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Abstract. In last decades, evolutionary approaches has been used extensively and demons-
trated to be robust and efficient global optimization methods for engineering system design.
Among these techniques, the Shuffled Complex Evolution (SCE) and the Differential Evolution
algorithm (DE) are two good examples found in literature. DE differs from other evolutiona-
ry algorithms in the mutation and recombination phases. Unlike some meta-heuristic techni-
ques such as genetic algorithms and evolutionary strategies, where perturbation occurs in
accordance with a random quantity, DE uses weighted differences between solution vectors
to perturb the population. In SCE a population of solutions is generated and partitioned
into several sub-populations (called complexes). Each complex evolves independently using
the DE algorithm for a set number of evolutions. The complexes are then shuffled thereby
enabling exchange of information among them. If convergence is not reached, the population
is again divided and a new set of evolutions for each new-found complex is carried out. In
this work, is proposed a comparative study and a hybrid approach involving the SCE and
the DE algorithms. The methodology proposed is applied to design of three-revolute (3R)
manipulators using an optimization problem that takes into account the characteristics of
the workspace. For this purpose, a multi-objective optimization problem is formulated to
obtaining the optimal geometric parameters of robot. The maximum workspace volume, the
maximum system stiffness and the optimum dexterity are considered as the multi-objective
functions. The results show that the procedure represents a promising alternative for the type
of problem presented above.

Keywords: Shuffled Complex Evolution, Differential Evolution, robotic manipulator design.

1. INTRODUCTION

Industrial robots and computer-aided systems, are the latest trend in the automation of
fabrication processes, since the advances in the sensors field allow to develop more sophisti-
cated tasks. The use of robots in the industry is wide since they accomplish tasks that are
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dangerous or monotonous for humans, this is the case of a industrial robot used for cleaning
in electrical substations, which works in the high voltage area [35]. In robotic manipulators,
a fundamental characteristic that must be taken into account in the dimensional design is the
volume of their workspace. It is crucial to calculate the workspace and its boundaries with per-
fect precision, because they influence the dimensional design, the manipulator’s positioning
in the work environment, and its dexterity to execute tasks [2,3,4].

In literature, several investigations have focused on the properties of the workspace of
open chain robotics with the purpose of emphasizing its geometric and kinematic characteris-
tics. Ceccarelli [7] presented an algebraic formulation to determine the workspace of revolu-
tion manipulators. Lanni et al. [15] investigated and solved the design of manipulators in the
form of an optimization problem that takes into account the characteristics of the workspace.
They applied two different numerical techniques: the first using sequential quadratic program-
ming (SQP) and simulated annealing. Abdel-Malek et al. [1] proposed a generic formulation
to determine voids in the workspace of serial manipulators. Other researches have focused on
determining the workspace boundary and on detecting the presence of voids and singularities
in the workspace. Saramago et al. [30] proposed a form of characterizing the workspace
boundary, formulating a general analytic condition to deduce the existence of cusp points at
the interior and exterior boundaries of the workspace. Ceccarelli and Lanni [8] presented a
suitable formulation for the workspace that can be used in the design of manipulators, which
was formulated as a multi-objective optimization problem using the workspace volume and
robot dimensions as objective functions. Bergamaschi et al. [3,4] studied the design of mani-
pulators with three-revolute joints (3R) using an optimization problem that takes into account
the characteristics of the workspace. The optimization problem is formulated considering the
workspace volume as the objective function. Constraints are added to guarantee the regularity
of the envelope and force the workspace to occupy a pre-established area. In addition to the
previously mentioned works, it has been proposed to solve mixed-integer linear program ap-
proximations of path planning problems directly in the workspace, where selected points on
the links are used to represent the robot geometry as well as obstacle avoidance constraints
[6,13]. The technique has been extended in [10] to incorporate state-dependent and time va-
rying constraints.

Traditionally, this kind of problem has been treated by using either classical or de-
terministic optimization techniques. In recent years however, the use of non-deterministic
techniques or the coupling of these techniques with classical ones, thus forming a hybrid
methodology, became very popular due to the simplicity and robustness of evolutionary tech-
niques. Among the most recent strategies based on population, stands the Shuffled Complex
Evolution (SCE) and the Differential Evolution algorithm (DE) for solving optimization pro-
blems.

