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Abstract. The patency and overall performance of implanted bypass grafts is closely related
to hemodynamics and its influence on vessel remodelling. In this regard, numerical investiga-
tion of blood flow in models reconstructed from clinical data may, next to clinical research,
provide a valuable insight into the problem of graft failures, which are usually associated with
restenosis and/or occlusive intimal hyperplasia. In this study, numerical results of pulsatile
non-Newtonian blood flow in three realistic aorto-coronary bypass models are presented and
further discussed with emphasis placed on the distribution of wall shear stress (WSS) and
oscillatory shear index (OSI). Blood’s shear-thinning behaviour is described by the Carreau-
Yasuda model. Assuming all model walls to be impermeable and inelastic, the numerical
solution of the mathematical model, which has the form of time-dependent non-linear system
of Navier-Stokes (NS) equations, is carried out on the basis of the three-stage fractional step
method and cell- centred finite volume method formulated for hybrid unstructured tetrahedral
grids. The viscous terms of the NS equations are time discretised implicitly using the Crank-
Nicolson scheme. The convective terms are solved explicitly and their computation utilises a
local time-stepping technique in order to improve the overall computational efficiency of the
developed CFD code.

Keywords: Aorto-coronary bypass graft, pulsatile blood flow, Carreau-Yasuda model, Finite
volume method, Fractional-step method.

1. INTRODUCTION

Nowadays it is generally accepted that the performance and patency of implanted by-
pass grafts may be significantly affected by local hemodynamics, [11]. Beside thrombogene-
sis, usually originating in low flow rates or technical mistakes, [14], the majority of recorded
bypass failures is often caused by intimal hyperplasia, [6]. This type of intimal thickening
represents a form of abnormal healing process observed at several sites of the distal anasto-
mosis, Fig. 1. The associated morphological and metabolic changes within the vessel walls
are, among others, hypothesised to be triggered by disturbed blood flow and low and oscillat-
ing shear stress, [1]. In light of this knowledge, an investigation of hemodynamics in the form
of numerical simulations may be a valuable contribution to the understanding of graft disease
formation.

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



Figure 1. Localisation of intimal thickening at the distal end-to-side anastomosis with
relevant terminology, modified from [1].

2. BYPASS MODELS AND PROBLEM FORMULATION

Based on our existing experience with steady non-Newtonian blood flow in idealized
bypass models, [13], the main objective of the present study is to model bypass hemodynam-
ics in patient-specific aorto-coronary grafts by considering flow pulsatility and blood’s non-
Newtonian behaviour. For this purpose, we distinguish two types of bypass grafts – individual
and sequential ones. In cardiovascular surgery, the term individual graft denotes a bypass with
one distal end-to-side anastomosis, i.e., the implanted graft provides a direct connection be-
tween the aorta and the stenosed or occluded coronary artery. In the case of the sequential
graft, at least two distal anastomoses are present. Namely, the implanted graft supplies blood
to several coronary arteries in the form of one or several side-to-side anastomoses.

In this study, three different aorto-coronary bypass models are considered with indi-
vidual and/or sequential grafts, Fig. 2. In other words, pulsatile blood flow will be modelled
in single, double and triple bypasses (in this case, we refer to the number of coronary arteries
bypassed in the procedure). All the models, which connect aorta to the branches of the left
and/or right coronary artery, are reconstructed from CT and MRI data provided by the cour-
tesy of the University Hospital in Pilsen, Czech Republic. The reconstruction process was
carried out in software package Amira (primary reconstruction) and continued in the software
Altair Hypermesh (smoothed model), Fig. 2. In the last mentioned software, an unstructured
tetrahedral computational mesh for each of the bypass models was generated, Figs. 3 – 5.
According to a preliminary grid sensitivity analysis, the mesh size for the single, double and
triple bypasses was chosen to be 362,437, 476,241 and 879,480 tetrahedral cells, respectively.

