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Abstract. In solving Euler equations applying finite volume techniques, the calculations of 

numerical fluxes across cell interfaces, have become an essential item. The numerical scheme 

exactitude, the ability of handle discontinuities and the correct prediction of the propagating 

waves velocity, are strongly dependent on such numerical fluxes. The pioneer work of 

Godunov [1] was the starting point to solve the Euler equations by means of Riemann solvers. 

The excellent results obtained with Godunov technique, motivated several lines of research 

with the purpose of extending it to three dimensional flows, to achieve higher order of 

accuracy, etc. All calculating schemes that incorporate Riemann solvers are very precise, but 

unfortunately, computational demands are intense because of the non linear system of 

algebraic equations which must be solved in an iterative manner. An alternative which will 

demand less computational effort, could be provided by the use of approximate Riemann 

solvers, although less accurate and also, less robust. In this paper, an approximate Riemann 

solver which does not require iterations, possesses a high degree of accuracy and a lower 

computational demand in solving the Euler equations, is described. It is based on the use of 

dimensional analysis to reduce the number of independent variables needed to outline the 

physics of the problem. The scheme here presented is compared in accuracy as well as in 

computational effort with an exact iterative solver and with three well known approximated 

solvers: the Two Rarefactions Riemann Solver, the Two Shocks Riemann Solver, and an 

Adaptive version of these two. Substantially smaller mean errors have been found with the 

approximation here presented than those found with the best of all the above mentioned 

approximated solvers. Finally, a finite volume computer code to solve one-dimensional Euler 

equations using the Harten, Lax and van Leer Contact (HLLC) scheme, was developed. 

Results obtained solving the Shock Tube problem with the HLLC scheme, have shown no 

significant differences in accuracy and robustness when either the new approximate Riemann 

solver or the exact solver, are used. From the point of view of computer resources, the new 

approximate solver offers advantages.  
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1. INTRODUCTION 

In finite volume numerical simulations of Euler equations, the numerical fluxes 

evaluation at cells interfaces is a fundamental subject. Numerical fluxes have strong influence 

on the finite volume method accuracy, on its ability to capture discontinuities and on the 

correct prediction of wave velocities. 

For solutions that have some degree of continuity in the functions and in their 

derivatives, the numerical fluxes between cells can be computed by means of truncated series 

expansions. However, these continuity restrictions are not verified when discontinuous 

solutions as shock or contact waves are present in the flow. To overcome difficulties in 

capturing discontinuities Godunov published his work titled “A finite difference method for 

the computation of discontinuous solutions of the equations of Fluid Dynamics” [1]. In this 

paper, an alternative approach for solving the system of Euler equations was introduced. The 

new Godunov approach was basically supported by physical considerations and the essential 

part of it is the so called Riemann solvers. 

Based on the Godunov technique several more sophisticated finite volume numerical 

schemes for higher dimensional applications were later developed achieving second order 

accuracy and total variation diminishing (TVD) properties [2], [3], [4]. However, these 

sophisticated schemes were constructed around in the implementation of Riemann solvers, 

making them generally very accurate but computationally expensive because it is necessary to 

solve iteratively the five nonlinear algebraic equations system needed to reach an exact 

solution of the Riemann problem in all cells of the mesh. There are computationally less 

demanding techniques based on approximate solutions of the Riemann problem, but such 

alternative schemes have less accuracy and robustness [2].  

In this paper a new non-iterative scheme, based on dimensional analysis to solve the 

Riemann problem applicable to time dependent and multi-dimensional Euler equations, is 

presented. To solve the exact Riemann problem five independent variables are involved, 

however using dimensional analysis, the number of variables is reduced to only three 

allowing the build-up of an easiest to handle data-based matrix. This new non-iterative 

scheme requires previously to the computation and only once, the generation of tabulated 

exact Riemann solutions from which the necessary information can be retrieved using linear 

interpolation.  

2. DESCRIPTION OF THE PROPOSED RIEMANN SOLVER  

The Euler equations govern the gas dynamic flow problems. In one dimension (1D), 

these equations can be written as: 
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Where U is the vector of conservative variables, F the vector of convective flows, t and x are 

the temporal and spatial coordinates respectively, ρ is the density, u the velocity in the x 

direction, p the pressure and E the total energy per unit volume. The subscript means 

differentiation with respect to time and space. 

