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Abstract. This paper present a numerical model based on Timoshenko theory and spectral 

element method. The model is used for wave propagation analysis under environmental 

effects such as external loading, temperature and moisture. The model also incorporates open 

crack calculated using fracture mechanics laws. The aim of this paper is investigation of 

various features extensively used in application for damage detection such as wave packet 

amplitude, time of flight or peak of power spectral density. The study of these parameters is 

necessary for compensation of environmental influence on wave propagation which affects 

accuracy of damage identification.  
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1. INTRODUCTION 

Wave propagation phenomenon is extensively used in the field of non–destructive 

testing and more recently in the field of Structural Health Monitoring (SHM). One of the 

axioms of SHM is that the assessment of damage requires a comparison between two system 

states. In an ideal case the difference between damage state and healthy state of wave 

propagation signals gives full information about the damage. But wave propagation signals 

are also affected by the environmental effects such as temperature, moisture and initial 

stresses. In such a case raw signal subtraction between two system states could lead to false 

alarms or misclassification of damage type or wrong estimation of the size of the damage. For 

this reason it is necessary to develop compensation methods which would be able to discard 

environmental effects and extract information about damage only. 

The problem described above is very complex and cannot be solved analytically. Only 

few research papers could be found dealing with the influence of environmental effects on 

propagation of elastic waves.  

Composite structures exposed to extreme temperatures may lead to damage in the 

form of debonding especially in sandwich structures. Problem of diagnosis of such defects 
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was addressed by Blaise and Chang [1]. Many damage detection systems are based on a 

network of piezoelectric sensors and utilise anomalies in Lamb wave propagation. However, 

anomalies in Lamb wave propagation come from not only damage but also from changes in 

temperatures. The most visible influence of temperature on propagating waves is in velocity 

which in turn leads to inaccurate damage localisation. This effect is directly correlated to 

thermal expansion of material and changes in Young’s modulus. It has been shown that for 

isotropic materials there is linear relation between temperature and time delay of arriving 

wave packets of propagating waves [2]. The effect of time delay can be compensated by two 

methods: optimal baseline stretch or optimal baseline subtraction reported in [3]. It should be 

pointed out that the temperature influences not only velocity of propagating waves but also 

their amplitudes. Additionally this effect is no more linear. Hence more advanced method for 

temperature compensation should be applied. Such a method can be based on mechanical 

model and machine learning algorithm [4]. Another issue which should be mentioned is 

adhesive layer property between piezoelectric transducer and structure. The adhesive shear 

modulus is most influential parameter considering amplitudes of propagating waves. It has 

been shown in [5] that decrease in adhesive shear modulus at a higher temperature (75°C) 

causes the amplitude to increase at 350 kHz while it causes the amplitude to decrease at 150 

kHz and 500 kHz. 

Most of research related to temperature effects on Lamb waves are focus on isotropic 

structures. Not much attention has been paid to composite materials. In such materials 

temperature causes degradation of material properties in a nonlinear manner unlike metallic 

materials such as aluminium and steel alloys. The influence of thermal degradation on local 

changes in elastic waves propagating in composite laminates has been investigated 

numerically by Kudela et al. [6]. The effects of temperature in terms of thermal expansion as 

well as degradation of Young’s modulus of a matrix in composite laminate and their influence 

on propagating waves are investigated in this paper.  

Apart from the temperature moisture must be considered. Moisture affects material 

properties and causes so called swelling of the matrix which is associated with the entrapment 

of moisture in the polymer matrix resulting in a weight increase (<2%) [7]. The relation 

between moisture content and composite material properties is quite well established [8]. 

Moreover, research work has been reported on tracking hygrothermal strains of carbon/epoxy 

composites [9]. However, studies of dynamic behaviour of composite structures under 

hygrothermal conditions are limited to free vibrations [10]. 

Another factor influencing propagating waves, especially velocities of elastic waves, is 

external loading or initial stress field introduced for example during manufacturing process. 

