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Abstract. A simple phenomenological approach to metal plasticity, including the description
of the strain-induced plastic anisotropy, is considered. The advocated approach is exempli-
fied by a two-dimensional rheological analogy. This analogy provides insight into modelling
of nonlinear kinematic hardening of Armstrong-Frederick type combined with a nonlinear
distortional hardening. In the previous publications of the authors, an interpolation rule be-
tween the undistorted yield surface of a virgin material and the saturated yield surface of a
pre-deformed material was considered. In the current publication, a somewhat more flexible
approach is considered. Given a set of convex symmetric key surfaces which correspond to
different hardening stages, the form of the yield surface is smoothly interpolated between these
key surfaces. Thus, any experimentally observed sequence of symmetric convex yield surfaces
can be rendered. In particular, an arbitrary sharpening of the yield locus in the loading di-
rection combined with a flattening on the opposite side can be taken into account. Moreover,
the yield locus evolves smoothly and its convexity is ensured at each hardening stage.

Keywords: Rheological model, Plastic anisotropy, Yield function, Yield surface, Distortional
hardening.

1. INTRODUCTION

It is well known that already very small plastic deformations may lead to a significant
change of the yield surface compared to the initial state [3,19,8,9]. Such nonlinear effects
like the residual stresses, springback, damage evolution, and failure are highly dependent
on the accumulated plastic anisotropy of the material. Therefore, the proper description of
the accumulated plastic anisotropy is a challenging task. Moreover, since the normality flow
rule is implemented in most of phenomenological models, the form of the yield surface has a
significant impact on the overall material response under non-proportional loading conditions.
For that reason, we concentrate on the phenomenological modelling of plastic anisotropy with
especial emphasis on the distortional hardening.

Some of the recently developed models of distortional hardening can be found, among
others, in [7, 1, 4,16,11,2,15]. Probably, the most simple approach to the distortional hard-
ening is based on the use of 2nd-rank tensors. Within this approach, backstress-like tensors
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(directors) are introduced [12]. The applicability of different constitutive assumptions was
analyzed in [20] concerning the description of the distorted yield surface. The recent devel-
opment of this approach is presented in [6,13,5,17,18].

In the previous publication of authors [18], an interpolation rule between the initial
undistorted yield surface and the saturated one was considered. This saturated yield surface
(which typically exhibits the maximum distortion) was considered to be a material property.
The novelty of the current study as compared to previous publication is as follows. Now,
a sequence of yield surfaces corresponding to different hardening stages can be prescribed.
For instance, such key surfaces can be the initial undistorted one, some intermediate yield
surfaces, and the saturated one. The interpolation betweenthese key surfaces retains the
convexity and smoothness of the yield locus.

In order to provide an insight into the constitutive modelling, a two-dimensional rhe-
ological model is considered in the current study, just as itwas done in [18]. The translation
and distortion of the yield surface as well as its rotation depending on the recent loading path
are captured by the rheological model in a vivid way. The construction of the closed system
of constitutive equations, basing on the rheological model, is straight-forward in the case of
small strains [18]. In particular, the kinematics of the material model, the assumption for the
energy storage and for the yield function are motivated by the rheological model. A strict
proof of thermodynamic consistency can be provided, if the yield surface remains convex
and the normality flow rule is considered, cf. [18]. Moreover, if finite strain plasticity is
considered, a system of constitutive equations can be obtained using the elegant technique of
Lion [10], which is based on the consideration of rheological analogies. As it was shown in
[17], a similar technique can be successfully implemented using two-dimensional rheological
models, as well.

2. TWO-DIMENSIONAL RHEOLOGICAL MODEL OF DISTORTIONAL HARDEN-
ING

The idea to use two-dimensional rheological models to motivate the constitutive equa-
tions of plasticity/viscoplasticity with combined kinematic and distortional hardening was
considered in [17]. A refined two-dimensional rheological model was presented later in [18].
Following [18], let us consider a mechanical system which consists of a tank filled with a vis-
cous fluid, a heavy solid which rests on the flat bottom (m.StV ), three elastic springs (Hext,
Hkin, andHdis) connected to the solid, and two spheres (m.Nkin andm.Ndis) floating on the
surface of the fluid (Fig. 1).1

Let us recall the rheological properties of the idealized bodies (for more details, the
reader is referred to [17,18]):

• (H): For the Hooke-bodies (see Fig. 2a), we put~σH = c ~εH, where~σH stands for
the spring force,~εH =

−→
AB ∈ R

2 is the elongation of the spring, andc ≥ 0 is a fixed
stiffness.