For the Euler equations in a 1D spatial domain, the Riemann problem is defined as a 

particular initial value problem where the initial conditions are given by only two different 

constant states separated by a discontinuity. The solution of this 1D Riemann problem is self-

similar, so that it depends directly on the ratio x/t, and it will consist of three types of waves: 

two nonlinear, shock waves or expansion fans, and one linearly degenerate, the contact 

discontinuity. These three waves are separating four constant states where the conservative 

vector U acquires from the left to the right the following values UL, UL*, UR* and UR. The 

subscripts ''L'' and ''R'' indicate left and right, respectively, and the symbol "*" identify points 

located in the state between the nonlinear waves (star region).  

The evaluation of the flow variations across expansion and contact waves is realized 

using Riemann invariants and across shock waves, it is made by Rankine-Hugoniot relations. 

In gas dynamic 1D Riemann problems, this leads to an algebraic nine equations system with 

nine unknowns: the three waves velocities and six variables necessary to define the states UL*, 

UR*. However, the Euler equations eigenstructure establishes that both pressure p* and particle 

velocity u* are constant across the contact discontinuity, while the density take the two 

constant values  ρ*L and  ρ*R [2]. Finally, using these considerations, two equations to solve 

the Riemann problem are implemented:  
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where  ∆u  =  uR -  uL . The unknown for the Equations (3a and 3b) are the pressure p* and the 

velocity u*. The remaining variables are calculated using the standard gas dynamic equations.   

The relations across the left and right non-linear wave are represented by the functions 

fL and fR   respectively:  
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where, γ is the ratio of specific heats, K may be L or R depending on if the flow changes are 

evaluated across the nonlinear left or right waves, and aK is the sound velocity in the left or 

right states.  

The Eq. (3a) is an implicit algebraic nonlinear equation on the only unknown p*. To 

solve this equation an iterative scheme must be implemented. Once the Eq. (3a) is solved and 

the star region pressure has been obtained, it is possible to calculate using explicit expressions 

the velocity in the star region u* and the density at each side of the contact discontinuity ρ*L 

and ρ*R. 

Note that Eq. (3a) does not explicitly depend from uL   or  from uR. It depends only on 

the difference ∆u  =  uR -  uL. Therefore the pressure in the star zone becomes only function of 

five variables: 

                                          ( )∆ ρ ρ=* 1 , , , ,L L R Rp f u p p                                                 (6) 

To reduce the number of independent variables necessaries to describe the gas-

dynamic Riemann problem, the dimensional analysis is used. Consider as reference variables 

the density and pressure from the Riemann problem right side 

                                                    = =                  ref R ref Rp pρ ρ                                                (7) 

the densities can then be written in non-dimensional form using a reference value ρR, the 

pressures using as reference pR, and the velocities using (ρR pR)
1/2

. Therefore, the solution of a 

particular Riemann problem is governed by only three parameters: 
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In Table 1 are indicated seven different cases of Riemann problems with identical values of 

π1, π2, π3, satisfying the parameters π1 = -0.78262, π2 = 50, π3 = 10. The relation p*/pR is 

obtained solving Eqs. (3 and 4), and for the seven test cases considered it is obtained p*/pR = 

13.312, which shows that the proposed non-dimensional analysis works correctly. Then, it is 

possible to write the Eq. (3) only as function of π1, π2, π3 and p*/pR. 

 

 

 

 

 

 



 

 

Table 1. Test cases. 

ρL uL pL ρR uR pR 

1.2250E+00 1.0000E+02 1.0000E+05 1.2250E-01 0.0000E+00 2.0000E+03 

4.9071E+01 8.4770E+02 8.7460E+06 4.9071E+00 6.9994E+02 1.7492E+05 

6.7304E+00 6.5231E+02 1.0554E+07 6.7304E-01 2.1402E+02 2.1108E+05 

4.1503E+00 7.8027E+02 1.1631E+07 4.1503E-01 1.9437E+02 2.3261E+05 

9.4504E+00 6.4262E+02 1.5976E+07 9.4504E-01 1.8756E+02 3.1952E+05 

3.0289E+01 2.9038E+02 2.9757E+06 3.0289E+00 1.8067E+02 5.9514E+04 

3.6284E+01 3.0129E+02 6.5687E+05 3.6284E+00 2.5420E+02 1.3137E+04 

Since in solving the Eq. (3) there are involved only three independent variables, a 

data-base matrix with three degrees of freedom containing the values of  p*/pR  for N values of 

