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Abstract. The laminar incompressible fluid flow by computational numerical simulation often
appearsin numerical analysisin academic and industrial activities. In order to solve thiskind
of flow, it is necessary to determine the velocity and pressure fields which are the variables of
Navier-Stockes equations [11,15,21] . However, to solve the equations of fluid flow with losses
there is no simple equation to carry out velocity and pressure coupling, hence, it is necessary
to use a coupling method to obtain velocity and pressure fields consistent [1,2,3]. This work
deals with the presentation of a numerical method to calculate velocity and pressure fields to
computational numerical simulation of laminar fluid incompressible flow with losses. The
Navier-Stockes eguations were discretized by the Finite Volume Method [11,15,21], using
explicit MacCormack Method [21] in co-localized and structured mesh [11,15,21], where
velocity and pressure coupling was made by SMPLE method [11,21]. The MacCormack
method is a two-steps method (predictor-corrector) of second-order accuracy in both space
and time and this method is commonly utilized in the resolution of compressible fluids prob-
lems [21]. The numerical results of velocity fields were obtained for bi-dimensional case and
it was compared with analytical results for parallel plates.

Keywor ds: incompressible fluid; finite volume method; MacCormack Method; SSMPLE; ve-
locity field.

1. INTRODUCTION

The computational numerical simulation, nowadays, is an indisputable reality in aca-
demic and industrial environment. How can be seen through of number scientific paper pub-
lished in appropriate magazine or through commercial software used in specific projects of
industries [11]. In the fluid dynamic the reality is not different. Because, the quantity of scien-



tific paper and industries that use private or c@roial software to solve problems of com-
pressible or incompressible fluid flow show this.

By [19] a viscous fluid is defined when the vise¢psffects or internal shear stresses
cannot be neglected in the fluid flow. Accordin@]Incompressible fluid is defined by den-
sity must remain constant in the fluid flow. [11éfohe incompressible fluid as a fluid that
doesn’t have a specific equation for pressure,ishidensity is not function of pressure.

In incompressible fluid flow analysis, usually,esito determine the temperature, ve-
locity and pressure fields [21]. These informatiams represented, mathematically, by mass,
momentum and energy conservation equations. Iredidiis equations appear the primitive
variables, that are: density, velocity componetetsiperature and pressure [11,21].

According [11] compressible fluid flow equationeaolved using a state equation.
But, incompressible fluid flow there is not statpiation, according [11]. The challenge in the
incompressible fluid flow is extract the pressuféh® momentum equation and the velocities
obtained should satisfy the continuity equation.

According [21] there are two approaches to solvenaompressible fluid flow. The
first approach is calletCoupled Approach”, where the aim is insert in the equations aniartif
cial compressibility and this strategy was preseérig [2]. The second approach is called
"Pressure-Correction Approach”, where the main feature is to obtain a pressurezction
equation from continuity or momentum equation. irstegy was presented by [14].

In the pressure-correction approach some proceeavege developed. [11,15,21] pre-
sented and discussed the main proceeding that deareloped, such as: SIMPLE Method,
SIMPLER Method, PRIME Method, etc.

Among these pressure-velocity coupling method, SRWPLE (Semi-Implicit Method
for Pressure Linked Equation) method have someligigh because it is large applied. How
can be seen in the works [3,4,13].

According [11] the velocity correction equationg abtained from momentum equa-
tion and pressure correction equation is obtaimenh fcontinuity equation, this last equation
are a Poisson Equation and that should be solvédbweundary condition appropriated.

In numerical analysis of incompressible fluid fldkae position of velocity and pres-
sure on the control volume is an important aspec¢he Finite Volume Method (FVM). The
natural position, apparently simpler is storing\alfiables in the centre of control volume,
according [11]. This arrangement kind is callé@bllocated grid or Nonstaggered grid". Ac-
cording [11] the advantage this arrangement is Isoity of index control in the computa-
tional implementation, but, in this approach afi€beckerboard Oscilations".