There are few techniques mentioned in [11] for obtaining dispersion curves which take into 

account initial stresses. For simple geometries such as plates and pipes there are analytical 

methods. However, for more complicated cross sections, numerical methods such as finite 

element modelling must be applied. These include extracting dispersion relation from the time 

domain signals calculated by the finite element method, low frequency eigensolvers [11] and 

semi–analytical finite element method [12]. Again these methods have been applied mostly to 

isotropic structures such as rails. It has been shown that applied stresses to beam–like 

structures influence phase velocity curves in low frequency regime [11]. 

Lematre et al. [13] investigated the influence of a prestress gradient on guided wave 

propagation in piezoelectric structures. They have found that for a piezoelectric plate, the 

Lamb and shear horizontal modes are sensitive to the prestress gradient. Another interesting 

work has been published by Chakraborty [14] who studied surface stress and surface elasticity 

influence on Lamb waves in ultra–thin films. He replaced lateral stress free boundary 

conditions, as it is in classical Lamb wave definition, with more complicated non–classical 



 

 

boundary conditions coupling the bulk and surface stress. As a result changes in phase 

velocities are observed. 

In this paper a spectral finite beam element based on Timoshenko theory is developed 

which takes into account temperature, moisture, initial stresses and matrix cracking of 

composite laminate. In case of temperature and moisture both expansion and degradation of 

elastic constants are included. Initial stresses are applied by calculation of geometric stiffness 

matrix. Cracking of composite matrix lamina is calculated according to fracture mechanics 

law. Algorithm for solving equation of motion utilises the central difference scheme.  

Study of parameters such as time of flight (TOF), amplitude change and power spectral 

density of wave propagation signals is performed and illustrated by numerical examples. 

2. NUMERICAL MODEL 

Spectral finite element applied for modelling of composite beam with a transverse 

crack is based on Timoshenko theory. The scheme of the element is shown in Fig. 1. It 

consists of two spectral elements with 8 nodes each one. Nodes are non–uniformly distributed 

and coincide with Gauss–Lobatto–Legendre points. This property distinguishes spectral finite 

elements over classical finite elements. Two spectral elements shown in Fig. 1 have separated 

nodes at crack location and are connected by the spring of bending stiffness bk and shear 

stiffness sk . 

 

Figure 1.  Scheme of the model of composite beam with transverse crack.  

 

The element has two degrees of freedom per node: transverse displacement w  and 

rotation of the cross–section  . The displacement field in Timoshenko theory of beams is as 

follows: 
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The strain field can be expressed as: 
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where thermal and hygrothermal strains, T ,  M , are calculated as: 

 , .T x M xT m          (3) 

Thermal and moisture expansion coefficients x , x  are calculated based on a rule of 

mixture and strongly depends on volume fraction of reinforcing fibres [15]. 0T T T    

denotes temperature change with respect to reference temperature 0T  assumed as 20 °C in this 

case. 0m C C    denotes change in moisture concentration with respect to reference 

moisture concentration 0C  assumed as 0 in this case (dry lamina). It should be added that 

weight gain up to 1.5% due to moisture absorption is considered. 

 The approximation of the displacement field can be expressed in the form: 
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where N  are shape functions and u  are nodal values of degrees of freedom in element. 

Derivation of characteristic stiffness and mass matrices is performed in a standard manner 

[16]. Due to consideration of initial stresses also geometric stiffness matrix must be calculated 

according to the definition:  
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where S  is the matrix of initial stresses:  
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It should be noted that values of initial stresses might vary across the element and the 

integration must be performed at Gauss–Lobatto–Legendre points accordingly. 