The simulation parameters are chosen in accordance with other studies devoted to the
modelling of bypass hemodynamics, see the review paper [11]. Firstly, taking into account
the fact that at the end of the arterialisation process, venous grafts lose their compliance, all
the bypass walls are modelled as impermeable and inelastic, including the wall of the aorta.
In the light of this simplification, we are aware that the neglected aortic elasticity represents a
considerable limitation of the present study. We hope to rectify it in one of our future projects
by solving the fluid-structure interaction problem. In this study, we further assume a static
aorto-coronary bypass model, i.e., the influence of heart beating on the resulting blood flow is
not considered. This assumption is based on the conclusion drawn in [16], where it was shown
that the arterial motion does not significantly affect coronary blood flow when flow pulsatility
is considered. In accordance with the studies devoted to the hemodynamics in aorto-coronary
bypasses, [17, 5, 8], we further assume the blood flow to be pulsatile and laminar, neglecting



Figure 2. Primary reconstruction and smoothed model – aorto-coronary bypasses with
sequential graft (top), individual graft (bottom left), and individual and sequential grafts

(bottom right).

any possibility of turbulent flow in the ascending aorta, which is mainly associated with valve
incompetence or artificial heart vales.

For the modelling of blood’s complex rheological properties, we further introduce the
shear-dependent Carreau-Yasuda model, which we have successfully applied in our previous
study, [13],

η(γ̇) = η∞ + (η0 − η∞)
[
1 +

(
λγ̇
)a]n−1

a
, (1)

where η0 and η∞ are the zero and infinite shear viscosities, respectively, λ is the characteristic
relaxation time, n is the flow index and a is an approximation index. The five parameters
appearing in the Carreau-Yasuda model (1) are usually determined by numerical fitting of
experimental data. In this study, we adopt values mentioned in [3], i.e., η∞ = 3.45 ·10−3 Pa ·s,
η0 = 56 · 10−3 Pa · s, λ = 1.902 s, a = 1.25, n = 0.22. For the calculation of shear rate γ̇ in
Eq. (1), we apply following formula

γ̇ = 2
√
DII , (2)

whereDII denotes the second invariant of the rate of deformation tensor D = 1
2

(
∇v + (∇v)T

)
.

Considering the fact that blood behaves as an incompressible fluid, the second invariant is de-
fined as DII = 1

2
dijdij, i, j = 1, 2, 3, where dij are the components of the rate of deformation

tensor D. For the sake of comparison, the molecular viscosity of the Newtonian fluid is set
equal to the infinite shear viscosity η∞.



Figure 3. Unstructured tetrahedral computational mesh for the single aorto-coronary bypass
model.

Figure 4. Unstructured tetrahedral computational mesh for the double aorto-coronary bypass
model.



Figure 5. Unstructured tetrahedral computational mesh for the triple aorto-coronary bypass
model.

In order to achieve pulsatile flow conditions approximating those of real blood flow
in the ascending aorta, we consider time-dependent inlet flow rate Q(t) and time-dependent
outlet pressure p(t). Both waveforms taken from [12] are shown in Fig. 6, where the aortic
pressure is plotted in the medical units of millimeters of mercury (1 mmHg = 133.333 Pa).
For reasons of comparison, same inlet and outlet values are going to be applied in the three
aorto-coronary bypasses mentioned above.
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Figure 6. Time-dependent boundary conditions for the ascending aorta – inlet flow rate Q(t)
(left) and outlet pressure p(t) (right), data taken from [12]

For the analysis of computed numerical results, we introduce two significant hemo-
dynamical wall parameters – the cycle-averaged wall shear stress (WSS) and the oscillatory
shear index (OSI) that are evaluated according to formulas mentioned in [15] and [7], respec-



tively,

|τW | =
1

T

T∫
0

|τW |dt , OSI =
1

2

1−

∣∣∣∣∣∣
T∫

0

τWdt

∣∣∣∣∣∣ ·
 T∫

0

|τW |dt

−1
 , (3)

where |τW | is the WSS magnitude and T = 1 s is the duration of one cardiac cycle, Fig. 6.

3. MATHEMATICAL MODEL

Let us consider a time interval (0, T ), T > 0 and a bounded three-dimensional com-
putational domain Ω ⊂ R3 with boundary ∂Ω = ∂ΩI ∪ ∂ΩO ∪ ∂ΩW , where ∂ΩI , ∂ΩO and
∂ΩW denote the inlet, the outlet and the walls of the computational domain, respectively. In
this study, the coronary blood flow is modelled as unsteady laminar isothermal flow of in-
compressible generalised Newtonian fluid that in the space-time cylinder ΩT = Ω × (0, T )

is mathematically described by the non-linear system of incompressible Navier-Stokes (NS)
equations written in the non-dimensional form