According [11] to solve théCheckerboard Oscillations’, when is used collocated
grid, can be made dislocating the velocity from tominvolume centre to control volume
faces. This dislocating is made through an intexjpmh scheme. [21] suggest tHdomentum
Interpolation Method" presented by [20] and can be seen in the works1{3].

The alternative variables arrangement in incomisesdluid flow is "Saggered
Grid", according [11,21]. Where, pressure and velocatyehtheir own control volume. Ac-
cording [11] this arrangement is physically coresist however, the index control in the com-
putational implementation is harder. Being thetfasrangement appears in several works,
such as, [12, 16]. The staggered grid arrangersefgscribed in [11,15,21].



The time formulation is other important aspectha tiscretization of flow equation.
[11] suggest the explicit formulation, where, adlighbour values of calculated point were
calculated in the before instant, generating eaosetigebraic equations. Others formulations
are called, respectively, implicit and totally ingitl and both generate a linear equation sys-
tem.

How commented before the explicit formulation genes a set of algebraic equations,
that are solved one by one in the process very fsiever, a numerical method to obtain a
consistent solution it must satisfy the consistestability and convergence condition.

According [21] a numerical method is called corsistwhen the numerical solution
gets close of analytical solution with refining mef21] also say that numerical method has
stability if any errors decrease of time step tetiiene step.

[11,21] say that a numerical method is convergetiiti$ method is consistent and sta-
ble. This affirmation is guaranteed Hyax theorem", given by:

"Given a properly initial value problem and finite-difference approximation to it that satisfies
the consistency condition, stability is that necessary and sufficient condition for convergence
[21]"

According [11] all numerical models developed fraguation in the conservative
form and used FVM is said consistent. Thereforegxgilicit numerical method that used dis-
cretized equations in the conservative form by FWM be consistent. However, the numeri-
cal method stability will be given by CFL (Courdrtiedrichs-Lewy) condition, where the
CFL condition depend on time step, grid size, amotigers information. So, an explicit
numerical method is calléConditionally stable".

[21] suggest some methods to solve the governingiteans of fluid flow, such as:
Euler Method, Lax-Wendroff Method, Brailovskaya Metl, Range-Kutta Method, Mac-
Cormack Method, etc. When is made a comparison griitese method some have advan-
tages and disadvantages in some features.

The MacCormack Method has some important featunedsislarge applied to solve
compressible fluid flow problems.

The MacCormack is a variation of two steps Lax-WeffdMethod, but, more effi-
cient to solve PDEs non-liners, generating goodtswlis to discontinuities of this equations
[21].

According [21] the MacCormack Method is a two stapthod, this is, it calculates a
"Predictor Step" and followed it calculates "&Corrector Sep”, defining the final value from
an arithmetic mean. If predictor step used a foowdifferential operator and corrector step
use backward differential operator. The method nfmiktw this scheme to ensure the main
feature a second-order of accuracy for time andespa

The MacCormack Method doesn’t require a controlllasions method, but, the prac-
tice show it needs one to obtain good solutiongséhcontrol oscillations method can be vis-
cosity artificial method or TVD (Total Variation Biinishing) scheme, how may be seen in
the works [5,9,17,18,22].



This work treats of numerical method that appligdlieit MacCormack Method in the
solution of governing equations of incompressibkcous fluid flow, through computational
numerical simulation by FVM to structured and collted mesh, where the pressure-velocity
coupling is made by SIMPLE method and by Momergrmblation Method.

2. MATHEMATICAL MODEL FOR A INCOMPRESSIBLE VISCOUSFLUID

2.1. Governing Equations

The incompressible viscous fluid flow is given, tremnatically, by conservations law.
The conservations law are general principles tbaeming the movement of bodies submit-
ted by external forces. The conservations law arengby continuity, momentum and energy
equations [21], given below:
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Where,p is the densityV is the velocity vectorf is time, 0 are surface forced) are body
forces, C is the specific heat in pressure and volume cahsfais temperature¢ is strain
rate tensorir(o [é) is rate of plastic work, r is heat per unit of masj is the flux heat vec-
tor [21].

