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Abstract. The flow of hydrocarbons through deep sea pipelines is a challenging issue for the 

petroleum industry.  Typical operating conditions involve high hydrostatic pressures and low 

sea bed temperatures, which can favor the formation of solid deposits and result in pipeline 

blockages and, consequently, incur in large financial losses. Heat transfer analysis plays a 

fundamental role in the design of deep sea pipelines. Thermal insulation is designed to avoid 

the formation of solid deposits during regular operating conditions. On the other hand, dur-

ing shutdown periods heat losses from the produced fluid to the surrounding environment can 

result on fluid temperatures sufficiently low that the formation of deposits becomes inevitable, 

unless other techniques are used, such as injection of chemical inhibitors or active heating of 

the pipeline. In this work, we solve the inverse problem of estimating the transient heat trans-

fer coefficient from the pipeline surface to the surrounding sea water, in a pipe-in-pipe sys-

tem. The transient external heat transfer coefficient is estimated with the Markov Chain Mon-

te Carlo method, implemented via the Metropolis-Hastings algorithm. Simulated temperature 

measurements of one single sensor, located at the external surface of the inner pipe, are used 

in the inverse analysis. A smooth prior is used for the transient heat transfer coefficient, while 

the measurement errors are assumed to be Gaussian, additive, with zero mean and known 

covariance matrix. 

Keywords: pipelines, Markov Chain Monte Carlo, convection coefficient, direct problem, 

inverse problem. 

1. INTRODUCTION 

Oil flow through pipelines in deep sea waters is one of the greatest challenges for the 

development of subsea field layouts, being characterized by numerous technical problems 

related to the dynamic nature of the production fluids [1].The thermal performance of such 

subsea systems is critical, because the produced fluid cannot undergo significant temperature 

reductions as it flows through the pipeline at high pressures. Therefore, flow assurance is a 
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key point for the design of subsea petroleum systems in deep sea [2], involving the prediction 

and prevention of paraffinic wax deposits and hydrate formations, which can interrupt the 

flow and cause large financial losses [3].  

The main objective in this work is to estimate the transient heat transfer coefficient 

from the pipeline surface to the surrounding sea water, in a pipe-in-pipe system. The physical 

problem under study involves a typical pipeline cross-section during a production shutdown 

period. It is represented by a circular domain filled by the stagnant petroleum fluid, which is 

bounded by a multilayered wall. The transient external heat transfer coefficient is estimated 

with the Markov Chain Monte Carlo method, implemented via the Metropolis-Hastings algo-

rithm [4-15]. Simulated temperature measurements of one single sensor, located at the exter-

nal surface of the inner pipe, are used in the inverse analysis. A smooth prior is used for the 

transient heat transfer coefficient, while the measurement errors are assumed to be Gaussian, 

additive, with zero mean and known covariance matrix. 

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 

The problem considered in this work consists of the cross-section of a pipeline (pipe-

in-pipe), represented by a circular domain filled with a stagnant fluid [1, 2]. The pipe-in-pipe 

system consists of two concentric steel pipes, with a thermal isolation in the annular space 

between them. A temperature sensor is located outside the inner pipe wall, as shown in Figure 

1. 

Figure 1.Cross-Section of Pipeline 

 

The fluid and the other materials are considered as homogeneous, isotropic and with 

constant thermophysical properties. Heat transfer in the pipe-in-pipe system is formulated in 

terms of a linear transient heat conduction problem in a medium with spatially variable ther-

mophysical properties. Convective heat losses between the surface of the pipe-in-pipe and the 

surrounding sea water takes place with a time varying heat transfer coefficient. By consider-

ing axial symmetry, the formulation of this heat conduction problem in cylindrical coordi-

nates and in dimensionless form is given by: 
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where the following dimensionless variables were defined: 
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In equations (4-9),    is the external radius of the pipe-in-pipe, h(t) is the convective 

heat transfer coefficient at the outer surface of the pipe-in-pipe,     and    are the volumetric 

heat capacity and thermal conductivity, respectively,     is the surrounding environment 

temperature,       and      are reference values for the volumetric heat capacity and thermal 

conductivity, respectively, which are taken as those of  the steel pipes.  

For the direct problem associated with equations (1-9), initial and boundary condi-

tions, as well as the thermophysical properties are known. The objective of the direct problem 

is to compute the transient temperature field (R,). The solution of the direct problem was 

obtained here with the Matlab's function PDEPE.  

This work deals with the solution of an inverse problem aiming at estimating the tran-

sient heat transfer coefficient, in dimensionless form represented by the Biot number Bi(), by 

using transient temperature measurements taken at the external surface of the inner pipe, as 

illustrated by Figure 1. 

For the solution of the inverse problem, the transient heat transfer coefficient is discre-

tized in terms of constant values Pi = Bi() in the time intervals          , for i = 1,…,I, 

and conveniently written in terms of a vector  

 

𝐏 ≡ [𝑃  𝑃2 …  𝑃𝐼]      (10) 

The transient temperature measurements of the single sensor are also suitable arranged 

in the following vector 

         2 …   𝐼                                                      (11) 



 

 

The solution of the present inverse problem is obtained within the Bayesian frame-

work, as described next. 

