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Abstract. The numerical simulation of a high speed short duration event like a detonation or 
a projectile penetration usually requires the use of sophisticated explicit computer codes. 
These codes apply small time steps for every computational cycle. Combined with the need to 
model large structures with millions or hundreds of millions of nodes, these computations can 
take from days to weeks to run. To shorten the computation time, modern commercial explicit 
codes support the use of parallelized computer systems. This approach frequently claims to 
reduce computation times: The use of eight processors instead of one is supposed to reduce 
computation time by a factor of six or seven for example. While that might be true for simple 
problems, it is not necessarily true for complex problems. This paper describes some real 
world applications and corresponding numerical simulations involving Euler and Lagrange 
computation techniques. Single and parallel computing times are compared. 
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1. INTRODUCTION 

The numerical simulation of transient events using hydrocodes dates back to the mid 
50’s [1]. Since then, the codes as well as the computers used to run them have evolved re-
markably which is reflected by the appearance of the first commercial supercomputer CDC 
6600 (1964) , the Star-100 with 100 MFlops up to today’s (2012) machines like the Fujitsu K 
Computer with a peak speed of about 10 PFlops. Together with the improvement of hard- and 
software, the demand to model problems closer to reality has increased. The combination of 
parallel supercomputers and efficient parallelized solving algorithms now allows the handling 
of problems with hundreds of millions of cells.  

However, such large problems are still a challenge for the hard- and software as well 
as for the engineer using them. Problems concerning computation time arise during set up of 
the problem and while solving and post processing the results. 

2. HARD AND SOFTWARE USED DURING THE TEST PHASE 

The computed problems described in this report were designed and run with the fol-
lowing tools: 
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Software:  
 ANSYS® Autodyn version 14.0 (hereinafter referred to as Autodyn): This 

software is designed to solve highly dynamic non-linear problems. At WTD 
52, it is used for solving problems related to weapon effects and protective sys-
tems.  

 Operating system: Windows 7 professional, 64 bit. For more than 8 tasks 
SUSE Linux version 11, service pack 1 was used. 

Hardware: 
The computations shown in this report were run on computers (one or more de-
pending on the use of Windows or Linux) with the following specifications: 
Processor Intel® Xeon® X5677, double processor quad core, 3.46 GHz, 144 GB 
RAM. 

3. PROBLEMS 

In this report, several problems are shown which were selected to test the codes’ effi-
ciency when run in parallel. These test problems can be divided into two groups: 

 Uncoupled problems 
 Coupled problems 

The uncoupled problems are employed as a kind of reference where one would expect 
maximum efficiency of parallel computations. 

The coupled problems are used to test the efficiency of the codes when employed to 
simulate more or less real world applications.  

3.1. Uncoupled problems 

The uncoupled problems were used as a reference for the computation time of the La-
grangian and Eulerian (multi material solver) solvers. They were kept as simple as possible 
and therefore cubes were used as mesh geometries. The dimensions of the cubes were 100 
mm x 100 mm x 100 mm with 215 nodes in every direction resulting in approx. 10 million 
nodes. With these cubes computations were carried out using single as well as 2 - 16 proces-
sors. The speed up and efficiency were calculated as follows: 

 S = ts/tp . (1) 

 E=ts/(tp·n) .  (2) 
 
With:  S: Speed up 
  ts: Computation time per cycle, single task 
  tp: Computation time per cycle, parallel 
  E: Efficiency 
  n: Number of tasks in parallel 



 
 

 
The following table shows the computation time per cycle, the speed up and the effi-

ciency for these computations: 

 Table 1. Computation times, speed up and efficiency for uncoupled problem, 10 million 
nodes 

Solver No. of tasks Time per cycle (s) Speed up Efficiency 
Euler 1 67 1.00 1.00 
Euler 2 36 1.86 0.93 
Euler 4 21 3.19 0.80 
Euler 7 17 3.94 0.56 
Euler 8 15 4.47 0.56 

Euler/Linux 14 11 6.09 0.44 
Euler/Linux 16 8 8.38 0.52 

Lagrange 1 27 1.00 1.00 
Lagrange 2 13 2.08 1.04 
Lagrange 4 6 4.50 1.13 
Lagrange 7 4 6.75 0.96 
Lagrange 8 6 4.50 0.56 

As can be seen from table 1: 
 As expected, the computation time is decreasing with increasing number of 

tasks unless one utilizes 8 tasks in the Lagrangian case. 
 The efficiency drops significantly for the Euler computation when using more 

than four tasks. 
 For the Lagrange computation, efficiency remains above 0.9 until applying 8 

tasks when it decreases to 0.56. 
A second series of computations similar to the mentioned above was carried out using 

only 1 million nodes. The following table shows the results for this problem: 

Table 2. Computation times, speed up and efficiency for uncoupled problem, 1 million nodes 
Solver No. of tasks Time per cycle (s) Speed up Efficiency 
Euler 1 3.89 1.00 1.00 
Euler 2 2.60 1.50 0.75 
Euler 4 1.56 2.49 0.62 
Euler 7 1.94 2.01 0.29 
Euler 8 1.35 2.88 0.36 

Lagrange 1 2.39 1.00 1.00 
Lagrange 2 1.31 1.82 0.91 
Lagrange 4 0.67 3.57 0.89 
Lagrange 7 0.38 6.29 0.90 
Lagrange 8 0.33 7.24 0.91 

The following figure shows the efficiency for the above mentioned cases: 



 
 

Figure 1. Efficiency for uncoupled computations. 

As can be seen from figure 1: 

 The efficiency for the Lagrange problems remains at 0.9 or higher except for 
the 10 million node case with 8 tasks where it drops to 0.56. 

 The efficiency for the Euler problems is lower than for the Lagrange problems 
and decreases with increasing number of tasks. 

