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Abstract. In the mathematical modelling of the fluid flow and heat transfer processes it is 

frequent to find systems of second order linear or non linear partial differential equations. 

When solving such systems of partial differential equations through the use of numerical 

methods such as finite elements or finite differences it is necessary to do the discretization 

process that transforms the original systems of equations, defined over a continuum domain, 

into a linear or non linear algebraic system, defined over a discrete domain. Due to the char-

acteristics of discretization methods for the partial differential equations domain as well for 

the equations themselves, generally the algebraic system that appears has the coefficient ma-

trix with a very high sparsity. In this work we present the implementation in parallel pro-

cessing of routines capable to solve large linear sparse systems with positive definite coeffi-

cient matrix, exploiting and preserving the initial sparsity. It is analyzed the use of the conju-

gate gradient method in the solution of large sparse linear systems running on multi-core 

processors. 
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1. INTRODUCTION 

In the solution of fluid flows and heat transfer problems by numerical methods such as 

finite element method (FEM) and/or finite difference method (FDM), systems of partial 

differential equations are transformed to large and highly sparse systems of algebraic 

equations. More than ninety nine percent of the elements in the matrices are nulls, so some 

structured data is almost mandatory to prevent storage of zeros and to reduce cost of 

numerical solutions of the linear systems resulting. 

There are several iterative methods that can be used to solve linear systems, for 

example, Gauss-Seidel, Jacobi, SOR, SSOR and conjugate gradient methods. In a previous 

work Campos-Silva & Aparecido (2003) presented results of data structure in the context of 

the Gauss-Seidel and SOR methods. In another previous work Aparecido et al. (2011) 

presented data structure and algorithms to solve large sparse linear systems using conjugate 

gradient and preconditioned conjugate gradient methods. In both works were used serial 

processing. In the present work, it is analyzed the use of the conjugate gradient method (CG) 

to solve large and sparse linear systems but running in parallel under the paradigm of shared 

memory. Particularly, to achieve that we used OpenMP – Open Multi-Processing that is an 

application programming interface that supports shared memory multiprocessing (Chapman et 

al., 2008). 
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A set of linear systems similar to those that originate in three dimensional applications 

of FEM and/or FDM are solved by a CG algorithm running under OpenMP and the results of 

performance, speedup and efficiency of the method are presented and discussed. 

2. SOLUTION OF LINEAR SYSTEMS AND METHODS FOR MINIMIZATION 

This paper is an extension to shared memory parallel processing from our previous paper 

on this subject (Aparecido et al., 2011). Here we shortened a little bit some mathematical 

details that can be found there. 

Consider the linear system 

bAx*                                                               (1) 

where A  
n×n

 is the coefficient matrix and b  
n
 the independent vector. Both supposedly 

known. x* is the vector of unknowns or solution vector to be determined. 

The above equation can be restructured as 

Axbr(x)                                                           (2) 

in which the solution vector x* was replaced by a generic vector x, so there will be a residual 

vector r(x). Of course, when x = x* the residue will be zero, r(x) = 0. Applying the rules of 

linearity, it is clear that the residue r(x) is linear with x, and thus infinitely differentiable, so 

             . 
Additionally, we can define a quadratic functional as follows 
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Having obtained the gradient and Hessian of the function F(x), one can use some 

method of minimization to obtain the position x* and the value of F(x*) at the minimum 

point. Note that at the minimum point g(x) = 0, r(x) = 0 and Ax* - b = 0. Therefore, 

calculation of the minimum point of the functional F(x), Eq. (3), corresponds to the solution 

of the linear system, Eq. (1). 

