid that 
doesn’t have a specific equation for pressure, this is, density is not function of pressure. 

In incompressible fluid flow analysis, usually, tries to determine the temperature, ve-
locity and pressure fields [21]. These informations are represented, mathematically, by mass, 
momentum and energy conservation equations. Inside of this equations appear the primitive 
variables, that are: density, velocity components, temperature and pressure [11,21]. 

According [11] compressible fluid flow equations are solved using a state equation. 
But, incompressible fluid flow there is not state equation, according [11]. The challenge in the 
incompressible fluid flow is extract the pressure of the momentum equation and the velocities 
obtained should satisfy the continuity equation. 

According [21] there are two approaches to solve an incompressible fluid flow. The 
first approach is called "Coupled Approach", where the aim is insert in the equations an artifi-
cial compressibility and this strategy was presented by [2]. The second approach is called 
"Pressure-Correction Approach", where the main feature is to obtain a pressure correction 
equation from continuity or momentum equation. This strategy was presented by [14]. 

In the pressure-correction approach some proceedings were developed. [11,15,21] pre-
sented and discussed the main proceeding that were developed, such as: SIMPLE Method, 
SIMPLER Method, PRIME Method, etc. 

Among these pressure-velocity coupling method, the SIMPLE (Semi-Implicit Method 
for Pressure Linked Equation) method have some highlight, because it is large applied. How 
can be seen in the works [3,4,13].  

According [11] the velocity correction equations are obtained from momentum equa-
tion and pressure correction equation is obtained from continuity equation, this last equation 
are a Poisson Equation and that should be solved with boundary condition appropriated. 

In numerical analysis of incompressible fluid flow the position of velocity and pres-
sure on the control volume is an important aspect in the Finite Volume Method (FVM). The 
natural position, apparently simpler is storing all variables in the centre of control volume, 
according [11]. This arrangement kind is called "Collocated grid or Nonstaggered grid". Ac-
cording [11] the advantage this arrangement is simplicity of index control in the computa-
tional implementation, but, in this approach arise "Checkerboard Oscilations". 

According [11] to solve the "Checkerboard Oscillations", when is used collocated 
grid, can be made dislocating the velocity from control volume centre to control volume 
faces. This dislocating is made through an interpolation scheme. [21] suggest the "Momentum 
Interpolation Method" presented by [20] and can be seen in the works [3,4,13]. 

The alternative variables arrangement in incompressible fluid flow is "Staggered 
Grid", according [11,21]. Where, pressure and velocity have their own control volume. Ac-
cording [11] this arrangement is physically consistent, however, the index control in the com-
putational implementation is harder. Being the first arrangement appears in several works, 
such as, [12, 16]. The staggered grid arrangement is described in [11,15,21]. 



 
 

The time formulation is other important aspect in the discretization of flow equation. 
[11] suggest the explicit formulation, where, all neighbour values of calculated point were 
calculated in the before instant, generating a set of algebraic equations. Others formulations 
are called, respectively, implicit and totally implicit and both generate a linear equation sys-
tem.  

How commented before the explicit formulation generates a set of algebraic equations, 
that are solved one by one in the process very fast. However, a numerical method to obtain a 
consistent solution it must satisfy the consistency, stability and convergence condition. 

According [21] a numerical method is called consistent when the numerical solution 
gets close of analytical solution with refining mesh. [21] also say that numerical method has 
stability if any errors decrease of time step to next time step. 

[11,21] say that a numerical method is convergent if this method is consistent and sta-
ble.  This affirmation is guaranteed by "Lax theorem", given by: 

 
"Given a properly initial value problem and finite-difference approximation to it that satisfies 

the consistency condition, stability is that necessary and sufficient condition for convergence 

[21]" 

According [11] all numerical models developed from equation in the conservative 
form and used FVM is said consistent. Therefore, an explicit numerical method that used dis-
cretized equations in the conservative form by FVM will be consistent. However, the numeri-
cal method stability will be given by CFL (Courant-Friedrichs-Lewy) condition, where the 
CFL condition depend on time step, grid size, among others information. So, an explicit 
numerical method is called "Conditionally stable". 

[21] suggest some methods to solve the governing equations of fluid flow, such as: 
Euler Method, Lax-Wendroff Method, Brailovskaya Method, Range-Kutta Method, Mac-
Cormack Method, etc. When is made a comparison among these method some have advan-
tages and disadvantages in some features. 

The MacCormack Method has some important features and is large applied to solve 
compressible fluid flow problems. 

The MacCormack is a variation of two steps Lax-Wendroff Method, but, more effi-
cient to solve PDEs non-liners, generating good solutions to discontinuities of this equations 
[21]. 

According [21] the MacCormack Method is a two steps method, this is, it calculates a 
"Predictor Step" and followed it calculates a "Corrector Step", defining the final value from 
an arithmetic mean. If predictor step used a forward differential operator and corrector step 
use backward differential operator. The method must follow this scheme to ensure the main 
feature a second-order of accuracy for time and space. 