1An animated version of the rheological model with only one modified Newton element is available at
http://www.youtube.com/watch?v=QEPc3pixbC0
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Figure 1. a) Two-dimensional rheological model of combinedkinematic and distortional hard-
ening. The model is built up of a modified St.-Venant element (m.StV ), Hooke-bodiesHext,
Hkin, Hdis, and modified Newton elementsm.Nkin andm.Ndis; b) Rheological model seen
from above. The angle between the (m.StV )-axis andHdis is denoted byθ. The critical
friction force of the (m.StV )-element depends onθ.
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Figure 2. Behavior of idealized two-dimensional bodies: a)Hooke-bodyH; b) Modified
Newton-bodym.N ; c) Modified St.-Venant elementm.StV . For this element, the friction
depends on the angleθ.

• (m.N): The two-dimensional Newton element is represented by a sphere which is float-
ing on the surface. We assume that the fluid resistance~σN to the motion of the sphere is
proportional to its velocityd

dt
~εN . Thus, d

dt
~εN = κ ~σN , whereκ ≥ 0 is a fixed viscosity

parameter. Next, in order to obtain rate-independent constitutive equations, the physical
time t is formally replaced by the accumulated inelastic arc-length (Odqvist parameter)
p. Thus, we get for the modified Newton element ((m.N)-element) (see Fig. 2b):

d

dp
~εN = κ ~σN . (1)

• (m.StV ): The heavy solid rests on the bottom of the tank and there is afriction be-
tween them. By~σ, −~xk, and−~xd denote now the forces acting on this solid due to the
elongation of the Hooke-bodiesHext, Hkin, andHdis, respectively (see Fig. 2c). The
force ~σ will be understood as an external load;~xk and~xd will be responsible for the
effects similar to kinematic and distortional hardening, respectively. The effective force
acting on the solid is thus given by~σeff = ~σ − ~xk − ~xd. Let the axis of the (m.StV )-
element be always oriented along~σeff. The (m.StV )-element remains at rest as long
as‖~σeff‖ ≤

√

2/3K, where
√

2/3K > 0 is a nonconstant friction. More precisely:

Let θ be the angle between the (m.StV )-axis and~xd: θ = arccos
(

~σeff · ~xd
‖~σeff‖ ‖~xd‖

)

. More-

over, letα = ‖~xd‖/xmax
d be a distortion parameter, which is a unique function of‖~xd‖.

Here,xmax
d > 0 is the upper bound for‖~xd‖, therefore we getα ∈ [0, 1]. Finally, we



consider the friction to be a function ofθ andα: K = K̄(θ, α) K0, whereK0 > 0 is
a fixed parameter. A suitable ansatz forK̄(θ, α) is essential for the proper description
of distortional hardening. One simple geometric ansatz wasconsidered in [18]. An
alternative rule will be presented in the next section.

3. CONSTRUCTION OF DIRECTION-DEPENDENT YIELD STRESS

In this section, a flexible rule for the computation of the friction functionK̄(θ, α) is
suggested. Note that this friction function can be interpreted as a non-dimensional yield stress
(cf. [18]). Unlike the ansatz presented previously in [18],this rule is based on the interpolation
between certain key surfaces. In particular, such key surfaces can be identified experimentally
at different hardening stages (cf. Section 4).

El1key
(α = 0)

Elikey
(0 < α < 1)

ElMkey
(α = 1)

key surfaces

El(K̄(·, α))

~e1~e1~e1 ~e1

θ

~y

~0~0 ~0

a) b)

Figure 3. a) Interpretation of the function̄K(·, α) in terms of corresponding convex set
El(K̄(·, α)); b) Example of three key surfaces. Each key surface must be smooth and convex.
The first key surface corresponds to zero distortion (surface with α = 0). The last surface
describes the fully saturated distortion (surface withα = 1).

Let ~e1 = (1, 0) ∈ R
2. Similar to [18], for each distortion parameterα ∈ [0, 1] we

consider the set El(K̄(·, α)) which consists of~y ∈ R
2 such that‖~y‖ ≤ K̄(θ, α) (see Fig. 3a).