The Hessian matrix (G) in the case is the same matrix of coefficients, A, and it must 

be positive definite, to attend the second necessary condition for the occurrence of a strong 

minimum in a given position, and should also be symmetrical, since 
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3. METHOD OF CONJUGATE GRADIENTS (CG) 

A classical method of minimization that is most used in the solution of large sparse 

linear systems is the Conjugate Gradient Method. Different definitions of the functional F(x), 



 

 

Eq. (3), will lead to different variants of the method. (Barret et al., 1994). In 

Aparecido et al. (2011) we give some details about those methods and its mathematical 

foundations. There are vast literature about conjugate gradient methods and solution of large 

sparse linear systems by using conjugate gradient methods, we can cite Golub and van 

Loan(1996), Golub and Meurant(1983), and Faber and Manteufel(1984). 

Doing so we obtain an algorithm, computationally efficient for the serial processing 

implementation of the Conjugate Gradient Method. 
 

Algorithm 1 – Method of Conjugate Gradients (CG) 

xo = initial vector 

 = stop parameter (positive and sufficiently small) 
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When Hestenes & Stiefel(1952) created the Conjugate Gradient Method, they 

presented formulation very similar to that shown above to the solution of linear systems. This 

methodology is suitable for solving large sparse linear systems, since do not performs 

computations “inside” the matrix A and thus avoids the phenomenon of fill-in common in 

direct methods. In the above algorithm the coefficient matrix A is used in only one 

matrix-vector product. Initially this method was designed as a direct method since, in exact 

arithmetic, the algorithm converges to the exact solution. However, in computer arithmetic, 

with round-off error, this finite termination in n steps is not guaranteed. On the other hand, for 

large linear systems a set of n iterations represent a high computational cost. Thus, for large 

linear systems, the conjugate gradient method is used with termination based on maximum 

number of iterations, usually much less than n, and in the value of the norm of the residue. 

The idea of considering the conjugate gradient method as iterative method was developed by 

Reid (1971). The use of iterative conjugate gradient method is useful; however the rate of 

convergence is critical to its success (van der Sluis and van der Vorst, 1992). 



 

 

4. METHOD OF CONJUGATE GRADIENTS (CG) FOR PARALLEL PROCESSING 

WITH SHARED MEMORY  

In this work we parallelize the Algorithm 1 that becomes Algorithm 2 aimed to run us-

ing OpenMP. In this case, till now, we parallelized just the most computer intensive part of 

the algorithm that is de product matrix-vector Apk. In the near future we intend to parallelize 

also the scalar products, such   
   , as well linear combinations of vectors, such as 

11   kkkk prp  .  

 
Algorithm 2 – Method of Conjugate Gradients (CG) – Parallel OpenMP 

xo = initial vector 

 = stop parameter (positive and sufficiently small) 
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 end if 

 !Here starts parallel section 

 !$OMP PARALLEL DO SHARED(list-of-shared) PRIVATE(list-of-private) SCHEDULE(STATIC)    & 

 !$OMP NUM_THREADS(intNumThreads) DEFAULT(NONE) 

 kk Apw   

 !$OMP END PARALLEL DO 

 !Here finishes parallel section 
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For the parallelization of the Algorithm 1 we introduced the following logical line of 

pseudo code to start parallelization: 
 !$OMP PARALLEL DO SHARED(list-of-shared) PRIVATE(list-of-private) SCHEDULE(STATIC)    & 

 !$OMP NUM_THREADS(intNumThreads) DEFAULT(NONE) 

Note that OpenMP is no verbose allowing with few lines of code to produce big com-

putational effects. OpenMP have some constructs that are used do parallelize code (Chapman 

et al., 2008). OpenMP has a webpage http://openmp.org were information can be obtained. 

In the pseudo code above the main construct are: 

 PARRALLEL – starts the parallel section creating some threads; 

 DO – starts the parallelization of the outermost loop inside the parallel construct; 

 SHARED(list-of-shared) – declares which computational entities (the list-of-shared) 

http://openmp.org/


 

 

are shared among all threads; 

 PRIVATE(list-of-private) – declares which computational entities (the list-of-private) 

are not shared among all threads having its own memory allocation for each thread; 

 SCHEDULE(STATIC) – indicates how the loop workload will be distributed among 

all threads. The clause STATIC means that the workload will be distributed equally; 

 NUM_THREADS(intNumThreads) – declares how many working threads are intend-

ed to be used. The aimed quantity of threads is equal to intNumThreads and must be 

less or equal to the maximum quantity of available threads for a given processor. 

