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Abstract. In the paper the numerical analysis of thermal processes proceeding in the biologi-

cal tissue is presented. The tissue is subjected to the external heat flux and 2D problem is tak-

en into account. Perfusion rate is treated as dependent on tissue injury which is estimated on 

the basis of Arrhenius integral. On the basis of tissue damage fraction the burn wound for-

mation process is analyzed. At the stage of numerical realization the boundary element meth-

od is used. In the final part of the paper the example of numerical simulation is shown. 
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1. INTRODUCTION 

It is well-known that a rise in the temperature of biological tissue can cause immediate 

irreversible damage to the tissue. When the temperature reaches 60 C to 65 C, the proteins 

become denatured and tissue necrosis can be expected. After the temperature rises above 

100 C, water in the tissue changes its phase from liquid to steam, increasing interstitial pres-

sure until the pressure within the tissue exceeds the strength of confinement by the tissue ar-

chitecture, resulting in explosive vaporization and thrombosis. At over 150 C the proteins are 

broken down, releasing hydrogen, nitrogen and oxygen, and leaving a layer of carbonization 

Thus, when the burn wound is formed the temperature elevation and thermal damage 

can dynamically change the thermal distribution during coagulation by altering thermophysi-

cal properties of tissue. Special attention in this field is dedicated to the changes in perfusion 

that accompany necrosis. Such kind of processes are usually modeled by the so-called Arrhe-

nius injury integral in which the reaction rate increases exponentially with the temperature. 

In the current paper the tissue is regarded as a homogeneous domain in which heat 

transfer is assumed to be transient and two - dimensional. Mathematical description of the 

processes proceeding in the tissue is based on the Pennes equation with perfusion rate coeffi-

cient dependent on tissue necrosis, while the remaining thermal parameters are regarded as 

constant values. 

The knowledge of the temperature distribution, degree of the tissue injury and value of 

the perfusion rate allow to estimate the depth of the burn wound as well as the value of the 

tissue damage fraction corresponding to respective zones in which different effects inducted 

by the thermal impulse are occurred. 
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2. GOVERNING EQUATION 

Transient heat transfer in biological tissue domain is described by the Pennes equation 

in the form [1, 3 - 6, 8 - 10] 

 ,: ii VcT T Q   x  (1) 

where  [Wm
–1

K
–1

] is the thermal conductivity, c [Jm
–3

K
–1

] is the volumetric specific heat, 

QV [Wm
–3

] is the internal heat source, while T = T(x, t) and T  denotes a time derivative. 

 

 
Figure 1. Domain considered 

 

The internal heat source is defined as the sum of the metabolic and perfusion heat 

sources. The metabolic heat source is assumed as a constant value while the perfusion heat 

source is in the form 

 ( )perf B B BQ c G T T   (2) 

where GB [(m
3
 blood/s)/(m

3
 tissue)] is the blood perfusion coefficient, cB [Jm 

–3
K

–1
] is the 

volumetric specific heat of blood and TB is the artery temperature. 

According to the necrotic changes in tissue, the blood perfusion coefficient is defined 

as [1, 5] 

 0( ) ( )B B BG G G f     (3) 

where GB0 is the initial perfusion coefficient and the  corresponds to tissue injury integral [1, 

3 - 5] 
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where A is the pre - exponential factor [s
 1

], E is the activation energy [J mole
–1

] and R is 

universal gas constant [J mole
–1
K

–1
]. The criterion for tissue necrosis is [1, 5] 

 ( ) 1 x  (5) 



 

 

In current work the function  in equation (3) is assumed as a polynomial in a form [1] 
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where mj are the coefficients. 

On the basis of the injury integral (4) the damage fraction is calculated as 

 ( ) 1 exp( )DF   x  (7) 

Equation (1) is supplemented by boundary conditions: 
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where q0 [Wm
–2

] is the known irregular boundary heat flux (described as a polynomial func-

tion of 7
th

 degree, similar to (6)),  [Wm
2

K
1

] is the convective heat transfer coefficient and 

Tamb is the temperature of surrounding, while texp is the exposure time. Along the remaining 

parts of the boundary the non-flux condition is accepted 

 : ( , ) 0c q t x x  (9) 

and the initial distribution of temperature is also known 

 0: ( , ) pt T t T x  (10) 

3. BOUNDARY ELEMENT METHOD 

The problem described by the equation (1) has been solved using the 1
st
 scheme of the 

BEM for 2D transient heat diffusion [2,7]. 

At first, the time grid has been introduced: 

 0 1 1 10 ... ... ,f f f ft t t t t t t            (11) 

If the 1st scheme of the BEM is taken into account [2, 7] then the boundary integral 

equation corresponding to transition t
 f-1

  t
 f
 is of the form 
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In equation (12) T

 is the fundamental solution [7]: 
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where r is the distance from the point under consideration x to the observation point , while 
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and B() is the coefficient from the interval (0, 1). 

The constant elements with respect to time have been used [7] and then the boundary 

integral equation (12) takes a form 

 
* 1 1 1

( ) ( , ) ( , ) ( , )d ( , ) ( , )d

( , , , ) ( , )d ( , ) ( , )d

f f f

f f f f

V

B T t q t g T t h

q t t T t Q t g

 

  

 

   

  

 

 

ξ x x ξ x x ξ x

ξ x x x ξ x
 (15) 

where 
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and 
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In numerical realization the following discrete form of the boundary integral equation 

has been considered ( N – number of boundary elements, L – number of internal elements) 
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while 

 
* 1( , , , )d

l

i f f

il lP T t t 



  ξ x  (21) 

and 

 ( , )d

l

i

il lZ g


  ξ x  (22) 

The system of equations (18) can be written in the matrix form, namely 

 1 1f f f f        VG q H T P T Z Q  (23) 

After the determining the “missing” boundary values of temperatures and heat fluxes, 

the values of temperatures at the internal points 
i
 for time t

 f
 are calculated using the formula 

(i = N+1, ..., N+L): 
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4. RESULTS OF COMPUTATIONS 

At the stage of numerical realization the 1
st
 scheme of boundary element method for 

constant elements has been applied [2,7]. 