In this contribution, a multi-objective optimization problem is formulated to obtaining
the optimal geometric parameters of robot. The maximum workspace volume, the maximum
system stiffness and the optimum dexterity are considered as the multi-objective functions. To
solve this problem, the the Shuffled Complex Evolution (SCE) and the Differential Evolution
Algorithm (DE) are used. This work is organized as follows. Section 2 present the general
aspects regarding the mathematical modeling of the robotic manipulator. Section 3 present



a brief review about the multi-objective problems. A review dedicated to the SCE and the
DE techniques are presented in Sections 4 and 5, respectively. The results and discussion are
presented in Section 6. Finally, the conclusions are outlined in Section 7.

2. MATHEMATICAL MODELING OF THE ROBOTIC MANIPULATOR

The manipulators with three rotational joints with orthogonal axes as described in Fig.
1 [28].

Figure 1. Manipulator with three rotational joints (3R) with orthogonal axes.

The study of this type of manipulator is done according to the Denavit-Hartenberg
parameters: d2, d3, d4, r2, and r3. To reduce the number of parameters and simplify the
problem, will be considered d2=1 and r3=0. The joint variables are θ1, θ2 and θ3 which
represent the input angles of the actuators. For this type of manipulator, the direct kinematic
model is given in Eq. (1):





x = [1+(d3 +d4c3)c2]c1− (r2 +d4s3)s1
y = [1+(d3 +d4c3)c2]s1− (r2 +d4s3)c1
z =−(d3 +d4c3)s2

(1)

where ci = cos(θi) and si = sin(θi), for i=1, 2, 3.
As mentioned earlier, a multi-objective optimization problem will be formulated to

obtaining the optimal parameters of robot manipulator. The mathematical formulation for
calculating the workspace volume, the system stiffness and the robot dexterity is shown below.

2.1. Workspace of 3R Manipulators

According to Bergamaschi et al. [3], the workspace W is the set of all attainable points
for a point P of the end-effector when the joint variables sweep its definition interval entire.
Point P is usually chosen as the center of the end-effector, or the tip of a finger, or even the end
of the manipulator itself. The first procedure to investigate the workspace is to vary the angles
θ1, θ2 and θ3 in their interval of definition and to estimate the coordinates of point P with
respect to the manipulator base frame. The workspace of this robot is a solid of revolution.
Thus, it is natural to imagine that the workspace is the result of rotation around the z axis of a
radial plane section.
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Figure 2. A scheme for evaluating the workspace volume of 3R manipulators and discretiza-
tion of cross section area by using a rectangular mesh.

The workspace of a three-revolute open chain manipulator can be given in the form of
the radial reach r and axial reach z with respect to the base frame, according to Bergamaschi
et al. [3]. For this representation, r is the radial distance of a generic workspace point from
the z-axis, and z is the distance of this same point at the XY-plane (see, Fig. 2b). Thus, using
Eq. (1), the parametric equations (of parameters θ2 and θ3) of the geometrical locus described
by point P on a radial plane are:

r2 = x2 + y2 (2)

where x, y and z are given in Eq. (1).
The workspace volume V can be evaluated by the Pappus-Guldin Theorem, using the

following equation (see Fig. 2a):

V = 2rgAr (3)

where Ar is the cross section area, which is formed by the family of curves given by Eq. (1).
This research proposes numerical formulation to approximate the cross section area,

through its discretization within a rectangular mesh. Initially, the extreme values of vectors r
and z should be obtained as:

rmin = min r, rmax = max r, zmin = min z, zmax = max z (4)

Adopting nr and nz as the number of intervals chosen for the discretization along the r
and z axis, the sizes of the elementary areas of the mesh can be calculated:

∆r = (rmax− rmin)/nr (5)

∆z = (zmax− zmin)/nz (6)

The nr and nz values must be adopted so that the sizes of the elementary areas (∆r

or ∆z) are at least 1% of the total distances considered in the discretization (rmax− rmin or



zmax− zmin). Every point of the family of curves form the cross section of the workspace is
calculated by Eq. (1). Using this equation, varying the values of θ2 and θ3 in the interval
[−π, π], it is possible to obtain the family of curves of the workspace. Given a certain point
(r,z), its position inside the discretization mesh is determined through the following index
control:

i = int [(r− rmin)/∆r] + 1 (7)

j = int [(z− zmin)/∆z] + 1 (8)

where i and j are computed as integer numbers. As shown in Fig. 2b, the point of the mesh
that belongs to the workspace is identified by Pi j=1, otherwise Pi j=0, which means:

Pi j = 0, if Pi j /∈ W (P) or 1, if Pi j ∈ W (P) (9)

where W (P) indicates workspace region.
In this way, the total area is obtained by the sum of every elementary areas of the

mesh that are totally or partially contained in the cross section. In Eq. (9), it is observed that
only the points that belong to the workspace contribute to the calculation of the area AT . The
coordinate rg of the center of the mass is calculated considering the sum of the center of the
mass of each elementary area, divided by the total area, using the following equation:

AT =
imax

∑
i=1

jmax

∑
j=1

(
Pi j ∆r ∆z

)
(10)

rg =

(
imax

∑
i=1

jmax

∑
j=1

(
Pi j ∆r ∆z

)
((i−1) ∆r +(∆r/2) + rmin)

)
/AT (11)

Finally, after the calculation of the cross section area and the coordinate of the center
of the mass, given by Eqs. (10) and (11), the workspace volume of the manipulator can be
evaluated by using Eq. (3).

2.2. System Stiffness

From the mechanics viewpoint, the stiffness is the measurement of the ability of a
body or structure to resist deformation due to the action of external forces. The stiffness of a
serial mechanism at a given point of its workspace can be characterized by its stiffness matrix.
This matrix relates the forces and torques applied at the gripper link in Cartesian space to the
corresponding linear and angular Cartesian displacements.

Two main methods have been used to establish mechanism stiffness models. The first
one is called matrix structural analysis, which models structures as a combination of elements
and nodes. The second method relies on the calculation of the serial mechanism’s Jacobian
matrix which is adopted in this work. Matrix J is usually termed Jacobian matrix which is
described in Eq. (12). By considering the case in that d2=1, its determinant is calculated by
using the Eq. (13).



[J] =




−sinθ3 cosθ2d4− cosθ2r2 0 −sinθ3d4
sinθ3 sinθ2d4 + sinθ2r2 d3 + cosθ3d4 0

cosθ2d3 + cosθ2 cosθ3d4 +d2 0 cosθ3d4


 (12)

det(J) = d4 (d3 +d4 cosθ3) [d2 sinθ3 +(d3 sinθ3 +(d3 sinθ3− r2 cosθ3)cosθ2)] (13)

The stiffness matrix of the mechanism in the Cartesian space is then given by the
Eq. (14), where K j is the joint stiffness matrix of the mechanism, with K j=[k1,k2,k3]. In
this case, each actuators of the mechanism is modeled as an elastic component. ki is a scalar
representing the joint stiffness of each actuator, which is modeled as linear spring:

KC = [J]T K j[J] (14)

Particularly, in the case for which all the actuators have the same stiffness, e.g., k =
k1 = k2 = k3, then Eq. (14) will be reduced to:

KC = k[J]T [J] (15)

Furthermore, the diagonal elements of the stiffness matrix are used as the system stiff-
ness value. These elements represent the pure stiffness in each direction, and they reflect the
rigidity of machine tools more clearly and directly. The objective function for system stiffness
optimization can be written as Eq. (16). In this case, the stiffness index S can be maximized:

S = K11 +K22 +K33 (16)

2.3. Dexterity

The condition number of the Jacobian matrix will be used as a measure of dexterity
indices for the 3R manipulator. By using the spectral norm, these indices will be described as.

Cond(J) = |λmax(J)/λmin(J)| (17)

where λmax and λmin means the maximum and minimum singular values of Jacobian matrix
J, respectively. Regarding the computing time of optimization process, this expression is
selected as the objective function for the optimization of dexterity. The value of Cond(J),
which is directly related to singular values of Jacobian matrix, is between 1 and positive
infinity. All the singular values of the Jacobian matrix will be the same and the manipulator
is isotropic if Cond(J) is equal to 1. While Cond(J) is prone to be positive infinity it means
that the Jacobian matrix is singular. Therefore, for the optimization of dexterity, the condition
number must to be minimized.