2.2. Constitutive Equations

The relationship among the material behaviour icmaeical loading condition and/or
thermal through variables of static (by stresdaagmatic (by displacement, strain and veloc-
ity) and thermal (by thermal flow and temperatumed given through mathematical expres-
sions called constitutive equations [7]. The cdustie equations used in this model are pre-
sented by Equation (4), which makes the relatiotwéen stresses with strain rate and is
given by generalized Stocks Law, the strain ratsdeis given by Equation (5) and the Fou-
rier's Law is given by Equation (6).

O =-pl+2ue (4)
= %[gradv + (gradv)T] (5)

q=-kOIT (6)



Where, o is the stress tensot, is the strain rate tensop, is the pressurd, is identity tensor,
i is the dynamic viscosityy is the velocity vectorT is the temperature arkl is the ther-
mal conductivity.

3.NUMERICAL METHOD

3.1. Finite Volume Method

Consider the Equations (1), (2) e (3), that repretee differential form of governing
equations, written in a compact vector form anceegiby (7).

%Qmm::s (7)

Where, Q is the primitive variable vectoF; is a flux vector and is source term. Integrating
the Equation (7) over control volume and followihg deductions presented in [21], have the
Equation (8), that represent the discretizationFMM to bi-dimensional, quadrilateral and
stationary in the space control volume, represebyeligure 1 (a).
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Where, F is the flux vector to bi-dimensional casg,is the outward normal vector control
volume surface an¥ is the volume of control volume, that in the hirdinsional case repre-
sent the control volume area.

(@) (b)

Figure 1 — Representation of quadrilateral contodlime. (a) specifying outward normal vec-
tor control volume. (b) specifying flux way to flow



3.2. MacCor mack Method

The Equation (8) was solved by MacCormack expbciteme, present in reference
[21]. Considering the control volume given by Figdr (b), have equations for predictor step,
corrector step and update step, given respectiglquations (9), (10) e (11).
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Where,t is the current time stefi,+1 is next time step/t is the time step,Q%! is the pre-

dictor step,Qt! is the corrector step ar@? is the final time step. The vect&ghat repre-
sent the outward normal control volume surfacecateulated from computational mesh co-
ordinates, following the direction presented ingure 1 (b). The flux vectok that appears
inside of Equations (8) e (9) should be discretizethe correct way and presented in refer-
ence [21], to be ensured second-order accuradynefand space, that is the main feature of
MacCormack scheme.

3.3. Velocity-Pressure Coupling Method

According [11,21] in an collocated mesh there isaierboard oscillations. This mesh
requires a pressure-velocity coupling method. Is Work was used a pressure-velocity cou-
pling method made from SIMPLE method, that madepttessure and velocities corrections,
and momentum interpolation method, to make thevdaglon of velocities of control volume
centre to control volume faces.

According [2,4] the SIMPLE method, for bi-dimensiitase, use the Equations (11)
till (13) to make the pressure and velocities atiroms.

P=p,+pP (11)



u=u,+u (12)
Vv, +V (13)

Where, "p ", “U” e “V"are current values of pressure and velocitiespeetively, p,”, “ u,
" e “v,"” are estimated values of pressure and velociéied “p'”, “ U'” e “V " are variables
corrections.

The cell given in Figure 2, the corrections of w#ies and pressure are given by
Equations (14) till (18).
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Where, the coefficients, Ay, Az, Ay, Ay, As and B are describe in details in the refer-
ence [2]. The lowercase subscripts are the positaincontrol volume faces and uppercase
subscripts are the position of the control volureate. According [11] the pressure correc-
tion equation tends to calculate super-estimatéukesaof pressure, because of this the Equa-
tion (11) can be exchanged for Equation (19).

pP=p, +ap (19)

Where, a is an over-relaxation constant. [1,15] suggest thavalues are in the range
O<oa<l.

