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Abstract. The problem of cracking and plasticity in face-centered-cubic polycrystals is herein
investigated. The aim is to quantify the difference between 3D simulations, computationally
expensive but able to model real polycrystalline geometries, and simplified computations on
2D cross-sections with a reduced computational cost. To this aim, a unified finite element
formulation with elasto-plastic elements for the grain interior and interface elements for the
grain boundaries is developed. This approach is suitable for the analysis of polycrystalline
materials with a response intermediate between that of brittle ceramics and that of ductile
metals. Crystal plasticity theory is used for 3D computations, whereas isovopdVIISES
plasticity is adopted for the 2D tests. For the grain boundaria cohesive zone model (CZM)
accounting for Mode Mixity is considered. Examining the nonlinearity due to the CZM only,
3D simulations of uniaxial tensile tests differ from 2D predictions due to the higher tortuos-
ity of the crack path in 3D, leading to significant Mixed Mode deformation. Regarding the
comparison between 3D and 2D simulations with plasticity only, results show that the satu-
ration of the stress field is much faster in 3D than in 2D. Finally, when both nonlinearities
are simultaneously present, a strong interplay is evidenced. The CZM prevails over plasticity
for low deformation levels. Afterwards, plasticity prevails over CZM. Finally, for a very large
deformation, failure is ruled by the CZM formulation which induces a softening in the global
structural response and a size-scale dependency of the results.

Keywords: Cohesive Zone Model; Crystal plasticity; Isotropic plasticity; Finite element
method; Polycrystalline materials.

1. INTRODUCTION

At present, in spite of the inherent 3D geometry of polycrystalline materials, most of the
numerical investigations based on the finite element method are still restricted to 2D topolo-
gies [1-6]. This is mainly due to the higher computational cost required to solve a nonlinear
problem in 3D, to mesh complex geometries and to efficiently post-process the numerical re-
sults. So far, the limitation of using 2D models over more realistic 3D simulations has not



yet been fully quantified, although it is an information ofrpary importance from the en-
gineering point of view. In case of intergranular crack gtowor instance, only qualitative
statements regarding the crack pattern, much more tortn@3than in 2D, are available [7].

In the present study, 3D and 2D uniaxial tensile tests of a-t@mtered-cubic poly-
crystal microstructure are simulated. The aim is to bettendgjfy the difference between 3D
and 2D simulations in terms of structural predictions. #i#yg inside the grains and grain
boundary decohesion are both considered, in order to peopamified model able to deal
with the main forms of nonlinearity of a polycrystalline ragal. Experimental tests show
in fact both the occurrence of plastic deformation in dectitetals, and intergranular and
transgranular cracking in ceramic polycrystals. Actyallis not possible to exclude interme-
diate situations in materials science where the grainseda¢ively ductile and the interfaces
quite brittle. This is for instance the case when chemicgtesgation of a brittle component
takes place along the grain boundaries of a ductile metgtpgtal [8]. In these situations, a
mechanically coupled model is expected to be useful.

Hence, to quantify the interplay between grain boundaryhdesion and grain plastic-
ity, the cohesive zone model (CZM) and the theory of crydiiicity are implemented in the
finite element program FEAP [9]. Their main features are sanwad in Sections 2 and 3, re-
spectively. Crystal plasticity is effective for the studyductile heterogeneous materials, like
metals used in rolling and forming operations. On the otlaerdhthe CZM can be efficiently
used to model localized cracking at grain boundaries typiclrittle materials. In Section 3,
the method used to generate the finite element meshes islaebdn Sections 4 and 5, vir-
tual tensile tests on 3D polycrystalline material microstures are performed and the results
are compared with those obtained from analogous simuktionsidering 2D cross-sections
under the assumption of plane strain deformation. Findtlg,interplay between plasticity
and CZM depending on the parameters of the elementary misdelgestigated in Section 6.
Concluding remarks complete the article.