 DEFAULT(NONE) – Means that no one default are allowed in that construct. 

 

To end the loop work and the parallel section we introduced the following line o pseu-

do code: 
 !$OMP END PARALLEL DO 

Naturally, the code that goes inside the construct PARALLEL must be in according 

with the ideas of parallel processing with shared memory and OpenMP standards. 

5. DEFINITION OF AN EXAMPLE CASE 

Here we present the definition of linear systems to be used to generate numerical 

results, using routines developed in the project to which this work is associated. 

Be the linear system Ax = b, where 
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bA    (7) 

This positive definite and symmetric matrix was created in an abstract way, but 

inspired by heptadiagonal matrices that appear in the discretization, using a variety of 

methods, of the steady or unsteady Poisson partial differential equation, when defined over 

three-dimensional domains. The methodology developed in this project is generic and can 

absorb various settings of matrices. The solution of similar type of linear systems, using some 

stationary methods and data structures like CRS - Compressed Row Storage was treated in 

Campos-Silva & Aparecido (2003). In Aparecido et al. (2011) we defined a new, till we know, 

data structure so called SCRS – Symmetric Compressed Row Storage aimed on saving some 

memory storage by exploiting the matrix symmetry. Also in this work we used SCRS. 

6. RESULTS AND DISCUSION 

Results presented in this paper were run in a desktop personal computer with a 

quad-core Intel i7 processor providing 8 threads. This type of computer uses three kinds of 



 

 

caches: L1, L2 and L3. So, the flow of data and instructions from RAM to cores, back and 

forth, is complex and if the algorithm does not exploit adequately the characteristics of pro-

cessor then computations would be inefficient. 

We solved the proposed sparse linear systems from 100 thousands unknowns until 10 

millions of unknowns. We developed three main codes: the first one running serially; the se-

cond running “parallel OpenMP” but with just one thread; and a third one running in parallel, 

OpenMP, with from 2 to 8 threads. 

The parallel code running with 2 to 8 threads were developed using Algorithm 2 

shown previously in this paper. 

 The memory footprint for Algorithms 1 and 2 were taken to be approximately equal to 

(60n+12nnz) bytes. Where n is the order of the matrix A and nnz is the number of non zero 

elements in matrix A. It is important to remember that we used the SCRS data structure and 

so the nnz is about half of “nnz” that would be if using CRS data structure. Results for 

memory footprint are shown in Figure 1. One can see that memory footprint is linear with 

matrix A order. This characteristic can be used to define a sparse matrix: that its memory 

footprint be linear with its order. A full matrix memory footprint is quadratic with its order 

and even triangular matrices have memory footprint quadratic with its order. 

  

 

Figure 1 – Memory footprint for running the Conjugate Gradient Algorithms 1 and 2. 

 

 In Figure 2 we show the number of iterations to achieve convergence under the stopping 

criteria            
. Generally, as expected when the order of the matrix A grows the 

number of iterations to achieve convergence also increases. But, sometimes when the order of 

the matrix grows the number of iterations to reach convergence decreases. We believe that 

this behavior is due to bigger or lesser ease to the data and instructions to flow from RAM to 

cores, back and forth, passing through caches. Depending on sizes of each one the work will 

be done better or not (Wiggers et al., 2007). 
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 It´s notable that for 10 millions of unknowns the algorithm spent just about 1500 itera-

tions to converge. 

 

 

Figure 2 – Number of iterations to achieve converge under the criteria             

 

 The results shown in Figures 1 and 2 for memory footprint and the number of iterations 

to reach convergence under the stopping criteria are the same for running serial or parallel, 

because in our parallel algorithm we just changed the way the product matrix-vector is done. 

More precisely, the footprint is nearly the same and the number of iterations to convergence is 

the same. 