π1, M of  π2, and Q of π3  is, in situ generated. Then, to find the solution of a particular 

Riemann problem, it is only necessary to calculate the corresponding values of π1, π2, π3 and 

to interpolate for p*/pR in the N×M×Q matrix (from now, simply called A-matrix). Finally the 

pressure in the star zone can be calculated as:  
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where ( )
_______

* / Rp p  is the interpolated value from the A-matrix.  After calculating the pressure in 

the star region, the rest of the variables can be explicitly calculated using the same equations 

of the exact solver [2]. 

The previously described procedure involves the use of an interpolated value of 

pressure to calculate the density and velocity changes across each wave. However, it is not the 

only possible procedure. Others alternatives are to develop arrangements with dimensionless 

density or dimensionless velocity variations across each wave.  

To avoid unneeded data storage and to increase the approximate solution accuracy, the 

variation range of the parameters π1, π2, π3 must be as small as possible. To do this, 

symmetrical Riemann problems are considered. Two Riemann problems are symmetric if the 

following conditions are verified: 

 ( ) ( ) ( ) ( )= = =                                R L R L A BA BA B
p p u uρ ρ ∆ ∆  (10) 

Also, for symmetrical Riemann problems the unnecessary storage can be avoided if as 

reference variables are adopted not the left or right pressure and density but instead, those of 

the higher pressure side. Thus, the reference state is the higher initial state pressure and the π2 

value will always be less than or at most equal, to one. 

To give a physical sense to the non-dimensional π1 variable it is convenient to re-define 

it as:  
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aref is the sound velocity in the reference state and π1 would be like a Mach number change 

between the left and right states in the Riemann problem. Note that π1 does not represent 

strictly a Mach number change because aref is only the sound velocity in the left or in the right 

state. 

When the Riemann problem solution has left and right expansion waves it is not necessary 

to any interpolation scheme, because the Eq. (3) has a close form solution. 

3. COMPARISON WITH OTHER RIEMANN SOLVERS 

To study the computational efficiency and accuracy of the proposed Riemann solver, 

comparisons with others Riemann solvers [2] are carried out: one finds iteratively the exact 

solution of Eq. (3a), and others two that use approximate schemes. To make the comparison, 

Riemann problems were generated randomly with values of the parameters π1, π2 and π3 

ranging between: 

 − ≤ ≤110.05 4.95π    ≤ ≤20.05 1π      ≤ ≤30.05 5.05π  (12) 

3.1 Iterative Riemann Solver 

This solver searches iteratively a solution of the Riemann problem. The Eq.(3a) for any 

value of  p can be written as: 

 ( ) ( ) ( )+ + =, ,L L R Rf p U f p U u R p∆                     (13) 

where R(p) is the residual to cancel;  fL and fR, are calculated according to Equations (4 and 5). 

To implement the Newton-Raphson method to solve the Eq. (13) calculations of the 

function and of its derivative are necessary which, undoubtedly should increase the 

computational cost. However, this increase is not significant because the evaluation of the 

derivative demands simple computations once the function has been evaluated. As UR and UL 

are constant the derivative of the residual function, Eq. (13), is calculated using only the 

functions fL and fR. The derivative can then be written as: 
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It is noted that, from the computational point of view, the most expensive steps involved 

in the numerical evaluation of Eq.(15) are the powers with fractional exponents.  

The Newton-Raphson algorithm applied to Eq.(13) can be written as: 
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pi and pi+1 are the pressure for the iteration i and i+1 respectively, R and R
’
 are the residual 

function and its derivative. 

During the iterative solution of the Eq. (13) difficulties may appears because the 

pressure can becomes negative (see Eq. (16)). To avoid this disadvantage, the residual 

function is evaluated considering p = pmin  and p = pmax, where  pmin = min[pL,pR]  and  pmax = 

max[pL,pR]. If both residuals are positive, the pressure which cancels the residual is less than 

pL and pR, and the Riemann problem has an explicit solution consisting of two rarefaction 

waves. If the residual corresponding to the maximum pressure is greater than zero and the 

corresponding to minimum pressure is less than zero, the Riemann problem have as solutions 

a shock wave and a rarefaction fan, and it is adopted as a first iteration the value of the 

minimum pressure (which will undoubtedly be lower than the pressure to cancel the residual). 

