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Abstract. In the paper the numerical analysis of heat transfer process proceeding in the
domain of a biological tissue is presented. In particular, the two-dimensional problem is
considered, in which the thermophysical parameters (volumetric specific heat and thermal
conductivity) are given as intervals. The problem discussed has been solved using the
interval finite difference method using the rules of directed interval arithmetic. In the final part
of the paper the results of numerical computation are shown.
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1. INTRODUCTION

Thermophysical parameters of biological tissue (thermal conductivity, volumetric
specific heat, perfusion coefficient etc.) can change in the wide range. For instance, the value
of dermis thermal conductivity (the ‘second layer’ of skin tissue) can be assumed as a number
from 0.37 W/mK to 0.52 W/mK. It results from the fact that the tissue parameters depend on
the numerous individual traits such as the age, sex, occupation etc.

So, the paper concerns imprecisely defined transient bio-heat transfer problems, when in
the mathematical description the uncertain parameters are defined and treated as directed
interval numbers (e.g. [1]). The base of mathematical model is given by the Pennes interval
set of equations supplemented by the boundary-initial conditions.

The first part of the paper is devoted to a short presentation of governing equations
describing the heat transfer processes proceeding in biological tissue domain (continuous
models [2] are taken into account).

Next, the generalization of FDM algorithm in the case of directed interval values of
tissue parameters are presented, at the same time the approach close to the control volume
algorithm (proposed by Mochnacki [3]) is applied.



In the final part of the paper the examples of nuecaé simulations are presented. In
particular the solutions concerning the thermatpsses proceeding in the skin tissue domain
subjected to external heat source is shown.

2. GOVERNING EQUATIONS

Thermal processes proceeding in the heterogendaugissue domain (Figure 1) can
be described by the following system of intervadrgly equations
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where e = 1, 2, 3 corresponds to the successieedaf skin (epidermis, dermis, subcutane-
ous region — as in Figure 1@2\;, )\;J is the interval thermal conductivit{,ce‘, c;J is the

interval volumetric specific heaE,Qe‘ (x,t), Q; (x,t)} is the capacity of interval internal heat

sources,T (X, t), x andt denotethe temperature, spatial co-ordinates and time.

Figure 1. Skin tissue.

In Figure 2 the tissue domain oriented in cylindrico-ordinate system is shown.

subcutaneous region

Figure 2. Axially symmetrical skin tissue domain.



The capacity of interval internal heat sourcesssi@ of two components
[Q;(X’ t)’ Q(:] :[GI;e’ Gge] CBe[ TB _Te( x t)] +[ Qr:le Qr:vl (2)

where [Gg,, G..] is the interval perfusion coefficient, is the volumetric specific heat of
blood, T, is the arterial blood temperatuf€._.,Q.] is the interval metabolic heat source.

Interval equations (1) should be supplemented bybthundary and initial conditions. So, the
skin surface (<R,) is subjected to an external heat source, forR, the boundary

condition of the % type is assumed, while for the others parts ofttbendary the no-flux
conditions are taken into account
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whereq, is the given interval boundary heat flux,is the heat transfer coefficient, is the
ambient temperatur@T, / dn is the normal derivative.

Between the successive sub-domains the continugpditon can be taken into
account
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T.(x, t) =T, (X, t)
The initial condition is also given
t=0: T.(X, 0)=T, (X) (5)

The equations (1) — (5) create the mathematicaleinaicthe process discussed.

The problem formulated has been solved by meamstaival finite difference method
using the rules of directed interval arithmetic [b] this arithmetic the set of proper intervals is
extended by improper intervals: it is possiblelbain the number zero by subtraction of two
identical intervals and the number one as thetresthe division of two identical intervals —
which was impossible applying classical intervatihanetic.

The directed interval arithmetic allows one to abthe temperature intervals much narrower
than the classical interval arithmetic does andrtervals width does not increase in time.



3.NUMERICAL MODEL

Numerical model of thermal processes proceedirgdpmain of heating tissue bases on
the finite difference method in the version presdrnh [4, 5].
At first, the time grid is introduced

t<t'<.<t'?<t'<t' <.<tf <0 (6)

with a constant steft .

The geometrical mesh is shown in Figure 3. Oneseanthat the ‘boundary’ nodes are
located at the distance 0.6r 0.5 with respect to the real boundahy K are the steps of regular
mesh in directions andz), respectively. This approach gives the betterapmation of the
Neumann and Robin boundary conditions [4].
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Figure 3. Geometrical mesh.