2. CONSTITUTIVE RELATION FOR THE GRAIN BOUNDARIES: THE COHESIVE
ZONE MODEL

Grain boundaries are often considered as perfectly bondetfaces. However, these mate-
rial discontinuities are often the source of damage andkargan polycrystalline materials
and imperfect bonding is a more realistic assumption [5, TO]this aim, interface elements
for 3D nonlinear crack propagation problems have been imefdged in the finite element
program FEAP [9] by the present authors. The interface aiénsea finite element with
zero-thickness that is used to impose tractions-relaisf@acement constitutive relations for
the grain boundaries. In the kinematic part of the interieleenent, the relative opening and
sliding displacements of the opposing nodes sharing a commerface are computed. The
cohesive tractions are then computed in terms of theseveelgpening and sliding displace-
ments according to the specified CZM, see also [11-13]. Irptheent study, the CZM by
Tvergaard [14] is adopted, since it is frequently used to ehaaterface crack propagation
along pre-existing interfaces. In 3D, a local referencdesysdefined by the normal vector
n and two orthogonal tangent vectars andt, in the plane of the interface element is in-
troduced. The normal and tangential tractionsy; andr, are computed as functions of the



normal and tangential relative displacemegisgr 1 andgr »:
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(a) Normal cohesive tractions (b) Tangential cohesive tractions

Figure 1. Normal and tangential cohesive tractions.

The implementation of this element has been carried out lmAFP] by following the
methodology described in [5,15-17] and considering diffiéelement topologies, e.g., inter-
face elements connecting linear or quadratic tetrahetiadents and linear or quadratic brick
elements. Due to the nonlinearity of the CZM and the analyaised out in an implicit FEM
code, the consistent linearization of the weak form of tleenelnt is performed to compute its
tangent stiffness matrix and the residual to be used iE&NON-RAPHSON iterative proce-
dure. To this aim, the partial derivatives of the cohesiaetions with respect to the normal
and tangential relative displacements are used to detertinétangent constitutive matrix of



the interface element [5]. For the CZM in Eq.(1) the derwediare:
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3. CONSTITUTIVE RELATION FOR THE GRAINS: MULTIPLICATIVE MULTI-
SURFACE ELASTO-PLASTICITY

A crystal plasticity formulation [18—20] is adopted to deke the constitutive behaviour of
polycrystalline grains in 3D. The deformation gradiéht= g—; with Jacobian 3= det F' > 0
maps tangent vectors of material lines in the reference garation3 € R? onto tangent
vectors of deformed lines in the current configurati§nc R? and is decomposed into an
elastic and a plastic part. The elastic pBEftcontributes to stretching and rigid body rotation
of the crystal lattice, the plastic paFt’ characterises plastic flow caused by dislocations on
defined slip systems

F = F°F". (4)

The multiplicative split assumes a local unstressed ingeliate configuration defined by the
plastic deformation gradient, see Fig. 2, which can be detexd through an evolution eqau-
tion and whose initial condition is assumed toBg = 1.
Further, a volumetric-deviatoric split of the deformatigradient and its constituents
is performed
F=J"F, F. =Y "F° F. =Y "°F? (5)

ISO ISO

with J = F due to fulfilling the requirement of present plastic incoegsibility expressed
through 3 = 1.
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(a) Continuum mechanical framework (b) Crystallographic concept

Figure 2. Multiplicative elasto-plastic decompositiortieé deformation gradier'.

3.1. Thermodynamical considerations

The deformation power per unit undeformed volume can beewis
P.F=P:F+%: 1" (6)

whereP = PF*7 is the 1t PlOLA-KIRCHHOFF stress tensor relative to the intermediate
configuration3, andX = F¢" PF?*T = F°T+F°~T a stress measure conjugate to the plastic
velocity gradientL” = FPF?~! on BB;, T being the KRCHHOFF stress tensor off;. Further,
itis

P=FS, §=C"'S, C°=FTF" (7)

whereS is the2" PIoLA-KIRCHHOFF stress tensor relative to the intermediate configuration
B; which is symmetricC* is further the elastic right ®&UCHY-GREEN tensor onj;.