3. MULTI-OBJECTIVE OPTIMIZATION

In many situations, multiple objective functions must be minimized and/or maximized
simultaneously, and in this case, the problem optimization is called problem multi-purpose
(or multi-criteria).



The objective function of problem can be rewritten as a vector f (x), whose compo-
nents are k functions objectives that wish to maximize and/or minimize. The vector function
may be written as:

Maximize or Minimize f (x) = [ f1(x), f2(x), · · · , fk(x)]T (18)

There are several methods to solve this problem [29]. In this study will be used Global
Criterion Method (GCM) and the Weighting Objectives Method (WOM). These techniques
consist of transforming the vector of objective functions in a scalar function.

In the GCM, the optimal solution is a vector of design variables that minimizes a
global criterion. The function that describes this criterion should be defined by the designer
in order to obtain a solution as close as possible the ideal solution. This global function can
be written as a family of metrics-LP, defined as:

Lp =

[
k

∑
i=1
| f 0

i − fi(x)|s
]1/s

, 1≤ s≤ ∞ (19)

Instead of working with distance in an absolute sense, it is recommended to use relative
distances, so the equation (19) can be rewritten as:

Lp =

[
k

∑
i=1

∣∣∣∣
f 0
i − fi(x)

f 0
i

∣∣∣∣
s]1/s

, 1≤ s≤ ∞ (20)

Using the relative metric L2R have been given scalar functions, respectively, by:

L2R =




(
f 0
1 − f1(x)

f 0
1

)2

+ · · ·+
(

f 0
k − fk(x)

f 0
k

)2



1/2

(21)

Thus, in Equation (21), the vector function was normalized by using the concept of
ideal f 0

k . This solution is determined separately obtaining the optimal feasible, for all objective
functions. In other words:

f 0
k = min fk(x), k = 1, · · · ,K (22)

In the other hand, the WOM converts the multi-objective problem of optimizing the
vector f (x) into a scalar problem by building a weighted sum of all the objectives:

f (x) =
k

∑
i=1

wi fi(x)ri (23)

with

k

∑
i=1

wi = 1 (24)

where ri are constant multipliers, wi >0 are the weighting coefficients that represent the rela-
tive importance of each criterion. Objective weighting is obviously the most usual substitute



model for vector optimization problems. The trouble here is attaching weighting coefficients
to each of the objectives. The weighting coefficients do not necessarily correspond directly
to the relative importance of the objectives or allow trade-offs between the objectives to be
expressed. For the numerical methods for seeking the optimum of Eq. (23) so that wi can
reflect closely the importance of objectives, all the functions should be expressed in units of
approximately the same numerical values.

The best results are usually obtained if ri=1/ f 0
i , where f 0

i represents the ideal solution
for the problem.

4. SHUFFLED COMPLEX EVOLUTION ALGORITHM

According to Duan [11] and Liong and Atiquzzaman [16], SCE works on the basis of
four concepts: (1) combination of deterministic and probabilistic approaches; (2) systematic
evolution of a complex of points; (3) competitive evolution; and (4) complex shuffling. The
algorithm begins with a randomly selected population of points from the feasible space. The
points are sorted in order of increasing criterion value so that the first point represents the
smallest function value and the last point represents the largest function value. The randomly
generated initial population is partitioned into several complexes. Each complex is allowed
to evolve independently to search the feasible domain in different directions. Each individual
point in a complex has the potential to participate in the process of reproducing new points.
From each complex, some points are selected to form a subcomplex, where the modified
Nelder and Mead Simplex Method (NMSM) [27])is applied for global improvement. The
points of higher fitness values have higher chance of getting selected to generate offspring.
The NMSM performs reflection and inside contraction step to get a better fit point. This new
offspring replaces the point with the worst performance in the simplex. The points in the
evolved complexes are then pooled together and is sorted again, shuffled, and finally reas-
signed to new complexes to enable information sharing. This process is repeated until some
stopping criteria are satisfied.

The control parameters in SCE are the following: number of complexes, minimum
number of complexes required (if the number of complexes is allowed to reduce as the opti-
mization proceeds), number of points in each complexes in the initial population, number of
points in each sub-complex, number of offspring generated by each sub-complex, and number
of evolution steps allowed for each complex before complex shuffling. SCE has two stopping
criteria checked at each generation. The evaluation will stop when one of the following crite-
ria is arrived first: (i) the relative change in the objective function values within the last k, say
10-15 shuffling loops is less than a pre-specified tolerance; (ii) the maximum user-specified
number of function evaluations is reached.