 



 

 

2.1. Flexibilities at the crack location 

Coefficients of the beam flexibility matrix at the crack location can be calculated using 

Castigliano theorem:  
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where U  denotes the elastic strain energy of the element by the presence of the crack and F  

are the independent nodal forces acting on the element. For analyzed beam of rectangular 

cross–section and transverse open crack along width of the beam, the elastic strain energy due 

to the crack can be expressed by:  
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where A  denotes the area of the crack, IK  and IIK are stress intensity factors corresponding 

to the first and second mode of the crack growth [17]. The stress intensity factors can be 

calculated as:  
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where M  is bending moment,   is shear factor, T is shear force, , ,b h   are dimensions (see 

Fig. 1), If  and IIf  are correction functions in the form:  
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After transformation, the bending flexibility and shear flexibility at the crack location 

between spectral Timoshenko beam elements can be rewritten as:  
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where E  is Young’s modulus averaged over thickness of a composite laminate. 

The stiffness at the crack location is an inverse of flexibility. Hence, the stiffness matrix 

which models a crack and connects two spectral elements has a form:  
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This matrix is added to the global stiffness matrix at the stage of assembly. 

 

2.2. The algorithm for wave propagation 

Thermal and hygrothermal strains from Eq. 2 cause expansion of the material or give 

rise to stresses if such expansion is restricted by boundary conditions. Hence, wave 

propagation analysis must take into account both initial stresses and applied external load as 

well as excitation signal. 

The dependence of guided wave velocity on applied load is a fundamentally non–

linear effect and must be modelled in a two step finite element calculation. Essentially the 

first step is to compute the displacement of the model under static load and the second step is 

to model the wave propagation. Both individual steps are linear, the non–linearity of the 

complete model is introduced by forcing a recalculation of the global stiffness matrix between 

the two steps. This means that the wave propagation modelling is undertaken with the global 

stiffness matrix for the deformed waveguide after loading [11].  

In the first step, displacements are calculated from standard linear system of equations:  

 ,   ku F u ε σ  (13) 

where F  is the vector of external forces and k  is global stiffness matrix. Strains and stresses 

are evaluated based on displacement field. In the second step of the algorithm geometric 

stiffness matrix (see Eq. 5) is created. Calculation of the geometric stiffness matrix 
gk is 

carried out based on stresses from Eq. 13 as well as thermal and hygrothermal stresses. 

Finally equation of motion is obtained: 

 ( ) ( ) .g t    mu k k u s  (14) 

where m  is the mass matrix and ( )ts  is the excitation signal. The global stiffness matrix k  is 

modified by addition of the geometric stiffness matrix 
gk . Equation 14 is solved by 

application of central difference scheme [16]. 

 

3. NUMERICAL SIMULATIONS 

Scheme of the beam under investigation is shown in Fig. 2. The beam is subjected to 

static load F applied at the left end, various uniform changes in temperature T  as well as in 



 

 

moisture concentration m . The beam is excited in the centre by sinusoidal signal modulated 

by Hanning window. Various carrier frequencies between 20 kHz and 48 kHz were used.  

It was assumed that the beam is made out of glass/epoxy composite with stacking 

sequence [+45/–45]6 and 50% of volume fraction of glass reinforcing fibres. The width of the 

beam was 20 mm, and the total thickness was 12 mm. Crack depth equal to 15% of cross–

section height was introduced at distance of 0.73 m from the left end of the beam. The total 

length of the beam was 1 m. 

 

 

Figure 2. Scheme of the beam under investigation. 
 

Properties of glass/epoxy lamina under various moisture concentrations and various 

temperatures are given in Table 1 and Table 2, respectively. 