3. MARKOV CHAIN MONTE CARLO METHOD 

The solution of the inverse problem within the Bayesian framework is recast in the 

form of statistical inference from the posterior probability density, which is the model for the 

conditional probability distribution of the unknown parameters given the measurements. The 

measurement model incorporating the related uncertainties is called the likelihood, that is, the 

conditional probability of the measurements given the unknown parameters. The model for 

the unknowns that reflects all the uncertainty of the parameters without the information con-

veyed by the measurements is called the prior model [4-11]. 

The Bayesian statistics consists mainly in the use of all information available in order 

to reduce the uncertainty on inference or decision making problems. In the Bayes’ theorem, as 

new information is available it is combined with the previous one forming the basis of the 

statistical process [4-10]. The inverse problem solution with Bayes’ theorem is based in the 

following principles [11]: 

 All variables included in the model are modeled as random variables. 

 The randomness describes the degree of information concerning their realizations. 

 The degree of information concerning these values is coded in probability distribu-

tions. 

 The solution of the inverse problem is the posterior probability distribution, from 

which distribution point estimates and other statistics are computed. 

Therefore, this approach relies fundamentally on the principles of the Bayesian statistics to 

obtain the solution of inverse problems. [12]. Bayes’ theorem is stated as: 

           𝐏    𝐏|   
  𝐏    |𝐏 

    
                                       (12) 

where            𝐏  is de posterior probability density,    𝐏  is the prior probability density, 

   |𝐏  is the likelihood function and      is the marginal probability density of the meas-

urements Y, which plays the role of a normalizing constant. 

The Markov Chain Monte Carlo (MCMC) method is used for the estimation of the 

posterior probability density, which is constructed through sampling and rejection techniques. 

The most common algorithm of MCMC mthods is the one due to Metropolis-Hastings [5-11]. 

The implementation of the Metropolis-Hastings algorithm starts with the selection of a 

jumping distribution   𝐏  𝐏     which is used to draw a new candidate state 𝐏 , given the 

current state 𝐏    of the Markov chain. Once the jumping distribution has been selected, the 

Metropolis-Hastings sampling algorithm can be implemented as shown in Table 1 [12]: 

 

 

 

 

 



 

 

Table 1.Metropolis Hasting Algorithm 

1. Sample a Candidate Point 𝐏  from a jumping distribution   𝐏  𝐏    . 
2. Calculate the acceptance factor. 

                               [  
  𝐏 |   (𝐏    𝐏 )

  𝐏   |    𝐏  𝐏    
]                         (13) 

3. Generate the random value   with uniform distribution between 0 e 1. 

4. If     , set 𝐏  𝐏 . Otherwise, set 𝐏  𝐏    

5. Return to step 1 in order to generate the sequence {𝐏  𝐏2 …  𝐏 }. 

 

In this way, a sequence is generated to represent the posterior distribution and 

inference on this distribution is obtained from inference on the samples {𝐏  𝐏2 …  𝐏 }. The 

values of 𝐏  must be ignored until the chain has not converged to equilibrium (the burn-in 

period) [14,15]. 

4. RESULTS AND DISCUSSIONS 

For the test cases presented below, we consider the pipe-in-pipe (see Figure 1) to be 

made of an inner steel pipe with internal and external diameters of 0.2 m and 0.25 m, respec-

tively. The outer pipe is also made of steel with internal and external diameters of 0.35 m and 

0.4 m, respectively. The thermophysical properties of steel are assumed as constant and given 

by [15]:  k = 52.34 W/m°C,  = 7700 kg/m
3
 and cp = 502.1 J/kg°C. The annular space be-

tween the two pipes is assumed to be filled with a thermal insulator with constant thermo-

physical properties given by [1]: k = 0.17 W/m°C,  = 750 kg/m
3
 and cp = 2000 J/kg°C, which 

approximates those for polypropylene. For the petroleum, the physical properties are k = 

0.1304 W/m°C,   = 966.7971 kg/m
3
 and    = 1591.7178 J/kg°C. 

By assuming that the measurement errors are Gaussian random variables, with zero 

means and known covariance matrix W and that the measurement errors are additive and in-

dependent of the parameters P, the likelihood function can be expressed as [4-15]: 

   |𝐏       𝐼 2| |   2   { 
 

2
[    𝐏 ]    [    𝐏 ]}              (14) 

where (P) is the solution of the direct (forward) problem given by equations (1-3), obtained 

with a sample of the parameter vector P.  

A smoothness prior [5] is used for the Biot number in this work. This prior is appro-

priate for problems such as the one under consideration because, at the same time that it is 

non-informative and do not impose restrictions on the marginal distributions of Biot number 

components, it results on stable solutions for the inverse problem. The smoothness prior used 

in this work is given by: 

  𝐏     ( 
 

2
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where       and     is a parameter associated to the variance of P, while D is a (I-1) x I 

first-order difference matrix given by: 
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The parameter   appearing in the smoothness priors is treated in this work as a hyper 

parameter, that is, it is estimated as part of the inference problem in a hierarchical model [5]. 