SCE has been applied in calibrating rainfall-runoff models [12,14,26], optimal design
ow water distribution network [16], and multi-objective auto-calibration for semi-distributed
water quality models [34].



5. DIFFERENTIAL EVOLUTION ALGORITHM

Differential Evolution (DE) is an optimization technique that belongs to the family of
evolutionary computation, which differs from other evolutionary algorithms in the mutation
and recombination schemes. DE executes its mutation operation by adding a weighted diffe-
rence vector between two individuals to a third individual. Then, the mutated individuals will
perform discrete crossover and greedy selection with the corresponding individuals from the
last generation to produce the offspring.

The control parameters in DE are the following: N, the population size, CR, the
crossover constant and, F , the weight applied to random differential (perturbation rate). Accor-
ding to Storn and Price [31,32], N should be about 5 to 10 times the dimension (number of
parameters in a vector) of the problem, F and CR should be in the range 0.4 to 1.0. The
structure of the basic Differential Evolution Algorithm is shown in Fig. 3 [31,32].

Define the DE parameters (population size, selection

and crossover method, perturbation rate, etc.)

Create an initial population, randomly distributed

throughout the design space

Evaluate the objective function and take it as a

fitness measure of each individual

Apply mutation operator

Apply crossover operator (after these two steps a

set of new individuals is generated)

Apply selection (which means to replace the worst

individuals in the population by the previously

generated ones)

Stopping criterion

Results

Figure 3. Differential Evolution Algorithm.

Storn et al. [31] proposed various mutation schemes for the generation of new vectors
(candidate solutions) by combining the vectors that are randomly chosen from the current
population as shown:

• rand/1: x = xr1 +F (xr2− xr3)

• rand/2: x = xr1 +F (xr2− xr3 + xr4− xr5)

• best/1: x = xbest +F (xr2− xr3)

• best/2: x = xbest +F (xr2− xr3 + xr4− xr5)



• rand/best/1: x = xr1 +F (xbest − xr1 + xr1− xr2)

• rand/best/2: x = xr1 +F (xbest − xr1)+F (xr1− xr2 + xr3− xr4)

DE has been successfully tested in various fields, such as: solution of multi-objective
optimal control problems with index fluctuation applied to fermentation process [17], digital
filter design [33], multi-objective optimization of mechanical structures [18], solution of in-
verse radiative transfer problems in two-layer participating media [19], estimation of drying
parameters in rotary dryers [20], apparent thermal diffusivity estimation of the drying of fruits
[25], Gibbs free energy minimization in a real system [21], estimation of space-dependent
single scattering albedo in radiative transfer problems [22,23,24], design of fractional order
PID controllers [5], and other applications [9,31,32].

6. NUMERICAL SIMULATION

The objective of the proposed manipulator design procedure, considering the workspace
volume (V ), the system stiffness (S) and the manipulator dexterity (D), is the dimensional syn-
thesis of 3R orthogonal robot.

The multi-objective optimization problem is defined as:

max f (x) = [V −Cond(J) S] (25)

subject to 0≤ xi ≤3, i=1,2,4, where the geometric parameters are design variables given by
x=[d3 d4 r2 r3]T . The volume workspace is given by Eq. (3), the system stiffness is given
by Eq. (16). For the optimization of dexterity, the condition number (Cond(J)), given by Eq.
(17), must to be minimized.

In order to evaluate the performance of both the techniques proposed above (SCE and
DE), the following points should be emphasized:

• the computational codes of the DE and SCE were developed in Matlabr by the authors;

• DE parameters: population size (9), perturbation rate (0.8), crossover probability (0.6),
and DE/best/1/exp strategy;

• SCE parameters: population size (9 individuals in each complex), the starting point is
the midpoint of the lateral limits of the variables, namely x0 = [1.45 1.45 1.45 1.45],
perturbation rate (0.8), crossover probability (0.6);

• the stopping criterion used by DE was the maximum number of iterations (100). The
stopping criterion used by SCE was the normalized geometric range of the parameters
less than 0.0001;

• DE was executed 20 times to obtain the average values presented in tables;

• robot parameters considered: d2 = 1, d3 = x(1), d4 = x(2), r2 = x(3), r3 = x(4), a2 =
−π/2, a3 = π/2, the size step for calculating the Jacobian: 0.03 and mesh: 50×50;



• all simulations were solved by using a computer Intelr CoreT M i5-430M Processor and
6 GB of RAM.