∂vi
∂xi

= 0 , (4)

∂vi
∂t

+
∂

∂xj
(vivj) +

∂p

∂xi
=

1

Re
∂

∂xj

[
η(γ̇)

(
∂vi
∂xj

+
∂vj
∂xi

)]
for i, j = 1, 2, 3 , (5)

where t ∈ (0, T ) is the time, vi is the i-th component of the velocity vector v = [v1, v2, v3]T

corresponding to the Cartesian component xi of the space variables vector x = [x1, x2, x3]T ∈
Ω, p is the pressure, Re is the reference Reynolds number and η(γ̇) is the shear-dependent
viscosity given by Eq. (1).

All variables appearing in Eqs. (4) – (5) are non-dimensionalized by the reference
velocity Uref > 0 and characteristic length Dref > 0. For the three bypass models considered
in this study, the characteristic length value is chosen to be equal to the average aortic diameter
Dref ≡ D(A) = 0.036 m and the reference velocity is stated as Uref = 4Q0/(πD

2
ref ) =

0.1592 m · s−1, where average aortic inlet flow rate is Q0 = 112.56 · 10−6 m3 · s−1, see Fig. 6
(left). As for the reference Reynolds number, it is determined as Re = UrefDref%/ηref =

1 744.3, where % = 1050 kg · m−3 and ηref ≡ η∞ = 3.45 · 10−3 Pa · s. For the sake of
completeness, reference pressure and reference time are computed as pref = %U2

ref and tref =

Dref/Uref , respectively.

4. NUMERICAL METHOD

The numerical solution of the non-linear time-dependent system of incompressible
NS equations (4) – (5) is based on the projection method. In this study, the computation of
velocity components vn+1

i , which satisfy the divergence-free condition (4), employs the three-
stage fractional step scheme, [4]. In the first stage, intermediate velocity components v∗i are
explicitly computed from the convective part of the NS equation (5) as

v∗i − vni
∆t

+
∂

∂xj
(vni v

n
j ) = 0 , i, j = 1, 2, 3 . (6)



For the second stage of the fractional step scheme, the intermediate velocity components v̂i are
computed applying the unconditionally stable implicit Crank-Nicolson scheme to the viscous
term of Eq. (5)

v̂i − v∗i
∆t

=
1

2Re
∂

∂xj

[
η(γ̇)

(
∂(v̂i + v∗i )

∂xj
+
∂(v̂j + v∗j )

∂xi

)]
, i, j = 1, 2, 3. (7)

Let us linearise the shear-dependent dynamic viscosity η(γ̇) as η(γ̇) = η(γ̇(v∗)) and introduce
an auxiliary variable dij = 1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, which in this case is equal to the components of

the rate of deformation tensor D mentioned in Section 2 Then Eq. (7) can be rewritten as a
system of two linear equations

v̂i − v∗i
∆t

=
1

Re
∂

∂xj

[
η(γ̇)

(
d̂ij + d∗ij

)]
, (8)

d̂ij =
1

2

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
. (9)

In the third stage, pressure is used for the projection of the intermediate velocity vector v̂ onto
a space of divergence-free velocity field to get the values of velocity and pressure at the next
time level (n+ 1). Hence, the velocity components vn+1

i are computed from

vn+1
i − v̂i

∆t
+
∂pn+1

∂xi
= 0 , i = 1, 2, 3, (10)

where pn+1 is computed from the Poisson equation for pressure

∂2pn+1

∂xi∂xi
=

1

∆t

∂v̂i
∂xi

. (11)

It can be easily shown that sum of Eqs. (6), (7) and (10) yields the approximation of NS equa-
tions of first order time accuracy. Finally, the whole algorithm of the fractional step method
may be written for i, j = 1, 2, 3 as follows

v∗i = vni −∆t
∂

∂xj

(
vni v

n
j

)
, (12)

v̂i
∆t
− 1

Re
∂

∂xj

(
η(γ̇) d̂ij

)
=

v∗i
∆t

+
1

Re
∂

∂xj

(
η(γ̇) d∗ij

)
, (13)

d̂ij −
1

2

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
= 0 , (14)

∂2pn+1

∂xi∂xi
=

1

∆t

∂v̂i
∂xi

, (15)

vn+1
i = v̂i −∆t

∂pn+1

∂xi
. (16)