The evolution of the plastic deformation gradidit is defined by the plastic flow
equation, resulting from the plastic rate of deformatidh In the presence ofsys Systems
undergoing plastic slip, represented by the plastic sheasi“, the plastic flow equation is
further generalised

Ep _ FPFP—1’ Ep _ Z ;yaéa ® ma7 (8)

a=1
s being the slip direction vector angh® being the slip plane normal vector of tlheth
slip system{s*, m®}. The slip system vectors have the properiesm = 0 and thus

(s*@m*)(5* ®m®) = 0. The generalisation in (8) leads to the modified evolutiamegipn
of the plastic deformation gradient depending on the pasdifps

Fp: [Z,ya§a®ma
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3.2. Theresolved SCHMID stress
The SSHMID stressr® is the projection o onto the slip systera® @ m®
7 = (deyX] - m?®) - 3* = deV[X] : 3% @ m°. (10)

As the slip system tensaf* ® m* is purely deviatoric, only the deviator of the stress
tensor contributes to the resolved stress. With the relatio (7) and some straightforward
recast, it is

™ =R7TTR" : 3% @ m”. (11)

3.3. Elastic response

The elastic part of the deformation is gained from edNHOOKEean strain energy function.
Due to assumed isotropy within the elastic contributioe, diescription is given in terms of
the elastic left GucHY-GREEN tensorb®. Applying a volumetric-deviatoric split yields

K
P (Bigos ) = 5 (trbigy = 3) + 5 (nJ)? (12)
T=2p 0y b® = pdevdby,) + x In¥ 1, devr)=pdevbdy,), vol(t) =x InJF 1. (13)

ob°
Because slip-system tensors are deviatoric by constrydfeir internal product by

the hydrostatic KRCHHOFF stress components vanishes and tleei8ID stress in (11) re-
mains
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3.4. A rate-dependent formulation via a viscoplastic power-law

A rate-dependent theory enables the modeling of creep glestrystals and is performed
by the introduction of a power law-type constitutive eqoatfor the ratesy® of inelastic
deformation in the slip systems

a a m—1
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Jo and, being the reference shear rate and slip resistance;abéing a rate-sensivity
parameter. Within an isotropicAYLOR hardening model, the evolution for the slip resistance
7, IS considered

t

7= H-3, vz/oﬁdt, F=) 4~ (16)

3.5. Incremental kinematics

The slip rate is discretised with a standard backwaod HR integration in order to obtain
incremental evolution equations for the update of the exmglquantities

AV = At 4% (F°). (17)



The implicit exponential integrator is then used to digseethe plastic flow equa-
tion (9)
- F?. (18)
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Due to the propertylet[exp(s®* @ m®)] = expltr (s* ® m®)] = exp(0) = 1, it
preserves the plastic volume. Heléﬁlﬂr”i" = f,.1 F, isthetrial elastic deformation gradient
with f, ., = F,.1 F,' = 1+ grad, (Au) and J,; = det F,,, FEie — 377 petial oo

ISO
that an exponential update for the new elastic deformatiadignt can be obtained

Fr o =F - exp [Z ~Ay"5" @ m* (19)

The currenttrial resolved shear stresg @, cf. (14), is obtained with the current
orientation of the crystal through rotation of the slip gystwith the trial elastic deformation
gradient

atrial _  satrial = «trial —atrial __ ppetrial s — atrial __ gpetrial =«
Tl — HSiso "Mse 5 Siso —Fiso ST, Mg = Fiso me. (20)

3.6. Equilibrating the plastic state

Omitting the subscript + 1, a residual based on the exponential map is defined to
equilibrate the plastic state, leading to a loc&wWiroN-RAPHSON algorithm through a Ay-
LOR expansion about the reached palfit

R(F°) := F° — F°" . exp [Z —~AY*58*@m*| =0, (21)

and
Ry, + Op; R(F}) : AF =0, (22)
AF§ = — [0p: R(F})] ' : Ry, Fi,, =F;+AF;, (23)

with the important derivatives
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4. GEOMETRICAL MODEL OF THE POLYCRY STAL

The polycrystal is modelled with 3D &R0oNoi cell shaped grains. Through theeDAUNAY
triangulation of a given random point seed, a polycrystahuitrary size can be obtained
through stating the size of the bounding box. For the sinardatbased on crystal plasticity
only, where the nonlinearity is solely due to the constieitielation of the grain material, the
grains are perfectly bonded along their boundaries. Indhase, the BLAUNAY refinement
algorithm proposed in [21] is used for the discretizatiothaf grain boundaries (facets). Af-
terwards, the BLAUNAY algorithm proposed in [22] is implemented for the FE disesegton
of the grain interior, see the result in Fig. 3.