In the following tables are summarized the optimal values found by using the Dif-
ferential Evolution and Shuffled Complex Evolution (with 2, 4 e 8 complexes) optimization
methods.

Table 1. Optimal values considering the Global Criterion Method (L2R Metric).

Algorithm Volume [v.u.] Dexterity Stiffness [s.u.] [d3[l.u.] d4[l.u.] r2[l.u.] r3[l.u.]] Time [h] Neval
1902.70 1.04 105.68 [3 3 3 0.1]

DE 1903.30∗ 1.04∗ 105.68∗ [3.00 3.00 3.00 0.11]∗ 8.03 150
0.74∗∗ 0.01∗∗ 0.01∗∗ [0 0 0 0.01]∗∗

ECE-DE 1905.10 1.14 105.90 [3.00 3.00 3.00 0.37]
2 complexes 1844.85∗ 1.14∗ 103.51∗ [2.95 2.97 2.97 0.39]∗ 3.05 1462

132.71∗∗ 0.12∗∗ 5.19∗∗ [0.15 0.07 0.09 0.39]∗∗

ECE-DE 1908.20 1.11 105.82 [3.00 3.00 3.00 0.30]
4 complexes 1805.18∗ 1.13∗ 102.17∗ [2.95 2.94 2.90 0.34]∗ 7.24 3468

137.30∗∗ 0.13∗∗ 5.13∗∗ [0.11 0.12 0.14 0.34]∗∗

ECE-DE 1903.40 1.08 105.71 [3.00 3.00 3.00 0.23]
8 complexes 1832.20∗ 1.10∗ 103.23∗ [2.98 2.96 2.91 0.26]∗ 14.23 6800

142.31∗∗ 0.06∗∗ 5.15∗∗ [0.06 0.12 0.21 0.30]∗∗
∗ Average values, ∗∗ Standard deviation and Neval is the Number of Objective Function Evaluations.

Table 2. Optimal values considering the Weighting Objectives Method.

Weighting Algorithm Volume [v.u.] Dexterity Stiffness [s.u.] [d3[l.u.] d4[l.u.] r2[l.u.] r3[l.u.]] Time [h] NevalCoefficient
1902.70 1.04 105.68 [3.00 3.00 3.00 0.10]

DE 1703.20∗ 1.04∗ 97.11∗ [2.87 2.82 2.80 0.10]∗ 15.45 180
490.67∗∗ 0.01∗∗ 21.19∗∗ [0.61 0.48 0.65 0]∗∗

ECE-DE 1892.70 1.04 105.42 [3.00 3.00 3.00 0.11]
w1 = 0.05 2 complexes 1164.10∗ 1.07∗ 72.17∗ [1.93 2.47 2.70 0.19]∗ 4.78 2278
w2 = 0.90 722.93∗∗ 0.05∗∗ 34.99∗∗ [1.23 0.60 0.50 0.15]∗∗
w3 = 0.05 ECE-DE 1896.30 1.04 105.49 [3.00 3.00 3.00 0.11]

4 complexes 1621.40∗ 1.07∗ 94.31∗ [2.80 2.82 2.80 0.17]∗ 6.09 2856
374.60∗∗ 0.05∗∗ 16.70∗∗ [0.44 0.31 0.32 0.15]∗∗

ECE-DE 1879.00 1.04 104.88 [3.00 2.99 2.99 0.11]
8 complexes 1635.90∗ 1.06∗ 94.68∗ [2.81 2.82 2.84 0.13]∗ 11.11 5304