The MacCormack Method doesn’t require a control oscillations method, but, the prac-
tice show it needs one to obtain good solutions. These control oscillations method can be vis-
cosity artificial method or TVD (Total Variation Diminishing) scheme, how may be seen in 
the works [5,9,17,18,22]. 



 
 

This work treats of numerical method that applied explicit MacCormack Method in the 
solution of governing equations of incompressible viscous fluid flow, through computational 
numerical simulation by FVM to structured and collocated mesh, where the pressure-velocity 
coupling is made by SIMPLE method and by Moment Interpolation Method. 

2. MATHEMATICAL MODEL FOR A INCOMPRESSIBLE VISCOUS FLUID 

2.1. Governing Equations 

The incompressible viscous fluid flow is given, mathematically, by conservations law. 
The conservations law are general principles that governing the movement of bodies submit-
ted by external forces. The conservations law are given by continuity, momentum and energy 
equations [21], given below: 
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Where, ρ  is the density, v
r

 is the velocity vector, t  is time, σ  are surface forces, b are body 
forces, c is the specific heat in pressure and volume constant, T is temperature, ε&  is strain 
rate tensor, ( )ε⋅σ &tr  is rate of plastic work, r is heat per unit of mass e q&  is the flux heat vec-
tor [21].     

2.2. Constitutive Equations 

The relationship among the material behaviour in mechanical loading condition and/or 
thermal through variables of static (by stresses), kinematic (by displacement, strain and veloc-
ity) and thermal (by thermal flow and temperature) are given through mathematical expres-
sions called constitutive equations [7]. The constitutive equations used in this model are pre-
sented by Equation (4), which makes the relation between stresses with strain rate and is 
given by generalized Stocks Law, the strain rate tensor is given by Equation (5) and the Fou-
rier's Law is given by Equation (6).  
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Where, σ  is the stress tensor, ε&  is the strain rate tensor, p  is the pressure, I  is identity tensor, 
µ  is the dynamic viscosity, v

r

 is the velocity vector, T  is the temperature and k  is the ther-
mal conductivity. 

3. NUMERICAL METHOD 

3.1. Finite Volume Method 

Consider the Equations (1), (2) e (3), that represent the differential form of governing 
equations, written in a compact vector form and given by (7). 
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Where, Q  is the primitive variable vector, F is a flux vector and S is source term. Integrating 
the Equation (7) over control volume and following the deductions presented in [21], have the 
Equation (8), that represent the discretization by FVM to bi-dimensional, quadrilateral and 
stationary in the space control volume, represented by Figure 1 (a).  
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Where, F
r

 is the flux vector to bi-dimensional case, s
r

 is the outward normal vector control 
volume surface and V  is the volume of control volume, that in the bi-dimensional case repre-
sent the control volume area.   
 
 
 
 

 

 

 

 

 

 

 
Figure 1 – Representation of quadrilateral control volume. (a) specifying outward normal vec-

tor control volume. (b) specifying flux way to flow. 
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3.2. MacCormack Method 

The Equation (8) was solved by MacCormack explicit scheme, present in reference 
[21]. Considering the control volume given by Figure 1 (b), have equations for predictor step, 
corrector step and update step, given respectively, by Equations (9), (10) e (11). 
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Where, t  is the current time step, 1t +  is next time step, t∆  is the time step,  1t
mnQ +  is the pre-

dictor step, 1t
mnQ +  is the corrector step and 1t

mnQ +  is the final time step. The vectorss
r

 that repre-
sent the outward normal control volume surface are calculated from computational mesh co-
ordinates, following the direction presented in the Figure 1 (b). The flux vector F

r

 that appears 
inside of Equations (8) e (9) should be discretized in the correct way and presented in refer-
ence [21], to be ensured second-order accuracy of time and space, that is the main feature of 
MacCormack scheme. 

3.3. Velocity-Pressure Coupling Method 

According [11,21] in an collocated mesh there is checkerboard oscillations. This mesh 
requires a pressure-velocity coupling method. In this work was used a pressure-velocity cou-
pling method made from SIMPLE method, that made the pressure and velocities corrections, 
and momentum interpolation method, to make the dislocation of  velocities of control volume 
centre to control volume faces.   

According [2,4] the SIMPLE method, for bi-dimensional case, use the Equations (11) 
till (13) to make the pressure and velocities corrections. 

 ppp 0 ′+=   (11) 
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Where, “p ”, “ u” e “ v” are current values of pressure and velocities, respectively, “ 0p ”, “ 0u
” e “ 0v ” are estimated values of pressure and velocities  and “p′ ”, “ u′ ” e “ v′ ” are variables 
corrections.  