(@) Polycrystal consisting of  (b) Cut through polcrystalline (c) Three-dimensional view into
VoRoNoI cell grains structure the cutted polycrystal

Figure 3. Polycrystalline model within bounding b0 x 200 x 200 um. The
VORONOI cell shaped crystal grains are obtained through. AUNAY triangulation
of a random point seed.

In order to realize randomly orientated slip systems in egalmn of the undeformed
polycrystalline structure, the slip system vectors aratsat around the cartesian axes about
three BULER anglesd, © and¥ according to a-convention, see Fig. 4 (first, a rotation about
the z-axis is performed, then along theaxis and finally along the newaxis)

cosV —sin¥ 0 cos® 0 sin® cos® —sind® 0

Ry = | sin¥V cos¥V 0| Rg= 0 1 0 Ry = | sin® cos® 0
0 0 1 —sin® 0 cos© 0 0 1
(29)
R=Ry Ro:  Rs. (30)

Aiming at combining crystal plasticity with cohesive zoneaels for the simulation of
grain boundary sliding and decohesion, zero-thicknessfate elements have to be inserted
along the grain boundary facets. In 2D, this can be done byidhtimg the nodes of the
grains along the grain boundaries and constructing theestiwity matrix for the interface
elements [5]. In 3D, this procedure is much more complex. @&siest way would be to
generate the polycrystalline topology using®oNoI diagrams and then meshing each grain
separately from the others. This has the advantage thatimgesdn be performed by using
standard geometry and mesh generation toolkits. Howawerptocedure may lead to non
matching nodes for the construction of the interface elémdiience, the same procedure as
in 2D is adopted, although it is algorithmically more comyd&d not possible to be performed



Figure 4. Rotation of the axes around randooLER angles

using commercial mesh generators. Meshing of the graindemies and of the grain interior
has been done as in case of perfectly bonded grains. Them, cdhgaication is made for
all the nodes pertaining to the grain boundaries, addingtteethe existing data structure.
The connectivity matrix of the grains is then updated bygrsag the new nodes to the finite
elements along the grain boundaries. Finally, the cormigctnatrix of the interface elements
is constructed. The result of this mesh generation proeetushown in Fig. 5 for a test
problem.
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(a) Grains (b) Grain boundaries

Figure 5. 3D grains and grain boundaries of the test probleatyaed in the sequel.

5. COHESIVE FRACTURE: 3D VS. 2D SIMULATIONS

In this section, 3D and 2D fracture mechanics responsesdafarystalline material is
investigated. The 3D model has 27 grains and the geometnpvgrsin Fig. 5. A linear elastic
constitutive relation for the grains is adopted, with= 152200 MPa andv = 0.3. To model
grain boundary decohesion, 3D interface elements aret@tsatong the grain boundaries
among the tetrahedra composing the grains. Linear shamtidos are considered. The



constitutive response of the grain boundaries is governyeithdo CZM presented in Section
2 with a peak tractiow, = 80 MPa and a fracture energy» = 0.1 N/mm (which is the
area under the Mode | traction-separation curve). We alextsh, = ltc andy = 1. A
tensile test in thg-direction is simulated by subdividing the FE nodes on thermmal rough
polycrystalline boundary in three groups. A first group hwitlly constrained displacements,
includes all the nodes havingyacoordinate less than 30% of the total sample size. A second
group with ay-coordinate comprised between 30% and 70% of the total sasige has free
displacements. Finally, the third group witly&oordinate higher than 70% of the total sample
size has an imposed vertical displacementhe 2D model is constructed by taking a middle
cross-section of the 3D geometry. Similar boundary coodgiare imposed to compare with
the 3D simulation. The continuum is discretized using qilaedral elements with linear
shape functions and 2D interface elements with linear shapstions are used to discretize
the grain boundaries.