When both residuals are negative, the Riemann problem has two shock waves and the sought 

pressure will be greater than both, so as first iteration the maximum pressure value is adopted.  

3.2 Two-Rarefaction Riemann Solver (TRRS) 

  A particular solution of the gas-dynamics Riemann problem is produced when both 

non-linear waves are rarefaction waves. In this case the pressure in the star region can be 

obtained analytically: 
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The TRRS method is generally robust and it calculates the pressure in the star region 

always using the Eq.(17), no matter what kind of Riemann problem is studied. The error of 

this method will be null for the Riemann problems with two rarefaction waves ( ≤* minp p ) and 

will increase as  p*  becoming higher and moves away from pmin. 

3.3 Two-Shock Riemann solver (TSRS) 

The TSRS searches the solution of the Riemann problem assuming that both non-

linear waves are shocks. Then the functions fK are given by the Eq.(4b) and the Eq.(3a) can be 

written as: 
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 ( )
( )

( )
( )

+ ⋅
=

−
+ ⋅

+

2

1
,

1

1

K
K

K

g p U

p p

γ ρ

γ

γ

 (19) 

The TSRS does not provide an analytical solution for p*, therefore it is necessary to 

implement an iterative process beginning with an initial approximation for p* called p0. p0 is 

utilized to evaluate the initial values of ( )0 , Lg p U  and ( )0 , Rg p U . Then, assuming 

( )0 , Lg p U  and ( )0 , Rg p U  constants the Eq.(18) is lineal and it is possible to obtain  p*  as: 
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The p0 value can be expressed as [2]: 
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The TSRS scheme, even when applied to cases with two shock waves cannot provide an 

exact solution; it is very. 

3.4 Approximate and Adaptive Riemann solver using the TSRS and TRRS 

This approximate Riemann solver binds together the advantages of the TRRS and TSRS 

schemes. This adaptive Riemann solver calculates the approximate p0 as given by Eq.(21), 

then compare this pressure with pmin and pmax , and the pressure in the star region will be: 
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being  p*TRRS and p*TSRS  the pressures obtained using the TRRS and TSRS solvers 

respectively.  

3.5  Results using approximate Riemann solvers 

To compare the behavior of the proposed Riemann solver with the others Riemann 

solvers, 10
6
 Riemann problems were evaluated using values of the parameters πi within the 

ranges given by Eq. (12). Of them, 65% were cases with two shock waves, 6% with one 

shock and one rarefaction wave and the remaining 29% with two rarefaction waves.  

To systematized the study, in all Riemann problems the following initial conditions to 

the right state are established 

 
3 2

1      0      1R R R

kg m N
ρ = u = p =

m s m
 (23) 

The initial conditions for the left states are calculated using values of the parameters π1, 

π2 and π3:  

 − 1 2 3                                    R
L L R L R

R

p
u = � γ p = � p ρ = � ρ

ρ
 (24) 



 

 

To compare the approximate Riemann solvers behaviors, in the following table are 

listed the average error of all the pressures computed in the star region for the approximate 

solvers. The results are given in N/m
2
:    

Table 2. Average error. 

TRRS TSRS Adaptive New scheme 

37.371 7.1504 7.0931 0.0019 

Another variable used to compare the Riemann solvers behavior is the worst 

approximate test values for the TRRS, the TSRS, the adaptive RS and the new proposed 

scheme. The results are presented in Table 3: 

Table 3. Worst approximated solutions after solving Riemann test cases. 

Solver ρL uL pL ρR uR pR 
Solver 

prediction 

Exact 

solution 

TRRS 4.9733 11.8082 0.0507 1 0 1 998.7362 81.2775 

TSRS 4.9182 11.8582 0.0564 1 0 1 31.8961 81.6784 

Adaptive 4.9182 11.8582 0.0564 1 0 1 31.8961 81.6784 

Proposed 0.0739 11.8752 0.9274 1 0 1 9.5344 9.6541 

Note that for the three first solvers, the worst results appear when there are relatively 

strong shock waves. Also, it is noted that the most poorly test case predicted is the same for 

the TSRS and the Adaptive Riemann solvers. This is so because when the star pressure is 

highest that both initial pressures, the Adaptive solver uses the same calculation scheme that 

the TSRS. 