The operatoE(X Df) for the axially-symmetrical problem at the intdmade {, j) and time

f-1 (the explicit differential scheme is considensd)f the form
— f-1 — f-1
i -\t _[10 40T 0 (cn- 40T
O([A.,A2]0T === r[A A ]— +| —[[A A ]— 7
[0 aa0T) | Lar(r[e e]arﬂij {az[[e e]azﬂij (7)

The FDM approximation of expression (7) at the n@d¢) (see: Figure 4) is constructed in the
similar way as in [4].
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Figure 4. Five-points star.



We introduce the nodes marked by ‘empty circlesd dne approximation of differential
operators using the mean quotient is applied
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Interval thermal conductivitiesk |}, and A% . are assumed in the form of harmonic

means of values corresponding to the basic nodes
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and then in formulas (8), (9) the classically defirthermal resistancé%fj}ll, ﬁfj’_ll between

the central node,() and nodes(j+1), (,j—1) appear
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The nodesi(j), (i, j+1), (, j-1) can belong to the different sub-domains [4,I5should be
pointed out that the similar formulas can be oletdim the case of ‘boundary’ nodes. Let us
assume that the ‘boundary’ node is located at igtartte of 0.6 from the external boundary on
which the Robin condition is given. Then the intéthermal resistanck if,j_il equals
- 0.5h N 1

RI,J'+1_ Xifj—l a (12)

Additionally in place off’fjj the ambient temperature should be introducedaRaery small

value of heat transfer coefficient, eq=10"°(R'], ~ =) the no-flux condition can be taken

into account. The problem of expression (7) appnation in the case of Neumann boundary
conditions is discussed, in details, in [4. 5].
Using again the mean differential quotient one iobta
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The same approach can be used for the second téonmaila (7). In particular
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According to the rules of explicit differential she for transition™ — t one obtains the
interval FDM equation in the form
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From which the temperature at the pointj) for time levelf can be found. The stability
conditions [4] must be fulfilled, of course.

All these interval values must be calculated adogrdo the rules of the directed
interval arithmetic [1].



4. RESULTSOF COMPUTATIONS

At the stage of numerical computations a threeflyeylindrical skin tissue domain of
dimensionZ = 121 mm andR = 20 mm has been considered. Additionally the
following input data have been introducéd:= 0.1 mm,L, = 2 mm,Lz = 10 mm (where
e =1, 2, 3 correspond to the successive layersiof s epidermis, dermis, subcutaneous
region), A ,= 0.235 W/(nfK), A,= 0.445 W/(nK), A,= 0.185 W/(nK), c,= 4.3068-10

J(PK), c,= 3.96-10 J/(nPK), ¢, = 2.674-16 J/(PK), c,= 3.996210° J/(nPKK),
T.,= 37 °C, G,= 0, G, =G,,= 0.00125 (mblood/s)/nitissue, Q,, =0, Q,,=Q, .=
245 W/n?, initial temperaturélo= Too= Tao= 37 °C, ambient temperaturg, = 37°C, o =
10 W/(nfK), external heat sourog, = 15- 16 W/m?.

In the first example the thermophysical paramelerge been assumed as interval val-
ues:x, =[1,~0.05.,,4,+0.05, |, G, =[ ¢, ~0.05¢ , ¢+ 0.05¢| (e= 1, 2, 3), the time of

external heat source exposition has been assumed.as Figure 5 the heating and cooling
curves at the selected nodes are presented.
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Figure 5. Heating and cooling curves at nodétll 0), 2 (L1+ L,, O),
3 (L, R,) and 4(L, +L,, Ry).

In Figure 6 the heating and cooling curves for el nodes and narrower
intervals T, =|c,~0.025, ,c,+ 0.028,| ,X.=[A .~ 0.025, A+ 0.025] are

shown.

Figure 7 illustrates a comparison between the hgasind cooling curves obtained using
interval FDM and the results obtained using cladsikDM for thermophysical parameters
defined without intervals (dashed line).
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Figure 6. Heating and cooling curves at nod§511 0) , 2 (L1 +L,, O) ,
3 (L., Ry) and 4(L, +L,, Ry).
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Figure 7. Heating and cooling curves at nod&étll O) and 3(L1, RO) — comparison of

interval FDM and classical FDM results.

5. FINAL REMARKS

The application of interval FDM gives the solutimn which the heating/cooling curves at the
set of points selected from the tissue domain ataimed in a ‘fuzzy’ form and the differ-
ences between border courses are visible. A sdichmation seems to be very interesting and
allows one to look at the process more closely. Caresee that the solution obtained using
the classical approach fits in the interior of ¢ and the decrease of intervals causes the
decrease of the distance between border curves.
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