The space discretization of the system of Eqs. (12) – (16) is performed using the cell-
centred finite volume method for hybrid unstructured tetrahedral grids. The idea of applying
the hybrid unstructured grid for the numerical solution of time-dependent incompressible NS
equations in 2D was introduced in [9]. The principle of this grid system lies in the coupling



Figure 7. A tetrahedral control volume Ωk = A1A2A3A4 with boundary ∂Ωk =
4⋃

m=1

Γm
k

belonging to the hybrid unstructured computational mesh.

between an interpolation method, which will be described later, and the non-staggered grid
system. Being inspired with this idea, we consider in this study a control volume Ωk in
the form of tetrahedron, Fig. 7. The hybrid grid system defines the values of pressure and
Cartesian velocity components in the centre of the control volume Ωk and the values of face-
normal velocity Vm, which has the direction of outward unit vector nm

k normal to the m-th
face Γm

k of the control volume Ωk, is defined in the middle of the face Γm
k .

After the integration of Eqs. (12) – (16) over each control volume Ωk, Fig. 7, k =

1, 2, . . . , NCV , where NCV is the number of control volumes within the hybrid unstructured
tetrahedral computational mesh, after the introduction of integral average for an arbitrary flow
quantity Φ over the control volume Ωk

(Φ)k =
1

|Ωk|

∫
Ωk

ΦdΩ, (17)

where |Ωk| is the volume of the tetrahedral control volume Ωk, and finally, after the application
of the Gauss-Ostrogradsky theorem, which converts the volume integrals to surface integrals,
we get

(v∗i )k = (vni )k −
∆t

|Ωk|

∮
∂Ωk

(
vnj · jnk

)
· vni dΓ, (18)

1

∆t
(v̂i)k −

1

Re|Ωk|

∮
∂Ωk

η(γ̇) d̂ij · jnk dΓ =
1

∆t
(v∗i )k +

1

Re|Ωk|

∮
∂Ωk

η(γ̇) d∗ij · jnk dΓ, (19)

(
d̂ij

)
k
− 1

2

∮
∂Ωk

v̂i · jnk dΓ +

∮
∂Ωk

v̂j · ink dΓ

 = 0 , (20)



∮
∂Ωk

∂pn+1

∂nk

dΓ =
1

∆t

∮
∂Ωk

v̂i · ink dΓ, (21)

(vn+1
i )k = (v̂i)k −

∆t

|Ωk|

∮
∂Ωk

pn+1 · ink dΓ, (22)

where ink is the i-th component of the outward unit vector nk = [1nk,
2nk,

3nk]T normal
to the boundary ∂Ωk of the tetrahedral control volume Ωk, Fig. 7. In order to achieve the
satisfaction of the continuity equation for the normal velocity V = vi · ink, the system of
Eqs. (18) – (22) is completed with following equation

V n+1 = V̂ −∆t
∂pn+1

∂nk

. (23)

This equation defines the normal velocity V n+1 at the time level (n+ 1) having the direction
of the outward unit vector nk normal to the boundary ∂Ωk of the control volume Ωk. For the
intermediate normal velocity V̂ , it is valid that V̂ = v̂i · ink.

Further, we perform the approximation of surface integrals in the system of Eqs. (18) –
(22). Firstly, each integral is replaced by the sum of integrals over each face Γm

k of the control
volume Ωk, Fig. 7, and then approximated by the midpoint rule∮

∂Ωk

Φ dΓ =
4∑

m=1

∫
Γm
k

Φ dΓ ≈
4∑

m=1

Φm|Γm
k |, (24)

where |Γm
k |, m = 1, . . . , 4 is the area of the m-th face Γm

k of the control volume Ωk and
Φm is the value of an arbitrary flow quantity at the integration point at the same face. The
interpolation process needed for the determination of Φm at the m-th face Γm

k of the control
volume Ωk will be described later. Using Eq. (24), the system of Eqs. (18) – (23) is modified
as follows

(v∗i )k = (vni )k −
∆t

|Ωk|

4∑
m=1

(
V n
m · vnim|upwind

)
|Γm

k | , (25)

(v̂i)k
∆t
− 1

Re |Ωk|

4∑
m=1

η(γ̇)m d̂m
ij · jnm

k |Γm
k | =

(v∗i )k
∆t

+
1

Re |Ωk|

4∑
m=1

η(γ̇)m d∗mij · jnm
k |Γm

k |, (26)