 The number of Euler nodes influences the efficiency with a lower number re-
sulting in lower efficiency. 

3.2. Coupled problems 

In the next step, more complicated coupled problems were generated and tested as sin-
gle and parallel computations. Two types of coupled problem were used: 

 Lagrange-Lagrange coupling 
 Euler-Lagrange coupling 

3.2.1. Lagrange-Lagrange Coupling, case A 

The Lagrange-Lagrange coupling is typically applied when problems like the penetra-
tion of a bullet into a hard target have to be computed. Here, a simpler set-up is used: Two 
identical cubes made of steel having the same speed but with opposing directions collide. The 
following figure shows the problem: 

 



 
 

 

Figure 2. Sketch of Lagrange-Lagrange problem, case A (not to scale). 

The dimensions of each cube were 100 mm x 100 mm x 100 mm, the distance be-
tween the cubes was 1 mm. Each grid had 5 million nodes with equal spacing. The cubes 
were filled with a linear elastic material. Lagrange-Lagrange interaction was turned on using 
the external gap option. The following figure shows the decomposition for two and four tasks: 
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Figure 3. Decomposition for Lagrange-Lagrange computations 

The following table shows the computation times for these set-ups: 

Table 3. Computation times, speed up and efficiency for Lagrange-Lagrange coupled 
problem, case A 

No. of tasks Time per cycle (s) Speed up Efficiency 
1 23.4 1.00 1.00 
2 13.0 1.80 0.90 
4 7.3 3.21 0.80 
6 5.3 4.42 0.74 
7 7.0 3.34 0.48 
8 5.5 4.26 0.53 

As can be seen from table 3: 
 The efficiency decreases with increasing number of tasks and remains above 

0.7 for up to 6 tasks. For 7 and 8 tasks, the efficiency drops to about 0.5. 
 The efficiency in the coupled set-up is smaller than that for the uncoupled La-

grange computation. 



 
 

3.2.2. Lagrange-Lagrange Coupling, case B 

In this model a penetrator hits a target, like for example a high speed projectile shot 
from a tank impacting the armour of another tank. The following figure shows the set-up: 

 

 

Figure 5. Lagrange-Lagrange problem, case B. 
 
The main input data for the computation was as follows: 

Penetrator:  Length:  650 mm 
   Diameter:  30 mm, 10 mm at tip 
   Speed:  1000 m/s 
   Material:  Tungsten alloy 
   Number of cells: 8320 
Target:  Thickness:  200 mm 
   Width x Height: 500 mm x 500 mm 
   Material:  Rolled homogenous armour (RHA) 
   Number of cells: 998560 

In contrast to the other computations, this was done using unstructured meshes. Also, 
trajectory contact was used. The parallelization was done automatically by the Autodyn soft-
ware.* The following table shows the computation times, the speed up and the efficiency: 

Table 4. Computation times, speed up and efficiency for Lagrange-Lagrange coupled 
problem, case B 

No. of tasks Time per cycle (s) Speed up Efficiency 
1 2.03 1.00 1.00 
2 1.58 1.29 0.65 
4 1.06 1.92 0.48 
8 1.06 1.92 0.24 

                                                 
* In version 14.0 of Autodyn, trajectory contact in combination with parallel computations has beta status. 



 
 

As can be seen from table 4, increasing the number of tasks to 8 does not speed up the 
computation when compared to 4 tasks. In this set-up, the efficiency seems to be especially 
low when compared to the other cases in this report. 

3.2.2. Euler-Lagrange Coupling 

For the Euler-Lagrange coupling, a set up was chosen where 1 million Euler nodes and 
1 million Lagrange nodes were used. The model is shown in the following figure: 

 

  

Figure 6. Euler-Lagrange problem, left without, right with grid (air not shown). 

A TNT charge is modeled that detonates in front of a concrete wall. The following ta-
ble shows the computation time per cycle, the speed up and the efficiency for these computa-
tions: 

 Table 5. Computation times, speed up and efficiency for Euler-Lagrange coupled problem 
No. of tasks Time per cycle (s) Speed up Efficiency 

1 11.6 1.00 1.00 
2 11.6 1.00 0.50 
4 7.7 1.51 0.38 
6 7.0 1.66 0.28 
8 6.5 1.79 0.22 

 
As can be seen from table 5: 

 For one and two tasks, the computation times are identical, parallelization does 
not increase the speed up. 

 Using 4, 6 or 8 tasks reduces the computation time. The efficiency drops from 
0.38 for 4 tasks to 0.22 for 8 tasks. 

 The efficiency is smaller than the efficiencies for Euler or Lagrange or coupled 
Lagrange-Lagrange computations: Using four processors, it reaches 0.38 while 
for the simple cube problems it is between 0.8 and 1.13 (see table 1). 



 
 

4. SUMMARY 

This paper describes single and parallel computations using the codes ANSYS® Auto-
dyn 14.0. Most of the computations were done on Windows systems, whilst some were run on 
a Linux operating system. The aim of the computations was to compare run times and effi-
ciency associated with parallelization for simple problems (cubes, no interactions) with the 
speed up for simplified real world problems including coupling and detonation. 

The comparison has shown that the speed up and the efficiency for coupled applica-
tions are significantly lower than for the simple cube problems. This is shown in the following 
table for the cases with 4 tasks: 

Table 6: Efficiencies for 4 tasks 
Lagrange 1.13 
Euler 0.8 
Lagrange-Lagrange, A 0.8 
Lagrange-Lagrange, B 0.48 
Euler-Lagrange 0.38 

While the results of this report may not to be applicable to all kinds of problems, they 
support the experience the author has gained over years working with codes like ANSYS 
Autodyn. However, it should be noted that different hardware configurations might result in 
different results.  
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