The results of the simulations are provided in terms of thed xial forcel” evaluated
at the restrained boundary vs. the imposed axial displaceinén general, due to the plane
strain assumption of the 2D model, the axial forces of theigiigtion are much higher than
the 3D ones, since the actual resisting cross-section argB is much smaller than in 2D.
To compare results, the forcésand the displacementsare divided by the values, andJ,
corresponding to the end of the linear elastic responseeo$yktem. Although the presence
of the CZM induces very soon a nonlinearity in the force-tlispment curve, the response is
not far from linearity for low deformation levels. The comisan in Fig. 6 shows a significant
difference between 3D and 2D predictions. The dimensisnpesk load is much higher in
2D than in 3D, mostly due to Mixed Mode effects. In 2D, failis¢he result of the separation
of the lowest grain from the rest of the material microstmoetalong an interface which is
almost perpendicular to the direction of loading, i.e.,jeated to Mode | deformation, see
Fig. 7. In 3D, the crack pattern at failure involves the sapan of several grains separated
by inclined interfaces with the occurrence of Mixed Modeattefation, see Fig. 8.
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Figure 6. 3D vs. 2D simulation of cracking: dimensionlesakiorce vs. axial displacement.



L

o

Figure 7. Deformation of the 2D model of the polycrystal, bgreasing the imposed bound-
ary displacement until failure. Displacements range from blue (zero disptaent) to red
(maximum displacement).

Figure 8. Deformation at failure of the 3D model of the poiystal. Displacements range
from blue (zero displacement) to red (maximum displacejnent

6. PLASTICITY: 3D VS. 2D SIMULATIONS

In this section, the grains are considered as perfectly ébaad the the nonlinearity
is due to the elasto-plastic constitutive law of the grain8D, a crystal plasticity formulation
is used, considering 12 slip systems, as appropriate faeadantered-cubic crystal structure.
The slip system vectors are summarized in Tab. 1. The mhparameters are = 152.2
GPa,u = 79.3 GPa, 7., = 80.0 MPa,j, = 0.005 1/s,m = 4.0, H = 120.0 MPa. The
geometry of the polycrystal coincides with that analyzedhim previous section. To obtain
accurate solutions, the grains are discretized by usirgjtetlra elements with quadratic shape
functions. As a result, the 3D model has 17021 nodes and 1€léhtents.

In the 2D simulation, the same cross-section of the 3D gegnoensidered in the
previous section is considered. The grain boundaries diyeldanded and azoN MISES
isotropic plasticity formulation witly, = 80 MPa and absence of hardening is used.

To compare 2D and 3D results of the tensile test, the forcéstendisplacements are
made dimensionless by using the corresponding yield valngke F'/ F, vs. § /6, diagram,



(?}1) [0811] (gi) [0811] (?;I) [081 1] (?%1) [osﬁ]
(111) [101] (111) [fo1] (111) [101] (111) [101]
(111) [110] (111) [110] (T11) [1T0] (111) [110]

Table 1. 12 fcc slip systems according to [23].

the results do not longer depend on the value of the criticébr the activation of the slip
system and on the yield stresg. The difference between 3D and 2D is less pronounced
as for the cohesive fracture and mostly regards the progifetbe stress saturation. In 3D,
the dimensionless force rapidly saturates after yieldivitgreas progressive hardening is ob-
served in 2D (Fig. 9). The deformation pattern of the polgtayis similar in the two cases
(see Figs. 10 and 11).
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Figure 9. 3D vs. 2D simulation of plastic flow: dimensionlésge vs. displacement curves.

7. INTERPLAY BETWEEN COHESIVE FRACTURE AND PLASTICITY

To examine the interplay between interface cohesive fracdnd grain plasticity, let
us consider two blocks joined by a cohesive interface angestéul to a uniaxial tensile test.
To this aim, the lower side is restrained to the displaceminthey-direction, whereas the
upper side is subjected to an imposed displacemesde Fig. 12.