3.4. Boundary condition

Some boundary conditions were imposed over theralovblume faces. These bound-
ary conditions were imposed using the scheme ca@dst Volume". In these ghost volumes
can be applied boundary condition"@firichlet Kind" and"Neumann kind". According [8,11]
the boundary condition applied for incompressihiedfflow should be imposed in this way:

e Inlet: the velocity field should be prescribed and presshould be zero gradient.

e Outlet: the velocity should be zero gradient and presshioglld be prescribed.



e Symmetry line: should be prescribed zero gradients for normdhsargradient
and parallel surface components should use donzdires.

e Wall-solid: pressure gradient is zero and velocity is also.zer
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Figure 2 — Representation of computational medhaefining the main control volume and
his neighbours [22].

4. RESULTS

4.1. Case Discription

The flow studied in this work was bi-dimensionabvil and is given by Figure 3.
Where, inlet velocity profile is constant and reseneted by ¥, the channel height is given by
2h and L is the channel length. The channel leigytOh, this length ensures that flow is to-
tally developed in channel outlet. The mesh iscstmed, quadrilateral and uniform, with as-
pect rate about 1 and 110 control volumes disteithub the axial direction and 10 control
volumes in the radial direction. The inlet veloagyconstant and equab¥ 1.0 m/s, defining
a Reynolds Number equal Re = 27 ensuring a lanfioar The incompressible viscous fluid
proprieties used in the numerical simulation aréable 1.



Figure 3 — Representation of geometric scheme-dirbensional flow.

Table 1. Incompressible Fluid proprieties

Proprieties Value
Density 1261 kg.m
Dynamic Viscosity 0.934 Pa.s
Specific heat 2430 J.KK™

Thermal Conductivity 0.30 Js' K™

4.1. Discussion Results

The velocity field was calculated by numerical catkveloped in FORTRAN lan-
guage from numerical method presented before. Bde ¢s represented in the flowchart in
the Figure 4. The axial velocity (Vz) results we@mpared with axial analytical velocity
from analytical equation given in [19].

The comparison between numerical and analyticall asglocity for outlet channel is
represented in the Figure 5. How can be seen theaggood agreement between of results,
considering a mean square error about 0.01.

The Figure 6 and 7 represent axial velocity conercg and radial velocity conver-
gence, respectively, in the mesh position 55x8. Kaw be seen there was velocity conver-
gence during the number of iterations. The Figusa@ws the analysed flow in the last graph-
ics, how can be seen the flow is developed andl@naglocity was achieved.

The Figure 9 shows the graphic of comparison betweenerical and analytical axial
velocity, considering mesh refinement or the insesaf control volume number.

How can perceive the mesh refinement became themcehresults closer of analyti-
cal results. The Figure 10 shows the mean squese reduction with mesh refinement. Ana-
lysing the graphics of Figure 9 and 10 can perc#ia¢ computational code developed pro-
duces consistent results.
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6. CONCLUSIONS

The incompressible fluid flow solved by numericaktiod presented in this work
produced the following conclusions:

e The numerical method generated good agreement értwemerical and analyti-
cal results of velocities;

e The numerical axial velocity profile was parabdimv suggest of literature;

e The numerical method calculated consistent numlergsaults no artificial viscos-
ity addition;

e The governing equation were solved by explicit mdthbecause of this, the nu-
merical method required a large iterations numb&onvergence;

e The CFL condition required a time step in the mimmabout 18;

e The over-relaxation coefficient of correction pragsequation was equal 1 and no
prejudice to numerical solution;

 The MacCormack Method can be applied incompres$ibie flow beyond com-
pressible fluid flow.
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