The percent error for each tested Riemann solvers is (see Table 4): 

Table 4. Percent error for Riemann solvers. 

TRRS TSRS Adaptive New scheme 

1128.80% 60.95% 60.95% 1.24% 

In Table 5 the necessary CPU time by each approximate solver is given as a 

percentage of the necessary CPU time for the exact Riemann solver: 

Table 5. Percent of CPU time. 

TRRS TSRS Adaptive New scheme 

38.62% 25.93% 31.60% 34.57% 

To avoid the formation of high-intensity shocks and near-vacuum conditions, the 

restriction that the exact pressure p
*
 in each case is bounded to 0.1 pL

 
< p

* 
< 10 pL and 0.1 pR

 



 

 

< p
* 

< 10 pR,  it is added, and the previous analysis are repeated. The worst computed cases 

for each solver are shown in Table 6: 

Table 6. Worst approximated solutions after solving Riemann test cases 

with restrictions in p*. 

Solver ρL uL pL ρR uR pR 
Solver 

prediction 

Exact 

solution 

TRRS 2.4112 4.2348 0.9999 1 0 1 12.5554 9.9950 

TSRS 0.8759 5.3169 1.0013 1 0 1 6.7847 9.9618 

Adaptive 0.8759 5.3169 1.0013 1 0 1 6.7847 9.9618 

Proposed 0.0712 11.7759 0.9424 1 0 1 9.2260 9.3234 

The percent error for each of the tested Riemann solvers using a bounded p* are: 

Table 7. Percent errors. 

TRRS TSRS Adaptive New scheme 

25.62% 31.89% 31.89% 1.04% 

From all the previous results, it is concluded that the new approximate Riemann solver 

works very well and reduces signficantly the errors introduced by others approximated 

solvers. 

4.  DESCRIPTION OF THE ONE-DIMENSIONAL HLLC TVD METHOD 

To test the usefulness of the proposed Riemann solver, a computer code was 

developed using the one-dimensional versions of the HLLC (Harten, Lax, van Leer Contact) 

method [2], [5]. 

In Figure 1, it is shown the wave structure utilized by the HLLC method. It contains 

the slowest SL and fastest SR waves and a middle one of speed S*. Note that the HLLC solver 

does not calculate the SL and SR wave velocities; which are estimated using a Riemann solver. 

For the purpose of comparison, in this paper are implemented the new approximate Riemann 

solver and the exact Riemann solver.  
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Figure 1. Riemann problem for the HLLC method. 

By applying Rankine-Hugoniot conditions across each of the three waves SL , S*, SR  it 

can be obtained 

 ( )⇒ − ⋅ −* *. . L L L L LR H F F = S U U            (25a) 

 ( )⇒ − ⋅ −* * * * *. . R L R LR H F F = S U U            (25b) 

 ( )⇒ − ⋅ −* *. . R R R R RR H F F = S U U            (25c) 

These are three equations for the four unknowns vectors U*L, U*R, F*L and F*R. Using 

the Eqs.(25) the fluxes  F*L and  F*R  can be determined as: 

 ( ) ( )⋅ − ⋅ − − ⋅ − ⋅* * * *R R L L L R R R L LU S S +U S S = F F +S U S U  (26) 

Eq. (26) is formed by a combination of three scalar equations and seven unknowns, the 

components of U*L and U*R states and S*. This implies that SL and SR  must be known, which 

can be evaluated by a Riemann solver. However, the exact solution satisfies the following 

conditions: 

 * * *R Lu = u = u              * * *R Lp = p = p            (27a) 

and moreover, the star zone velocity is equal to the contact discontinuity velocity. That is: 

                                                                     S*  =  u*                                                                                          (27b) 

The last closure condition is given by [2]:   

 
 −

⋅ 
− 

*

*

K K
K K

K

S u
ρ = ρ

S S
    (28) 

 



 

 

To avoid confusion the first, second and third scalar components of the RHS vector of 

Eq. (26), are called now RHS1, RHS2 and RHS3 respectively. It can readily be show that 

Eqs. (26 and 27) are simultaneously satisfied by the relations:  
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Notice that to obtain Eq. (30) used is made of the relation 
p

E u= +
−

2

2 1

ρ

γ
. 