The domain of rectangular shape (c.f. Fig. 1) of dimensions 0.050.015 [m]. The inte-

rior of domain has been divided into 6000 internal constant cells while the external boundary 

into 320 constant elements. 

In computations, the following values of tissue parameters have been assumed:  = 0.3 

[Wm
–1

K
–1

], c = 3.647 [MJ m
–3

 K
–1

], GB0 = 0.00125 [(m
3
 blood/s)/(m

3
 tissue)] , Qmet = 245 

[Wm
–3

], while for the blood cB = 3.9962 [MJ m
–3

 K
–1

] and TB = 37 °C [5]. The parameters of 

Arrhenius injury integral are: A = 3.110
98

 [s
–1

], E = 6.2710
5
 [J mole

–1
] and R = 8.314 

[J mole
–1

K
–1

], and the coefficients appearing in the f() function are as follows [1]: 

 
1 2 3

1 2 3

0 0.1: 1, 25, 260

0.1 1: 1, 1, 0

m m m

m m m

      

      
 (25) 

The values of these coefficients for the interval from 0 to 0.1 respond to the increase 

of perfusion rate caused by vasodilatation, while for interval from 0.1 to 1 they reflect blood 

flow decrease as the vasculature begins to shut down (thrombosis). 

In the boundary condition (c.f. equation (8)) the following values of parameters have 

been assumed: α = 10 [Wm
–2 

K
–1

] and Tamb = 20 ºC. Two cases of heat flux q0 and exposure 

time texp have been considered. Time step t = 1 [s]. 

In example 1 the maximal value of the heat flux q0 is assumed as 40 [kW m
–2

] while 



 

 

the exposure time is 10 seconds. The results of computation are presented in Fig. 2. The tem-

perature, tissue injury integral  and perfusion coefficient GB distribution in the domain con-

sidered for selected moments of time are presented. 

 

 

 
Figure 2. Example 1: distribution of temperature [°C], tissue injury integral and perfusion 

coefficient GB [(m
3
 blood/s)/(m

3
 tissue)]1000 for 2, 5, 8, 11, 14 and 17 [s] 

 

 

In example 2 the maximal value of the heat flux q0 is equal 20 [kW m
–2

] and texp = 30 

seconds. As previously, the results obtained for distribution of temperature, tissue injury inte-

gral  and perfusion coefficient GB for selected time steps are presented in figure 3. 

 

 

 
Figure 3. Example 2: distribution of temperature [°C], tissue injury integral and perfusion 

coefficien GB [(m
3
 blood/s)/(m

3
 tissue)]1000 for 2, 9, 16, 23, 30 and 37 [s] 

 



 

 

 

The analysis of the dynamics of burn wound formation process is based on the damage 

fraction FD (c.f. equation (7)). Five intervals of values for FD have been distinguished (for the 

sake of convenience denoted as tha): 

 tha 1: [0, 0.01) 

 tha 2: [0.01, 0.05) 

 tha 3: [0.05, 0.63) 

 tha 4: [0.63, 0.99) 

 tha 5: ≥ 0.99 

 

The values in intervals are interpreted as: 

 0.01: up to this value the tissue is in its normal state, so the value could be 

named as the border of thermally untouched tissue, 

 0.05: the border of vasodilatation – arise from the polynomial function for GB 

(c.f. equations (3), (6) and (25)); at this value of FD the perfusion rate has max-

imum, 

 0.63: corresponds to criterion of tissue necrosis (c.f. equation (5)), 

 0.99: could be treated as the criterion of complete tissue destruction. 

 

In the figures 4 and 5 the numbers of elements achieving individual intervals in select-

ed time intervals are presented. It should be pointed out that these data could be very easy 

recalculated into cross-section area of the wound using the field of single internal element (for 

the geometrical grid assumed in the paper: 1.2510
–7

 [m
2
]). 

 

 

 
Figure 4. Example 1: Number of elements achieving individual intervals 

 



 

 

 

 
Figure 5. Example 2: Number of elements achieving individual intervals 

 

Summarizing the number of elements which swapped from one interval to another one 

in successive time intervals we can obtain knowledge of the dynamics of the wound formation 

process. These results are presented in the figure 6 while in figure 7 the comparison of the 

proliferation of the burn wound in both examples is shown.  

 

 

 
Figure 6. The burn wound formation process 

 



 

 

 

 
Figure 7. Proliferation of the burn wound 

 

5. FINAL REMARKS 

The influence of temperature on the value of Arrhenius injury integral and blood per-

fusion rate is clearly visible. According to the necrotic changes in the tissue domain the perfu-

sion coefficient is changing, decreasing to zero for the region in which the injury integral is 

equal or greater than 1 (c.f. equation (5)). 

Comparing the two examples analyzed in the paper, one can note that in the second 

example the burn wound is greater although the maximal value for external heat flux is small-

er than in the 1
st
 example. The reason of that is the greater value of exposure time. In both 

cases one can say that, from thermal point of view the burn wound is formed within time less 

that 2 minutes (see: figures 6 and 7).  

The value of damage fraction FD less than 0.05 means that that tissue could regain into 

its natural (heal) state, so the model should take into consideration also possibility of decreas-

ing of damage fraction and perfusion coefficient as well. 

Because widespread problem in modeling of bioheat transfer is associated with the dif-

ference in values of individual parameters, the method of sensitivity analysis should be taken 

into account. 
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