The hyperprior density for this parameter is taken in the form of a Rayleigh distribution, with 

a center     = 300. Therefore, the posterior distribution is given by: 
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The test cases examined below involved typical conditions resulting from a shutdown 

in the petroleum flow through the pipeline system, where the stagnant fluid was assumed to 

be initially at the uniform temperature of 80°C. The initial states within the steel pipes and the 

thermal insulator were given by the steady-state temperature distribution resulting from the 

heat losses through the pipe-in-pipe multilayered wall. The seawater was assumed to be at 

4°C. The inverse problem was focused on the cooling period of the production fluid, during a 

production shutdown. The evolution of the dimensionless temperature field in the pipeline 

system, for the conditions presented above, is shown by the contour plots in Figure 2, for a 

dimensionless time    13.8. 

Figure 2. Dimensionless Temperature Distribution for    13.8 

 

The accuracy of the present inverse problem solution approach was examined by using 

simulated transient measurements. The simulated measurements contained random errors 

which were assumed to be additive, Gaussian, uncorrelated, with zero mean and constant 

standard deviation. Figure 3 presents the exact temperatures and the simulated measurements 

for a standard deviation σ = 0.01 max. The maximum temperature in the system is the initial 

temperature of the stagnant fluid which is of 80°C. Therefore, in this case the standard devia-

tion of the measurement errors corresponds to 0.8°C.  



 

 

Figure 3.Dimensionless Simulated Measurements in the Inner Pipe 

 

Different functional forms, including those containing sharp corners and discontinui-

ties that are the most difficult to be recovered by the inverse analysis, were used to generate 

the simulated measurements. The functions used in this work are illustrated in Figures 4-5. 

 

Figure 4. Function Used to Generate the Simulated Measurements (Triangular Function) 

 

Figure 5. Function Used to Generate the Simulated Measurements (Step Function) 

 

 



 

 

The initial state used for the Markov chains were constant values Bi = 9 for the esti-

mation of triangular function and Bi = 7 for the estimation of step function. A uniform jump-

ing distribution was used to generate new samples in the Markov chain. The convective heat 

transfer coefficient (h) on the external surface of the outer pipe for a practical case is approx-

imately 2000 W/m
2
K, based on Churchill-Bernstein’s correlation [17], which corresponds to 

Bi =  7,65. 

Figures 6-7 present the exact, estimated means and 99% confidence intervals for the 

triangular and step variations of the heat transfer coefficient, respectively. These Figures show 

that excellent estimates can be obtained for the unknown function. 

 

Figure 6.Estimation of Biot number values (triangular function) 

 

Figure 7.Estimation of Biot number values (step function) 

 

Figures 8-9 illustrate the states of the Markov chains for the Biot number values at 

four different times, for the triangular and step variations, respectively. The Markov chains 

exhibit convergence in both cases after 10000 iterations and the acceptance ratio was around 

of 50%. The expected values of the Biot numbers are also presented in these figures.  



 

 

Figure 8.States of the Markov chains for four Biot number values corresponding to different 

times for a triangular function 

Figure 9.States of the Markov chains for four Biot number values corresponding to different 

times for a step function 

 

The effects of the standard deviations of the measurement errors on the estimation of 

the Biot number, are examined below by considering σ = 0.005 max and σ = 0.05 max, which 

correspond to 0.4°C and 4°C, respectively. 

Figures 10 and 11 present the exact and estimated means for the Biot numbers, as well 

as their 99% confidence intervals, for the triangular and step variations, respectively, with 

measurements of standard deviation σ = 0.005 max. Similar results are presented in figures 12 

and 13 for measurements of standard deviation σ = 0.05 max. These figures show that excel-

lent estimates could be obtained with low noise measurements. At the same time, we notice 

that the present solution approach was capable of accurately recovering the unknown function 

with a non-informative prior, even for quite large uncertainties in the measurements.      

 

 

  



 

 

Figure 10.Estimation of Biot number values (triangular function) for σ = 0.005 max 

 

 

Figure 11.Estimation of Biot number values (step function) for σ = 0.005 max 

 

Figure 12.Estimation of Biot number values (triangular function) for σ = 0.05 max 

 



 

 

Figure 13.Estimation of Biot number values (step function) for σ = 0.05 max 

5. CONCLUSIONS 

The inverse problem considered in this work dealt with the estimation of the convec-

tive heat transfer coefficient in pipe-in-pipe systems from temperature measurements contain-

ing random errors. The measurements were supposed to be taken at the external surface of the 

inner pipe. The inverse problem was solved with the Markov Chain Monte Carlo method, by 

using a non-informative smoothness prior for the unknown functions. Results obtained with 

simulated measurements for two different transient variations of the heat transfer coefficient, 

involving sharp corners and discontinuities, show that the MCMC method was capable of 

providing accurate and stable estimates for the unknown function. Furthermore, the method 

was very robust with respect to the measurement errors.  
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