 In Figure 3 we show the wall time (clock time) and the CPU time to run serially Algo-

rithm 1. One can observe in Figure 3 that the results are practically equal. Actually, the wall 

time is slightly bigger than CPU time. This near equality is possible just because we avoided 

in Algorithms to do calls to the computer operating system that would increase the wall time. 

So, we recommend when measuring parameters in parallel processing to avoid to do calls to 

the system, such as printing, pausing, etc. As the size of the linear system grows the wall time 

and CPU also grows almost linearly. 

 Figure 4 shows the performance of the processor running Algorithm 1 serially. The 

numbers of flops per time were taken as [(9n+4nnz)iter+4nnz+2n]/wall-time, where iter is the 

number of iterations to reach convergence under the stopping criteria. For 100 thousands un-

knowns the performance obtained were about 1460MFlop/s, then when increasing the size of 

the linear system the performance decreases until about 1140 MFlop/s for 900 thousands un-

knowns. From 1 million to 10 millions of unknowns the performance stays oscillating around 

1180 MFlop/s. 
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Figure 3 – Wall time and CPU time spent until the Algorithm 1 reached converge. 

 

 

Figure 4 – Performance of the processor running serially Algorithm 1. 

 

 The overhead caused by OpenMP can be analyzed in Figures 5 and 6. The wall time for 

running Algorithm 2 in parallel OpenMP with just 1 thread is always bigger than the wall 
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time for running Algorithm 1 serially. This is because the useful work is the same in both case 

and there is an extra effort when running OpenMP constructs (Chapman et al., 2008). Note 

that for 10 millions of unknowns the time spent to reach convergence is about 330 seconds 

and for 100 thousands of unknowns the time spent is just a fraction of second. 

 

 

Figure 5 – Wall time for running Algorithm 1 serial and Algorithm 2 in “parallel” for 1 thread. 

 

 As the wall time spent to run a given case is different for running serial and running 

parallel with 1 thread, so the performance also will be different in both cases. In Figure 6 we 

show the overhead of OpenMP in terms of performance. One can see that for all cases ran the 

performance for parallel, 1 thread, is worst than when running serial. This is due to the fact 

that when running parallel, 1 thread, part of the computer processing capacity will be spent 

for running OpenMP constructs without producing any useful work. In average the overhead 

caused by OpenMP in terms of performance is lowering its value about 4.5% for the cases 

tested. 
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Figure 6 – Performance for Algorithm 1 running serial and Algorithm 2 running “parallel” with 1 

thread. 

 

 From Figure 7 to 9 we present results for performance (MFlop/s), speedup and efficien-

cy as function of the number of threads used that varied from 2 to 8 the maximum available in 

this kind of quad-core processor. 

 

 

Figure 7 – Performance running in parallel for 2 to 8 threads, parameterized by the order of linear 

systems. 
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Results were parameterized using the number of unknowns in the linear system. Charac-

teristic values taken were: 100 thousands, 1 million and 10 millions of unknowns. 

 In Figure 7 is shown results for performance as function of the number of threads used. 

For a given size of the problem being solved the maximum performance obtained is for 4 

threads. Such quantity of threads is equal to the number of cores. Probably, that happens be-

cause each core runs better 1 thread than 2 threads simultaneously, under the same process. 

Similarly to what happened in the case of serial processing for the parallel processing also the 

best performance was achieved for problems with 100 thousands unknowns. For 1 million and 

10 millions of unknowns performance was quite similar. Also note that for serial processing 

the performance peak value was about 1460 MFlop/s, Figure 4, and for parallel processing the 

performance peak was about 2800 MFlop/s using 4 threads, Figure 7. 

 Results for speedup can be seen in Figure 8. Qualitatively, results for performance are 

very similar to those ones for speedup. In this later case also the best speedup is achieved us-

ing 4 threads. Speedup peak is about 1.9 for the cases with 100 thousands unknowns. For the 

cases of 1 million and 10 millions of unknowns the speedup remains in the range from 1.3 to 

1.6. 