(
d̂ij

)
k
− 1

2

(
4∑

m=1

v̂im · jnm
k |Γm

k |+
4∑

m=1

v̂j m · inm
k |Γm

k |

)
= 0 , (27)

4∑
m=1

∂pn+1

∂nm
k

|Γm
k | =

1

∆t

4∑
m=1

v̂im · inm
k |Γm

k | ≡
1

∆t

4∑
m=1

V̂m |Γm
k |, (28)

(vn+1
i )k = (v̂i)k −

∆t

|Ωk|

4∑
m=1

pn+1
m · inm

k |Γm
k | , (29)

V n+1
m = V̂m −∆t

∂pn+1

∂nm
k

, (30)



where inm
k is the i-th component of the outward unit vector nm

k = [1nm
k ,

2nm
k ,

3nm
k ]T normal

to the m-th face Γm
k of the control volume Ωk and for the intermediate face-normal velocity

V̂m at the m-th face Γm
k of the control volume Ωk, it is valid that V̂m = v̂im · inm

k . Note that the
values of face-normal velocity V n+1

m computed with the help of Eq. (30) are used as values of
face-normal velocity V n

m in Eq. (25) at the next time level.
Explicit schemes are known for their disadvantage in the form of restricted time steps.

The CFL stability condition imposed on the time step size becomes essential when it is ap-
plied for grids with large differences in cell size, e.g., in complex geometries. In this case,
the efficiency of explicit schemes is lost, since the cell with the most restrictive local time
step determines the size of the global time step for all grid cells. One of possible solutions
to this problem lies in the application of the well-known local time-stepping method. This
method, whose approach is also employed in our developed solver, enables each cell of the
computational grid to run with its own time step in a time-consistent manner.

Interpolation method
To perform numerical computations according to Eqs. (25) – (30), it is necessary to

determine values of vnim|upwind, v̂im, pn+1
m and derivatives ∂v̂i

∂nm
k

, ∂v∗i
∂nm

k
, ∂pn+1

∂nm
k

at the m-th face Γm
k

of the control volume Ωk. The value of vnim|upwind is computed by the upwind scheme, whose
first order accuracy is increased by linear reconstruction with Barth’s limiter,

vnim|upwind =

{
(vni )L + σBarth

L · ∂(vni )L
∂xj

· rjL , V n
m > 0 ,

(vni )R + σBarth
R · ∂(vni )R

∂xj
· rjR , V n

m ≤ 0 ,
(31)

where σBarth ∈ [0, 1] is the Barth’s limiter, [2], and vectors rL, rR are denoted in Fig. 8 (left).
Further, the value Φm of an arbitrary flow quantity Φ at the mid-point O of the m-th face Γm

k ,
Fig. 8 (right), can be stated with the help of second order accurate linear interpolation from
values (Φ)k and (Φ)lm defined in cell-centres Sk and Slm of two adjacent control volumes Ωk

and Ωlm , respectively,

Φm = (Φ)k +
(Φ)lm − (Φ)k
γk + γlm

· γk =
γlm(Φ)k + γk(Φ)lm

γk + γlm
, (32)

where γk and γlm are the minimal distances to the cell-face Γm
k from cell-centres Sk and Slm

of the adjacent control volumes Ωk and Ωlm , respectively, Fig. 8 (right). The derivative of
flow quantity Φ in the direction of the outward unit vector nm

k normal to the m-th face Γm
k of

the control volume Ωk, is approximated at the mid-point O of the face Γm
k , Fig. 8 (right), as

∂Φ

∂nm
k

∣∣∣∣∣
Γm
k

≈ (Φ)lm − (Φ)k
γk + γlm

. (33)

A crucial part of the interpolation method is the application of Eq. (33) to the normal derivative
in Eqs. (28) and (30). In this way, it is ensured that the face-normal velocity V n+1

m satisfies
the continuity equation at the time level (n + 1) exactly, see Eq. (39). However, in general
velocities (vn+1

i )k in cell-centres of control volumes Ωk do not satisfy the continuity equation.