The cell given in Figure 2, the corrections of velocities and pressure are given by 
Equations (14) till (18). 
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Where, the coefficientsA , PA , EA , WA , NA , SA  and B  are describe in details in the refer-
ence [2]. The lowercase subscripts are the positions of control volume faces and uppercase 
subscripts are the position of the control volume centre. According [11] the pressure correc-
tion equation tends to calculate super-estimated values of pressure, because of this the Equa-
tion (11) can be exchanged for Equation (19). 

  ppp 0 ′α+=   (19) 

Where, α  is an over-relaxation constant. [1,15] suggest that α  values are in the range 
10 <α< .  

3.4. Boundary condition 

Some boundary conditions were imposed over the control volume faces. These bound-
ary conditions were imposed using the scheme called "Ghost Volume". In these ghost volumes 
can be applied boundary condition of "Dirichlet Kind" and "Neumann kind". According [8,11] 
the boundary condition applied for incompressible fluid flow should be imposed in this way: 

•••• Inlet: the velocity field should be prescribed and pressure should be zero gradient. 
•••• Outlet: the velocity should be zero gradient and pressure should be prescribed. 



 
 

•••• Symmetry line: should be prescribed zero gradients for normal surface gradient 
and parallel surface components should use domain values. 

•••• Wall-solid: pressure gradient is zero and velocity is also zero. 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 2 – Representation of computational mesh cell, defining the main control volume and 
his neighbours [22]. 

4. RESULTS 

4.1. Case Discription 

The flow studied in this work was bi-dimensional flow and is given by Figure 3. 
Where, inlet velocity profile is constant and represented by V0, the channel height is given by 
2h and L is the channel length. The channel length is 10h, this length ensures that flow is to-
tally developed in channel outlet. The mesh is structured, quadrilateral and uniform, with as-
pect rate about 1 and 110 control volumes distributed in the axial direction and 10 control 
volumes in the radial direction. The inlet velocity is constant and equal V0 = 1.0 m/s, defining 
a Reynolds Number equal Re = 27 ensuring a laminar flow. The incompressible viscous fluid 
proprieties used in the numerical simulation are in Table 1. 
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Figure 3 – Representation of geometric scheme of bi-dimensional flow. 

 
Table 1. Incompressible Fluid proprieties 

Proprieties Value 
Density 1261 kg.m-3 

Dynamic Viscosity 0.934 Pa.s 
Specific heat 2430 J.kg-1.K-1 

Thermal Conductivity 0.30 J.m-1.s-1.K-1 

4.1. Discussion Results 

The velocity field was calculated by numerical code developed in FORTRAN lan-
guage from numerical method presented before. The code is represented in the flowchart in 
the Figure 4. The axial velocity (Vz) results were compared with axial analytical velocity 
from analytical equation given in [19]. 

The comparison between numerical and analytical axial velocity for outlet channel is 
represented in the Figure 5. How can be seen there is a good agreement between of results, 
considering a mean square error about 0.01.  

The Figure 6 and 7 represent axial velocity convergence and radial velocity conver-
gence, respectively, in the mesh position 55x8. How can be seen there was velocity conver-
gence during the number of iterations. The Figure 8 shows the analysed flow in the last graph-
ics, how can be seen the flow is developed and profile velocity was   achieved. 

The Figure 9 shows the graphic of comparison between numerical and analytical axial 
velocity, considering mesh refinement or the increase of control volume number. 

How can perceive the mesh refinement became the numerical results closer of analyti-
cal results. The Figure 10 shows the mean square error reduction with mesh refinement. Ana-
lysing the graphics of Figure 9 and 10 can perceive that computational code developed pro-
duces consistent results. 
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Figure 4. Flowchart of numerical code. 

 
 
 
 

 
Figure 5. Comparison between numerical and analytical axial velocity in the channel outlet. 

 
 



 
 

 
Figure 6. Axial velocity (Vz) convergence in mesh position 55x8. 

 
 

 
Figure 7. Radial velocity (Vr) convergence in mesh position 55x8. 

 
 

 
Figure 8. Axial velocity totally developed in the fluid flow. 

 
 



 
 

 
Figure 9. Comparison between mesh refinement and approximation of analytical results of 

axial velocity. 
 

 
Figure 10. Show reduction of mean square error with increase of control volume number. 

6. CONCLUSIONS 

The incompressible fluid flow solved by numerical method presented in this work 
produced the following conclusions: 

•••• The numerical method generated good agreement between numerical and analyti-
cal results of velocities; 

•••• The numerical axial velocity profile was parabolic how suggest of literature; 
•••• The numerical method calculated consistent numerical results no artificial viscos-

ity addition; 
•••• The governing equation were solved by explicit method, because of this, the nu-

merical method required a large iterations number to convergence; 
•••• The CFL condition required a time step in the minimum about 10-6; 
•••• The over-relaxation coefficient of correction pressure equation was equal 1 and no 

prejudice to numerical solution; 
•••• The MacCormack Method can be applied incompressible fluid flow beyond com-

pressible fluid flow. 
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