Here,θ ∈ [0, π] is the angle between~y and~e1. In particular, the upper half of the boundary of
this set is described by

~y(θ, α) = (y1(θ, α), y2(θ, α)) = K̄(θ, α)(cos(θ), sin(θ)), θ ∈ [0, π]. (2)

Let us considerM different convex symmetric subsets Eli
key, i = 1, ...,M , as shown

in Fig. 3b. Each of these sets is related to a certain hardening stage, and each stage is charac-
terized by the corresponding value of the distortion parameterαi

key, i = 1, ...,M :

0 = α1

key < α2

key < ... < αM
key = 1. (3)

Assume that a unit disc corresponds to the initial (undistorted) stage (α = 0).
Our goal now is to construct a continuous functionK̄(θ, α), such that:

i: K̄(θ, α) > 0 for all θ ∈ [0, π], α ∈ [0, 1],

ii: K̄(0, α) = 1 for all α ∈ [0, 1],

iii: ∂K̄(θ, α)
∂θ

|θ=0 =
∂K̄(θ, α)

∂θ
|θ=π = 0 for all α ∈ [0, 1],



iv: the set El(K̄(·, α)) is convex for allα ∈ [0, 1],

v: the boundary of El(K̄(·, α)) is smooth for allα ∈ [0, 1],

vi: the set El(K̄(·, αi
key)) coincides with Elikey for all i = 1, ...,M .

Let ~nα(θ) be the outward unit normal to the boundary of El(K̄(·, α)) at the point
~y(θ, α). The angle between this normal and~e1 will be denoted byY α(θ) (see Fig. 4a).
According to (ii),K̄(0, α) is given. Thus, as it will be shown in the following, the function
K̄(·, α) is uniquely determined byY α(·), for each fixedα ∈ [0, 1].
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Figure 4. a) Definition of the outward normal~nα(θ) and the angleY α(θ). b) Geometric
considerations behind equation (5). Here,∆θ is an infinitesimal perturbation ofθ. The cor-
responding change in̄K(θ, α) = ‖~y(θ, α)‖ equals∆K̄(θ, α) = K̄(θ, α) tan(θ − Y α(θ))∆θ.

For each of the subsets Eli
key (i = 1, ...,M), let us consider the corresponding func-

tionsY i
key(θ). In other words, the functionsY i

key(θ) describe the direction of the normality
vector corresponding to the key surfaces. Since Eli

key are convex with a smooth boundary, the
functionsY i

key(θ) are continuous, monotonically increasing,Y i
key(0) = 0, Y i

key(π) = π, and
|Y i

key(θ) − θ| ≤ π/2 for all θ ∈ [0, π]. In what follows it will be shown that the problem
(i)-(vi) can be reduced to an equivalent one: FindY α(θ) such that:

I: |Y α(θ)− θ| < π/2 for all θ ∈ [0, π], α ∈ [0, 1],

III: Y α(0) = 0, Y α(π) = π for all α ∈ [0, 1],

IV: Y α(θ) is a monotonically increasing function ofθ, for each fixedα ∈ [0, 1],

V: Y α(θ) is a continuous function ofθ, for each fixedα ∈ [0, 1],

VI: Y αi
key(θ) = Y i

key(θ) for all i = 1, ...,M , θ ∈ [0, π].

In the current study, we use the following rule to constructY α(θ) which satisfies (I)-
(VI). We interpolate between two key surfaces: Forα ∈ [αi

key, α
i+1

key ] we put

Y α(θ) =
αi+1

key − α

αi+1

key − αi
key

Y i
key(θ) +

α− αi
key

αi+1

key − αi
key

Y i+1

key (θ), for all θ ∈ [0, π]. (4)



Now it remains to restorēK(·, α) from Y α(·). Some geometric considerations (see Fig. 4b)
yield the following differential equation:

∂K̄(θ, α)

∂θ
= K̄(θ, α) tan(θ − Y α(θ)), for θ ∈ [0, π]; K̄(0, α) = 1. (5)

There exists a simple closed-form solution of problem (5), if Y α(θ) is a piecewise linear
function ofθ. Indeed, let us consider a subdivision

0 = θ1 < θ2 < ... < θN = π. (6)

Suppose that the functionsY i
key(θ) are linear within[θj , θj+1]. Thus, forθ ∈ [θj , θj+1], we get

Y α(θ) =
θj+1 − θ

θj+1 − θj
Y α
j +

θ − θj
θj+1 − θj

Y α
j+1, (7)

where the valuesY α
j = Y α(θj) andY α

j+1 = Y α(θj+1) are obtained using the interpolation rule
(4).