Regarding the implementation of non-dimensional boundary conditions at the bound-
ary ∂Ω of the computational domain Ω ⊂ R3, three boundary types are considered in this
study:



Figure 8. Definition of the vectors rL and rR for two adjacent tetrahedral control volumes
ΩL and ΩR (left). Two adjacent tetrahedral control volumes Ωk = A1A2A3A4 and

Ωlm = A1A2A3A5 with their contact face Γm
k = ∆A1A2A3 (right).

• inlet Γm
k ⊂ ∂ΩI – In this case, Dirichlet boundary conditions for the velocity compo-

nents vim and the auxiliary variable dmij are prescribed

vim = vi I , dm
ij · jn = 0. (34)

The value of face-normal velocity V I
m at the face Γm

k is computed as V I
m = vi I · inm

k ,
where values vi I are given according to Section 5. For the normal derivative of the
pressure pn+1 at the face Γm

k , we prescribe

∂pn+1

∂nm
k

∣∣∣∣
Γm
k

= 0. (35)

• rigid and impermeable wall Γm
k ⊂ ∂ΩW – Velocity components vim at the face Γm

k

are set equal to zero
vim = 0 , (36)

leading to zero value of the face-normal velocity V W
m = vim · inm

k = 0 at the face
Γm
k . For the auxiliary variable dm

ij , we apply the Dirichlet boundary condition in the
following form

dm
ij · jn = 0 . (37)

Further, zero normal derivative of the pressure pn+1 (35) is prescribed at the wall.

• outlet Γm
k ⊂ ∂ΩO – Following type of boundary condition is stated

pmn
m
k −

1

Re
2 η(γ̇)m dm

ij · jnm
k = pOn

m
k , (38)

where pO is the given value of the outlet pressure, see Section 5.

Substituting the derivative ∂pn+1

∂nm
k

in Eq. (28) with Eq. (30), we get

4∑
m=1

∂pn+1

∂nm
k

|Γm
k | =

1

∆t

4∑
m=1

(
V̂m − V n+1

m

)
|Γm

k | =
1

∆t

4∑
m=1

V̂m |Γm
k |

=⇒
4∑

m=1

V n+1
m |Γm

k | = 0,

(39)



i.e., face-normal velocities V n+1
m satisfy the continuity equation exactly. At this point, let us

mention that at the outlet boundary ∂ΩO, i.e., at the face Γm
k of the control volume Ωk, where

Γm
k ⊂ ∂ΩO, values ∂pn+1

∂nm
k

are unknown. In order to ensure the satisfaction of the continuity
equation (39) for this control volume Ωk, it is necessary to compute the face-normal velocity
V n+1
m at the face Γm

k ⊂ ∂ΩO as

V n+1
mO

= − 1

|ΓmO
k |

4∑
m=1

m 6=mO

V n+1
m |Γm

k |, (40)

where mO is the index of the outlet face ΓmO
k of the control volume Ωk. For the whole com-

putational domain Ω ⊂ R3 at the time t = 0, following initial conditions are used

(v0
i )k =

1

|Ωk|

∫
Ωk

vi(x, 0)dΩ = 0, (p0)k =
1

|Ωk|

∫
Ωk

p(x, 0)dΩ = pinitial, k = 1, 2, . . . , NCV ,

where pinitial is a non-dimensional value of static pressure.
In this study, the above described numerical method was implemented in the MAT-

LAB software. The developed computational code was verified for the steady flow of an
incompressible fluid in a straight tube by prescribing a constant velocity profile at the inlet
and by comparing the obtained numerical results with the well-known analytical solution for
the Poiseuille flow.

5. BOUNDARY CONDITIONS

In accordance with the boundaries of the computational domain labelled in Figs. 3 –
5 for the three relevant bypass models, the numerical simulations of the pulsatile Newtonian
and non-Newtonian blood flow were carried out with following boundary values:
• aortic inlet ∂Ω

(A)
I – constant time-dependent velocity profile |vI | computed from the

flow rate waveform Q(t), Fig. 6 (left). The assumption of the non-parabolic velocity
profile is based on observations published in [10], where ”blunted” velocity profiles
were measured for the ascending aorta with native heart valves;

• aortic outlet ∂Ω
(A)
O – outlet pressure pO corresponding to the time-dependent pressure

p(t) shown in Fig. 6 (right);

• coronary outlets ∂Ω
(CA)
O – constant outlet pressure pO equal to the average arterial pres-

sure of 12 000 Pa;

• rigid and impermeable walls and occluded arteries ∂ΩW – non-slip boundary condition.