The complete calculation scheme shall consist in first obtaining an estimation of SL 

and SR, needed in the calculations of S* and p* using Eqs (29 and 30), respectively. Then, 

determining ρ*R and ρ*L through Eq. (28) and finally the fluxes F*L and F*R using Eqs. (25).  

Calling wave-1, wave-2 and wave-3 those that separate the L and *L, *L and *R, *R 

and R states respectively; the algorithm in this paper implemented to compute the numerical 

fluxes is 
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iF  are calculated by means of the HLLC scheme.  +1/2

j
iφ  is the limiter function 

for the wave-j. In this work only the results obtained using a Van Leer limiter function [6] are 

presented, however the scheme works efficiently with other limiters. Finally, the flow state 

vector is actualized at each time step by means of the explicit time advance scheme: 

 ( )− +−1 1

1/2 1/2

n+ n+
i i i i

∆t
U =U + F F

∆x
 (32) 

4.1  Results obtained using the HLLC scheme 

Two compare the performance of the HLLC method implementing the new 

approximate Riemann solver and the exact one, a two meters length shock tube is tested. The 

shock tube problem was selected because it is possible to obtain an exact solution, and is a 

very popular benchmark for computational gas dynamics. 

The shock tube has two sections filled with air at the same temperature and of equal 

length separated by a diaphragm (discontinuity on the initial condition). Initially, the 

velocities along the tube are null. Inside the right section, the initials pressure and density are 

p = 10
5
N/m

2
 and . /kg m= 31 225ρ  respectively, and in the left section are p = 10

4
N/m

2 
 and 

. /kg m= 30 1225ρ . For these initial conditions, the solution after the diaphragm is broken is 

is composed by a shock wave traveling to the right at 543.4m/s, and one contact surface also 



 

 

moving to the right at 277.6m/s. There is also, a rarefaction fan traveling to the left, its wave 

tail is moving at 338.1m/s and its front at 4.9m/s. 

The flow properties at the four states limited by the above described wave are: 

Table 8. Shock tube states flow properties. 

  L *L *R R 

ρ 1.225 0.4995 0.2504 0.1225 

U 0 277.6 277.6 0 

P 100000 28482 28482 10000 

In all tests the mesh has 200 cells evenly distributed along the tube and the results are 

presented in Figure 2. In this figure are shown three lines; one represents the exact solution 

(blue continue line), another solution is obtained using the exact Riemann solver (red with 

squares), and finally the third line corresponds to the results calculated using the 

approximated Riemann solver proposed in this work (black with triangles).  

 

 
Figure 2. One-dimensional HLLC method. Blue continue line: theoretical solution. Red 

squares: exact solvers. Black triangles: approximate solver. 

The differences between the numerical results presented in Figure 2 are less than 1%.  

The results calculated using, either the exact Riemann solver or the new proposed 

approximation, are practically identical. However, the new Riemann solver reduces 20% the 

CPU time, approximately. 



 

 

5.  CONCLUSIONS 

  From the comparison of the proposed approximated Riemann solver with the TRRS, 

the TSRS and the Adaptive RS, it has been found that for all star region pressure values 

computed, the average error of the new solver is notably smaller than the average error of all 

the others approximated Riemann solvers. Also, considering the worst star region pressure 

values, the new solver percentage error is almost 50 times smaller than the best percentage 

obtained by the other solvers. From the point of view of computational cost, it is higher if 

compared with the Adaptive RS and TSRS by 33.3 % and 9.4% respectively, but lower by 

11.75% in comparison with the TRRS. However, the new solver presents a higher cost-benefit 

ratio.      

 Although the proposed solver has already shown to be efficient, it still requires a 

sequence of operations that others solvers do not need. For instance, the matrix A must be 

generated (a 100x100x100 matrix like the one used in this paper, needs the exact solution of 

10
6
 Riemann problems). However, this matrix is calculated only once at the beginning. 

 The numerical results obtained with HLLC scheme, have shown that the new solver is 

accurate, and no significant differences were found when results are compared with the exact 

Riemann solver. In addition, it shows advantages because reduces CPU time.  
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