381.17∗∗ 0.03∗∗ 16.79∗∗ [0.33 0.31 0.30 0.05]∗∗

1902.70 1.04 105.68 [3.00 3.00 3.00 0.10]
DE 1934.90∗ 1.09∗ 106.93∗ [3.00 3.00 3.00 0.34]∗ 28.75 900

99.03∗∗ 0.18∗∗ 3.87∗∗ [0 0 0 0.72]∗∗
ECE-DE 1902.60 1.04 105.66 [3.00 3.00 3.00 0.10]

w1 = 1/3 2 complexes 1799.20∗ 1.14∗ 102.02∗ [2.94 2.94 2.88 0.38]∗ 2.71 1258
w2 = 1/3 143.27∗∗ 0.20∗∗ 5.26∗∗ [0.14 0.12 0.18 0.56]∗∗
w3 = 1/3 ECE-DE 1902.60 1.04 105.67 [3.00 3.00 3.00 0.11]

4 complexes 1863.30∗ 1.13∗ 104.45∗ [2.94 2.98 2.94 0.39]∗ 6.81 3128
81.37∗∗ 0.22∗∗ 3.20∗∗ [0.12 0.05 0.12 0.74]∗∗

ECE-DE 1902.60 1.04 105.67 [3.00 3.00 3.00 0.11]
8 complexes 1839.90∗ 1.09∗ 103.39∗ [2.95 2.98 2.95 0.24]∗ 11.53 5576

105.97∗∗ 0.12∗∗ 3.91∗∗ [0.12 0.05 0.11 0.31]∗∗
∗ Average values, ∗∗ Standard deviation and Neval is the Number of Objective Function Evaluations.

It is worth noting that the optimal results present in Tab. (2) are strongly dependent on
the weighting coefficients. This table shows the results of the case in which the optimization
of the dexterity is prioritized (w2=0.9).

Considering the ideal values of the workspace volume, dexterity and system stiffness
are, Videal=2382.7412 [v.u.], Dideal=1.0256 and Sideal=125.0769 [s.u.], respectively, one can
concluded that the methods were effective in solving the problem since the results approach
the ideals. Comparing the results obtained with DE and SCE, it is possible to observe that are



very similar. However, for the studied problem, the SCE method reached the optimum faster.
This analysis should be very careful, these results do not mean that this method is always the
best.

Figures (4), (5) and (6) shows the graph of the cross-sectional area of the workspace
of the robot manipulator: (1) DE, (2) SCE with 2 complexes, (3) SCE with 4 complexes
e (4) SCE with 8 complexes, considering the Global Criterion Method and the Weighting
Objectives Method, respectively.

Figure 4. Cross-sectional area of the workspace of the robot manipulator considering the
Global Criterion Method: (1) DE, (2) SCE with 2 complexes, (3) SCE with 4 complexes e (4)
SCE with 8 complexes.

Figure 5. Cross-sectional area of the workspace of the robot manipulator considering the
Weighting Objectives Method for w1=0.05, w2=0.90 and w3=0.05: (1) DE, (2) SCE with 2
complexes, (3) SCE with 4 complexes e (4) SCE with 8 complexes.

Figure 6. Cross-sectional area of the workspace of the robot manipulator considering the
Weighting Objectives Method for w1=1/3, w2=1/3 and w3=1/3: (1) DE, (2) SCE with 2 com-
plexes, (3) SCE with 4 complexes e (4) SCE with 8 complexes.



7. CONCLUSIONS

In this contribution, two different evolutionary techniques, the Differential Evolution
algorithm and the Shuffled Complex Evolution algorithm, were used to solve a multi-objective
problem. A optimal manipulator design was presented to illustrate the methodology studied
here. Successful numerical applications have demonstrated the efficiency of these techniques.
The preliminary results seem the indicated that the SCE is faster to achieve the optimal so-
lution. The results are improved when increasing the number of complexes, but it means to
increase the computational time.

In the future works, the aim is to combine the best characteristics of the Differential
Evolution and Shuffled Complex Evolution algorithms and implement them in parallel, as
well, each set of the ECE method will evolve in a different processor and at the same time,
following the principle that large problems can generally be divided into smaller problems,
which are then solved concurrently (in parallel).

The idea of dividing tasks across multiple processors programs is old but only recently
has become feasible due to the rapid advancement of hardware and software. The machines
have evolved greatly in speed and with the emergence of machines with multiple processors,
the communication speed is showing a great evolution allows these processors to exchange
information quickly, and programs that enable this communication are showing a great in-
crease in efficiency. Thus, it is intended to reduce the processing time for the implementation
of improved algorithm to enable its application to complex problems.
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