 

Table 1. Elastic moduli of glass/epoxy lamina at various moisture concentrations assumed for 

calculations, vol=50% 

Elastic modulus 

[GPa] 

Moisture concentration, C (%) 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 

1E  34.96 34.92 34.87 34.83 34.80 34.78 34.78 

2E  9.06 8.87 8.63 8.41 8.26 8.19 8.19 

12G  3.39 3.32 3.23 3.14 3.09 3.06 3.06 

 

Table 1. Elastic moduli of glass/epoxy lamina at various temperatures assumed for 

calculations, vol=50% 

Elastic modulus 

[GPa] 

Temperature, T (°C) 

20 25 30 35 40 45 50 

1E  34.96 34.94 34.92 34.90 34.85 34.77 34.65 

2E  9.06 8.93 8.85 8.74 8.54 8.16 7.56 

12G  3.39 3.34 3.31 3.27 3.19 3.05 2.82 

 

 

 

For each analysed case feature extraction was performed. Three types of features were 

considered: amplitude, time of flight and peak of power spectra density. These features were 

calculated from the first incoming wave packet as well as the second wave packet reflected 

from damage by extracting sampling points from the range of 500 to 1500 and 1700 to 2450, 

respectively (see Fig. 3). The amplitudes were calculated by finding maximum value of 

Hilbert transformed signal within ranges described above. Similar procedure was used for 

calculation of time of flight. Peak value of power spectra density was calculated by using 

Welch’s method.  

 

 



 

 

 

Figure 3. Signal for excitation frequency 20 kHz with indicated wave packets under investigation: 

incoming wave packet and reflection from the crack 

 

 

The results of numerical simulations are shown in Fig. 4–6. Figure 4 refers to thermal 

degradation exclusively. Due to free boundary condition at one of the ends of the beam along 

with uniform temperature distribution only thermal expansion occurs without any induced 

thermal stresses. Thermal expansion has minimal effect on wave propagation in comparison 

to thermal degradation (decrease of the Young’s modulus of the epoxy) and is not shown 

here. It can be seen from Fig. 4 that features dependence on frequency and temperature 

change is strongly nonlinear. It is interesting to note that by comparing left and right columns 

of Fig. 4a it is possible to distinguish between incoming wave packet and wave packet 

reflected from the crack. The same can be said about Fig. 4c which refers to the peak of 

power spectra density. Time of flight distribution is similar for both wave packets. 

Similar effects can be observed due to moisture degradation. Again moisture 

expansion and mass gain due to moisture absorption much less affects wave propagation than 

moisture degradation. For this reason only the effect of moisture degradation is shown in Fig. 

5. Due to the fact that moisture degradation acts similar as thermal degradation on 

propagating waves it would be very difficult to separate those two effects. 

The influence of transverse load applied on the free end of the beam on wave 

propagation is much less noticeable than the effects of moisture and temperature (see Fig. 6). 

It should be pointed out that the selected range of loading conforms to reasonable physical 

case. It is also important to add that calculations have been carried out on undeformed 

structure. In such a case both amplitude (Fig. 6a) and time of flight (Fig. 6b) are slightly 

affected by external loading in a linear manner. 
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c) Power Spectra Density Peak (PSDP) 

 

Figure 4. Dependence of features on temperature change (thermal degradation). Left column – 

features for the incoming wave packet, right column – features for the wave packet reflected 

from the crack. 
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Figure 5. Dependence of features on moisture (moisture degradation). Left column – features 

for the incoming wave packet, right column – features for the wave packet reflected from the 

crack. 

 

 

 

 

 



 

 

  

a) Amplitude 

  

b) Time of Flight (TOF) 

  

c) Power Spectra Density Peak (PSDP) 

Figure 6. Dependence of features on external force. Left column – features for the incoming 

wave packet, right column – features for the wave packet reflected from the crack. 



 

 

4. CONCLUSIONS 

Algorithm for solving wave propagation problems in composite Timoshenko beams 

has been developed. It incorporates many effects such as external loading, temperature change 

and moisture degradation as well as transverse crack. Several features of propagating waves 

has been analysed in order to find distinction between these effects. It can be concluded that 

in order to estimate crack depth properly it is necessary to compensate effects of temperature 

and moisture change in composite structure. Wave propagation is also affected by external 

loading but in the case considered the loading effect has much less importance than thermal 

and hygrothermal degradation. Features analysis performed would be used in future for 

selection of input features for damage identification methods based on machine learning 

algorithms. 
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