Regarding the constitutive models, we consider the blosksgad-plastic with hard-
ening, defined by the strain hardening modutys see Fig. 13(a). For simplicity, the cohe-
sive zone model (CZM) of the interface is linear with a tenstoit-off in correspondence of
o = op. As for linear springs, the CZM is defined by the sldpein the cohesive traction vs.
separation diagram of Fig. 13(b).

During the tensile test, the stress field inside the bulk rhash equilibrium with the
cohesive tractions along the interface, as shown in FigFb2each imposed displacement
the strain iss = §/h, whereh is the undeformed vertical size of the sample. Since the bulk
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Figure 10. Cotour plot of the vertical component of the dispiment field in the 3D poly-
crystal and deformed meshes. For each image, the scalesringeblue (no displacement)
to red (maximum displacement).
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Figure 11. Contour plot of the vertical component of the Bispment field in the 2D poly-
crystal. For each image, the scale ranges from blue (noatiepient) to red (maximum
displacement).

material is perfectly rigid, the displacemennust be totally absorbed by the interface. Hence,
the relative opening displacementgis = §. For this separation level, the cohesive traction
is equal toc = kcgn. If o < oy, then the representative poifit= (9, o) of the mechanical
response is determined. If, on the other hand< o < oy, the plastic deformation of the
bulk material has to be considered. In this instance, thed spiecimen deformation is given
by:

0 =¢eh+ gn, (32)

wheregy = o/kc ande is related to the stress level by the isotropic hardeningeogu:

o = oy + kye. (32)
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Figure 12. Sketch of the uniaxial tensile test.

(a) (b)

Figure 13. Constitutive laws: (a) rigid-plastic stressist curve for the bulk material and (b)
linear CZM with tension cut-off for the interface.

Obtaininge from Eq.(32) and substituting it in (31), we obtain:

Ny O (33)

5:
ky ko’

which gives the unknown stress level for a given axial disphaent:

7 hke + kg (34)

Finally, for o > oy, the interface cannot sustain tractions and the specimeakbrinto two
parts.

Although Eq.(34) has been derived under various simplifiggtbtheses, the following
general results can be deduced:

1. The stress-displacement response depends only on therChigl ranger < oy.
2. A strong interplay between CZM and plasticity takes placer > oy.

3. The stress at failure is governed by the CZM.



4. The mechanical response depends on theisatéhe sample. For very small specimens
(h — 0), 0 = kyd and the response is governed by plasticity only. For veryelar
samples(h — o0), 0 = oykc/ky. Sinceke > ky in practical cases, it is easy to
havekc/ky > op/0y and thereforer > o,. Hence, for very large specimens, brittle
cohesive failure is expected to dominate over plasticity.

5. In case of perfectly plastic materidhs; — 0), no equilibrium solutions can be found
for o > oy.

6. By increasing the ratié./ky, the mechanical response tends to the rigid-plastic one,
see Fig. 14. The limit situatioky. /k; — oo corresponds to perfectly bonded interfaces.

25 | | |
Perfectly bonded interface

5/h

Figure 14. Interplay between CZM and plasticity: rigidgila stress-strain constitutive law
with hardening for the bulk and linear CZM for the interface.

A more realistic scenario including an elasto-plastic titutsve model for the bulk
and a nonlinear softening CZM for the interface leads to aokeiguations that cannot be
solved in closed form. However, it is possible to proceed acally by using the normal gap
gn as the driving parameter.

For each value oy, the cohesive traction, equal to the axial stress in the bulk for
equilibrium considerations, is computed according to t@#/Celationship. Ifo < oy, then
the strain in the blocks is = o/ FE, whereFE is the Young’s modulus of the material. On the
other hand, ir > oy, the axial strain is computed according to the elasto-glashstitutive
law with hardening¢ = oy/E + (0 — oy)/kn. In both cases, the total axial displacement is
given byd = e h + gn. A particular attention has to be paid to the case when tlesstevel
at a given step is smaller than the stress at the previous $tep 1). In this instance, due to
the stress relief in the bulk, the axial strain has to be cdetgpby considering an unloading
along a path parallel to the initial elastic regime.