Note that the boundary values mentioned above are, for the computation, non-dimensionalized
using the reference values mentioned in Section 3. The implementation of the boundary con-
ditions in the numerical code is described in detail in Section 4.

6. NUMERICAL RESULTS AND DISCUSSION

The transient numerical simulations were run on a computer with Intel Xeon X5460
(3.16 GHz) processor and 64GiB RAM. The CPU times for the single, double and triple by-
pass model after reaching three full cardiac cycles were approximately 6, 8 and 15 days,



respectively. Distinct differences in CPU times between the Newtonian and non-Newtonian
flow computations were not observed. For the terminology used in the remainder of this
section in relation to the relevant parts of each bypass model, we refer the reader to Figs. 3–5.

6.1. Single bypass

Firstly, let us analyse the velocity profiles of the non-Newtonian blood flow in the sin-
gle aorto-coronary bypass, Fig. 9, for two selected time instants, corresponding to the systole
and diastole, respectively. During the systolic phase (t1 = 0.16 s), Fig. 9 (left), the graft’s
proximal anastomosis becomes exposed to the increased flow rate in the aorta. Although the
skewed velocity profiles at the graft entrance may indicate incoming blood flow, the real graft
filling occurs later, mainly during the diastolic phase (t2 = 0.47 s), Fig. 9 (right). In this case,
the velocity increase observed along the individual graft is also accompanied by skewed or
otherwise shaped velocity profiles that are a result of the out-of-plane geometry and of the
graft’s winding around the heart, Fig. 9b. At the distal end-to-side anastomosis, Fig. 9c, the

Figure 9. Non-Newtonian blood flow in the single aorto-coronary bypass model – velocity
profiles at selected cross-sections at t1 = 0.16 s (left) and t2 = 0.47 s (right) with detailed
views at the (a) proximal anastomosis, (b) individual graft, (c) coronary arteries with the

distal anastomosis.



incoming blood flow seems to prefer the closer branch of the coronary artery more than the
second one.

The comparison between the Newtonian and non-Newtonian blood flow in the single
bypass is illustrated by the distributions of the cycle-averaged WSS and OSI in Figs. 10 –
11, respectively. At this point, note the lowered value range in Fig. 10, which is chosen
according to conclusions mentioned in [6] and [7]. Namely, that low WSS, as compared
to the normal range between 1–2 Pa in healthy arteries, is one of the confirmed triggers of
vessel remodelling, plaque growth and intimal thickening. In light of this fact, we will further
assess the resulting shear distribution, which at both anastomoses seems to be very similar
for Newtonian and non-Newtonian flows, Fig. 10. One of the distinct areas with extremely
low shear is situated at the entrance of the graft, where it is caused by a large recirculation
zone that is present there most of the cardiac cycle. This negative stimulation of the proximal
suture line is also confirmed by the high OSI shown in Fig. 11. At the distal anastomosis,
shear values below 1 Pa are observed at the heel and the arterial floor in accordance with the
sites of intimal hyperplasia displayed in Fig. 1. In this case, the critical shear stress also shows
a oscillatory tendency as is apparent from the OSI distribution in Fig. 11.

6.2. Double bypass

Velocity profiles in the double aorto-coronary bypass model are shown in Fig. 12 for
the time instants t1 = 0.16 s (top) and t2 = 0.47 s (bottom). In comparison to the previous
bypass with individual graft, the double bypass demonstrates higher blood flow and velocity

Figure 10. Single aorto-coronary bypass model – distribution of the cycle-averaged WSS
magnitude for the Newtonian (left) and non-Newtonian flow (right) with detailed views at

the (a) proximal and (b) distal anastomoses of the individual graft.



Figure 11. Single aorto-coronary bypass model – distribution of the OSI for the Newtonian
(left) and non-Newtonian flow (right) with detailed views at the (a) proximal and (b) distal

anastomoses of the individual graft.

in the proximal (pre-anastomotic) segment of the sequential graft. This observation is in
accordance with intraoperative studies, e.g., [14], which imply higher patency rates for the
bypasses with side-to-side anastomoses. The influence of the out-of-plane geometry on the
shape of the velocity profiles is well apparent in the case of the side-to-side anastomosis,
Fig. 12b. Here the incoming flow is strongly skewed towards the lower wall, facilitating the
blood filling of the connected coronary artery during diastole. For the numerical simulation,
we assumed that both coronary arteries were occluded with no inflow. As a result, the pre-
anastomotic segments of the coronary arteries at the distal anastomoses are filled with large
’dead-water’ zones, Fig. 12b-c.