Consideringα as a fixed parameter, we get from (5)

d
(

ln(K̄(θ, α))
)

= tan(θ − Y α(θ))dθ. (8)

Next, we abbreviate

k := 1 +
Y α
j − Y α

j+1

θj+1 − θj
, l :=

θjY
α
j+1 − θj+1Y

α
j

θj+1 − θj
. (9)

Substituting (7) into (8), one gets forθ ∈ [θj , θj+1]

d
(

ln(K̄(θ, α))
)

= tan(kθ + l)dθ. (10)

Integrating (10) fromθj to θ, we get for allθ ∈ [θj , θj+1]

ln(K̄(θ, α)) = −1

k
ln
∣

∣

∣

cos kθ + l

cos kθj + l

∣

∣

∣
+ ln(K̄(θj , α)) for k 6= 0, (11)

ln(K̄(θ, α)) = tan(l)(θ − θj) + ln(K̄(θj , α)) for k = 0. (12)

Taking into account thatln(K̄(0, α)) = 0, ln(K̄(θ, α)) can be computed through sequential
evaluation ofln(K̄(·, α)) for all θj ≤ θ.

Remark 1 Let us show that the inequality (I) implies (i). Indeed, if (I) holds, then
tan(θ − Y α(θ)) > −∞. Combining this with (8), one getsln(K̄(θ, α)) > −∞, or, equiva-
lently, K̄(θ, α) > 0.

Remark 2 Observe that the outward normal is explicitly given by~nα(θ) =

(cos(Y α(θ)), sin(Y α(θ))). This expression can be utilized by constructing an appropriate flow
rule (cf. equation (43) in [18] for the normality flow rule).

Remark 3 In this study we assume that the key surfaces are given. Indeed, it was
shown in [18] that the form of the key surface can be directly associated to the form of
the corresponding yield surface in(σ1,

√
3σ12)-space. Moreover, if some yield surfaces in

(σ1, σ2)-space are available, they also can be used after an appropriate affine transformation.
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Figure 5. a) Experimental data for commercially pure aluminum 1100-0 at room temperature
[14]; b) The three key surfaces. The form of the key surfaces coincides with the form of the
experimentally measured yield surfaces.

4. EXAMPLE

Let us consider the experimental data on the evolution of theyield surface under uni-
axial tension, presented by Phillips and Tang in [14]. The progressing plastic anisotropy in
commercially pure aluminum 1100-0 at room temperature is shown in Fig. 5a. As it can be
seen, the plastic deformation involves isotropic softening, kinematic translation of the yield
surface, and its distortion.2 The yield surfaces, which are considered as key surfaces, are de-
picted in Fig. 5b. Here, we putα1

key = 0, α2
key = 0.5, α3

key = 1.3 Note that the size of the
elastic domain for all key surfaces is the same along~e1 = (1, 0), and the origin(0, 0) is located
exactly in the middle. It is done so in order to decouple the yield surface distortion from the
kinematic and isotropic hardening. The corresponding functionsY α(θ) are plotted in Fig.6a
againstθ. These functions are monotonically increasing and continuous. The interpolation
results are shown in Fig. 6b for different values of the distortion parameterα. As it can be
seen, all surfaces remain convex and smooth.

5. CONCLUSION

In this work, the main emphasis is made on the phenomenological description of the
yield surface distortion. Toward that end, a practical construction of the functionK̄(θ, α)

is considered. In terms of the two-dimensional rheologicalinterpretation, this function repre-
sents a direction-dependent friction of the modified St.-Venant element (m.StV ). On the other
hand, in terms of a plasticity model, this function plays a role of the yield stress. The approach
advocated in this study utilizes an interpolation between certain key surfaces (boundaries of
Elikey, i = 1, ...,M). In particular, it can be guaranteed that the resulting surfaces are convex
and smooth, such that the outward normal is well defined. The proposed interpolation rule is
simple and easy to implement. Using this approach, any experimentally observed sequence

2The reduction of the elastic rangeunder proportional loading conditionsis referred to as isotropic softening.
3In general,α2

key should be considered as a material parameter.
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Figure 6. a) Plots ofY α(θ) for different values ofα; b) Interpolation results forα =
0, 0.1, 0.2, ..., 1. Only the upper half is shown.

of symmetric convex yield surfaces can be rendered with desired accuracy. Such property is
especially important, if the normality flow rule is used as a constitutive assumption.
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