An example is shown in Fig. 15 by considering an elasto-gasinstitutive model
with hardening £ = 152000 MPa, oy, = 80 MPa, ky = 120 MPa), the nonlinear CZM
in [14] with a fracture energy» = 0.1 N/mm and different values of,. Foro, < oy,



plasticity is not activated, the nonlinearity is due to ifdee decohesion and the mechanical
response basically coincides with that of the CZM (see Figa)). The elastic contribution
of the bulk is negligible for the selected set of materiabpaeters.

Foro, > oy, the response far < oy is again due to the combination of the CZM and
the elasticity of the system. For higher stresses, plagtiakes place and modifies the final
response with respect to the shape of the CZM (see Fig. 15{h® interesting aspect is the
appearance of a softening response after the hardeningrbraaro, > oy, as in Fig. 15(c),
the interface strength is very high and the previous treranplified.

It is interesting to point out that the numerical results ig.A5 are in agreement
with the hardening cohesive zone model recently proposd@4hfor metallic materials.
In fact, the present curves obtained according to the ifagrpetween CZM and plasticity
can be reinterpreted as a new CZM similar to that in [24] byitplg the stresses vs. an
axial displacement obtained by removing the elastic commpbfromd. An example of this
procedure is shown in Fig. 16 for the case in Fig. 15(b) (bblel€urve). The initial part of
the obtained traction-separation law depends on the sHahe €ZM used for the interface.
Foro > oy, on the other hand, hardening takes place due to plastigityally, an almost
linear softening of the cohesive traction is observed fagdaseparations, again due to the
CZM formulation.

Increasing the sample size and assuming heredhé size-scale independent, the
traction-separation law is not scale invariant, althoughftacture energy, the peak cohesive
traction and the critical opening displacement are the darab the simulations. In general,
the maximum separation corresponding to the onset of linefiening increases with the
sample size, again in good agreement with the model propng2d].

Similar trends take place when a polycrystal microstrietuith several grains and
interfaces is considered. For instance, the results ofEh&rulation of the tensile test of the
cross-section of the 3D polycrystalline model examinechim previous sections are shown
in Fig. 17. The solution in case of a coupled model withh MISES isotropic plasticity for
the grains and the CZM formulation for the interfaces le@da progressive transition from
the CZM solution for small displacements to the elasto{pdasolution for larger displace-
ments. Finally, the post-peak response has again softasimgFig. 15, this time with a more
complex oscillation due to the contribution of several ifaees.

8. Conclusion

In this study, two progresses with respect to the statéw@fart on modelling fracture
and plasticity in polycrystalline materials have been maklérst progress regards the setup
of a finite element model combining cohesive zone interfaoes crystal plasticity for the
simulation of grain boundary decohesion and grain plagtiéreliminary results show that
a strong interplay takes place between these two forms dineamities. As a general trend,
the CZM prevails over plasticity for low deformation levelghen the grains are still in their
elastic regime. Afterwards, plasticity prevails over CZihally, for a very large deformation
level, failure is ruled by the CZM formulation which inducasoftening branch. Moreover,
the formulation obtained by combining plasticity and CZMuide to capture the well-known
size-scale dependencies observed in experimental tedtsad by the interplay between the
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Figure 15. Interplay between CZM and plasticity: elastasgt with hardening constitutive
law and nonlinear CZM.

internal cohesive length and the structural size.
A second progress regards the comparison between 3D andr2lasions. This has
been possible by developing a specific pre-processing tergen3D meshes of the polycrys-
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Figure 17. Interplay between CZM and plasticity for the srgsction of the 3D polycrys-
talline model.

talline grains with interface elements along their intév@undaries. In general, 3D simula-
tions of uniaxial tensile tests differ from the correspad2D predictions. The reasons are
mainly due to the higher tortuosity of the crack path in 3D smthe fact that the plane strain
ansatzdoes not correspond to the real 3D deformation. The po#gibil determine effec-
tive mechanical parameters for the 2D simulations to mateh3D results is an open issue
deserving further investigation.
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