The distribution of the cycle-averaged WSS magnitude at the distal anastomoses is
displayed in Fig. 13 for the Newtonian and non-Newtonian blood flow. Once again, the WSS
patterns of the two flows are almost identical, with only a few subtle differences. In accor-
dance with the flow fields in Fig. 12, the presence of low shear values (< 1 Pa) is primarily
associated with the occluded coronary segments or with parts where the graft’s out-of-plane
geometry is particularly noticeable, see Fig. 13b. Considering the possibility of shear oscil-
lations at the distal anastomoses, Fig. 14, the sequential bypass graft shows similar patterns
as the individual one for the Newtonian and non-Newtonian blood flow. Probably the only
exception can be found in the side-to-side anastomosis, Fig. 14b, where the OSI level demon-
strates a considerable increase within the bypass graft.



6.3. Triple bypass

The triple bypass as a combination of the individual and sequential graft shows fea-
tures similar to the single and double bypasses, which were discussed in the previous two
sections. For example, blunter velocity profiles are typical for the systolic phase of the car-
diac cycle, Fig. 15b-c (left), as compared to the skewed ones during the diastole, Fig. 15b-c

Figure 12. Non-Newtonian blood flow in the double aorto-coronary bypass model – velocity
profiles at selected cross-sections at t1 = 0.16 s (top) and t2 = 0.47 s (bottom) with detailed

views at the (a) proximal anastomosis and (b) distal side-to-side and (c) end-to-side
anastomoses.



Figure 13. Double aorto-coronary bypass model – distribution of the cycle-averaged WSS
magnitude for the Newtonian (left) and non-Newtonian flow (right) with detailed views at

the distal (a) end-to-side and (b) side-to-side anastomoses of the sequential graft.

Figure 14. Double aorto-coronary bypass model – distribution of the OSI for the Newtonian
(left) and non-Newtonian flow (right) with detailed views at the distal (a) end-to-side and (b)

side-to-side anastomoses of the sequential graft.

(right). At this point, it is also interesting to note that the sequential graft maintains higher
velocity magnitudes most of the cardiac cycle in comparison to the individual graft. Regard-
ing the values of the cycle-averaged WSS magnitude for the Newtonian and non-Newtonian
blood flow, Fig. 16, we come to the same conclusion as we did for the single and double
bypass models. Namely, that no significant non-Newtonian effects are observed at the distal
anastomoses. This statement is further confirmed with the OSI distribution shown in Fig. 17,
where the differences between the Newtonian and non-Newtonian flows are negligible.

7. CONCLUSION

Comparing the numerical results for the pulsatile Newtonian and non-Newtonian blood
flow in the single, double and triple aorto-coronary bypasses, it was interesting to note that
the consideration of blood’s non-Newtonian viscosity had almost no effect on the distribution
of WSS and OSI. Because both wall parameters are known to be sensitive to any change in
the hemodynamics, it is possible to conclude that blood’s non-Newtonian behaviour may be
neglected in the case of coronary bypasses. This conclusion corresponds to our observations
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Figure 16. Triple aorto-coronary bypass model – distribution of the cycle-averaged WSS
magnitude for the Newtonian (left) and non-Newtonian flow (right) with detailed views at

the (a) distal end-to-side anastomosis of the individual graft and at the distal (b) side-to-side
and (c) end-to-side anastomoses of the sequential graft.

Figure 17. Triple aorto-coronary bypass model – distribution of the OSI for the Newtonian
(left) and non-Newtonian flow (right) with detailed views at the (a) distal end-to-side

anastomosis of the individual graft and at the distal (b) side-to-side and (c) end-to-side
anastomoses of the sequential graft.

made in our previous study [13], where we dealt with steady non-Newtonian blood flow in
idealised bypass models.

We are aware that the present study has several limitations. First of them is the assump-
tion of inelastic walls, which especially for the in reality elastic aorta is a major drawback. In
the future, we hope to improve the present model by simulating fluid-structure interactions.
Another possibility of improvement may be seen in the prescription of physiologically correct
boundary values at the coronary outlets.
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