 

 

Figure 8 – Speedup when running in parallel for 2 to 8 threads, parameterized by the order of linear 

systems 

 

 Can be seen in Figure 9 that the best efficiency, for all cases tested, happens when using 

2 threads and it ranges from 0.65 to 0.75. After that, when the quantity of threads used grows, 

the efficiency drops until reaching its minimum value, about 0.18, for 8 threads. The efficien-

cy running the case for 100 thousands unknowns was about 10% bigger than those ones for 1 
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million and 10 millions of unknowns. Just when running with 8 threads that efficiencies are 

almost equal for all sizes of linear systems. 

 

 

Figure 9 - Efficiency running in parallel for 2 to 8 threads, parameterized by the order of linear sys-

tems 

 

 When using 5 to 8 threads neither the performance nor the efficiency are very good, 

then we decided to show a bit more details of results for 2 to 4 threads. Also was shown in 

Figures 7 to 9 that the results for 1 and 10 millions of unknowns are very close. Thus we do 

some detailing in the results for the number of unknowns from 200 to 800 thousands. Results 

for performance, speedup and efficiency are shown in Figures 10 to 12, respectively. 

 In Figure 10 we can see that the best performance is reached when using 4 threads and 

the worst performance is obtained for 2 threads. For a given number of threads the perfor-

mance peak happens for 200 thousands unknowns, after that as the number of unknowns 

grows performance goes down reaching its minimum for 800 thousands unknowns. 

 Similarly, to Figure 10 the best results obtained for speedup, Figure 11, were obtained 

using 4 threads, and differently from performance the speedup shows a maximum value for 

200 thousands unknowns and afterwards starts to decrease but reaches a minimum for 600 

thousands unknowns and then starts to grow as the number of unknowns increase. Generally, 

this non linear behavior as function of the problem size, or footprint, is caused by data and 

instructions flow, back and forth, from RAM to cores, passing through caches. 
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Figure 10 – Performance as function of matrix order and parameterized by the number of threads. 

 

 

Figure 11 – Speedup as function of matrix order and parameterized by the number of threads. 

 

 The best efficiency obtained in the parallel multithreading is achieved using 2 threads as 

seen in Figure 12. Best performance and speedup happen for 4 threads but efficiency happens 

for 2 threads. This probably occurs because just part of the algorithm was parallelized for the 
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results presented in this work. So, remains some room for more parallelization of Algorithm 

2, mainly in the scalar products and in linear combinations among vectors. We will tackle that 

in future works. 

 

 

Figure 12 – Efficiency as function of matrix order and parameterized by the number of threads. 

 

 In Figure 13 are shown the results obtained using Algorithms 1 and 2. Note that the 

norm of the residual goes down until reaching the stopping criteria that was       

     . Between results obtained by serial and parallel processing the results for the unknowns 

have just tiny numerical differences. The numbers of iterations to reach converge were the 

same in both cases, as expected. For 10 millions of unknowns were necessary about 1500 it-

erations to reach convergence. We speculate that in the same computer one can reach until 

about 100 millions of unknowns, running in about one hour. 

7. CONCLUSION 

 From the results and reasonings displayed before we can conclude that: 

 OpenMP is a non verbose application programming interface that allows with few 

lines of code to produce code parallelization. Naturally, the code that goes inside an 

OpenMP construct must be in according with parallel processing theory and with 

OpenMP standards; 

 Parallelized Conjugate Gradient Algorithm presented here worked well and was able 

to solve sparse linear systems with up to 10 millions of unknowns in about 5 minutes; 

 The best performance and speedup were obtained using 4 threads; 

 Probably, Algorithm 2 could be improved through parallelization of scalar products 
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and linear combinations of vectors; 

 Algorithm 2 and/or the i7 processor does not scales so well and thus efficiency goes 

down quickly as the number of threads increases. Here is necessary further research to 

improve efficiency. 

 

 

Figure 13 – L2 norm of the residual as function of the number of iterations. 
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