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Abstract. This paper presents a fully adaptive formulation of the Front Tracking method
for the simulation of incompressible, multiphase, bubbly flows, based on the Tryggvason for-
mulation. The Navier-Stokes equations are discretized using a finite difference scheme, and
domain discretization is carried out with Berger & Collela’s structured adaptive mesh refine-
ment (SAMR) algorithm. Time discretization is based on SBDF scheme, with adaptive time
stepping. The lagrangian interface is represented using the GTS library, which provides a
volume- and shape- preserving remeshing algorithm, therefore minimizing the volume change
due to non-conservative interpolation of the eulerian velocity field. Nevertheless, a simple
volume recovery algorithm is also provided, along with a subgrid undulation removal algo-
rithm based on the TSUR-3D algorithm [6]. Rising bubble flows were simulated under several
regimes, showing small errors when comparing to experimental results.

Keywords: two-phase flows, front tracking method, rising bubbles, adaptive mesh refinement,
conservative).

1. INTRODUCTION

Front-tracking methods are based on the one-fluid formulation for the simulation of
multiphase flows and make use of markers, usually a set of connected points forming an
unstructured mesh, to track the interface. Since the interface is explicitly represented by its
coordinates, the set of markers is said to use a Lagrangian framework, and the mesh which
characterizes the interface is termed Lagrangian mesh. While this interface is based on a
Lagrangian framework, an Eulerian framework is used to solve the transport equations. This
method is accurate but also complex to be implemented because dynamic remeshing of the
Lagrangian interface mesh is required and mapping of the Lagrangian data onto the Eulerian
mesh has to be carried out. Difficulties may arise when multiple interfaces interact with
each other as in coalescence and breakup, both of which requiring a proper sub-grid model.
This feature may be computationally expensive, but can be used to prevent artificial merge or
breakup when the number of bubbles in the flow is large.
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Although storing the marker points is enough to fully determine the interface po-
sition, storing the interface as a mesh is useful for computing geometrical properties such
normal, area and the interfacial tension force, not to mention checking against collisions or
merge/breakup phenomena.

There are two possible strategic forms of communication. Glim et al. [8] discretized
the Navier-Stokes equations using a finite difference method which modiffies the stencil in
the vicinity of the mesh overlap, so that the vertices of the two meshes match each other.
However, for multiphase flows the most widespread methodology is based on the Immersed
Boundary Method (IBM) of Peskin [13, 14], which represents the interface by imposing a
force field that is spread on the Eulerian mesh. The Navier-Stokes equations are solved based
on one-fluid models. Among various methodologies developed after Peskin, one of the most
wide spread in the context of multiphase flows is the work of Uverdi and Tryggvason [20] and
Trygvason et al. [19]. Similarly to IBM, the interface between the phases is represented by
the interfacial tension force field.

In the present work the Front-Tracking method is combined with an AMR (Adaptative
Mesh Refinement) framework. The concept of adaptive mesh refinement is based on the works
of Berger et all [2] and Jameson [9] and consist in creating a hierarchy of Cartesian meshes
with different levels of refinement which cover the entire domain, concentrating the meshes
on the regions which require special attention. All meshes in a given level of refinement must
have the same characteristic length.

2. MATHEMATICAL MODEL

The mathematical model used in the present work is composed of the Navier-Stokes
and mass equations combined with a front tracking model with which problems of two phase
flows are modeled. The model is presented in three parts, as follows.

2.1. Mathematical model for the fluid

This model, for a Newtonian fluid and for incompressible flows, is composed by the
classical mass and Navier-Stokes Equations.

∇ · u = 0 (1)

ρ
∂u

∂t
+ (u · ∇)u = −∇p+ ρg +∇ · (µ (∇u +∇u)) + f (2)

where u(x, t) is the uid velocity, ρ is the uid density, and µ is the viscosity, p is the pressure
and g is the gravity acceleration. The source term models the interfacial force that is different
from zero only over an interface and equals zero everywhere. The fluid density and viscosity
are calculated with the aid of an indicator function:

ρ(x, t) = ρ1H(x, t) + ρ2(1−H(x, t)) (3)

µ(x, t) = µ1H(x, t) + µ2(1−H(x, t)) (4)



Usually the indicator function is found by solving a Poisson equation for the surface
normal vector [20]. In this work, however, a geometric approach, named CPT (Closest Point
Transform) is adopted [12]. Instead of solving an additional elliptic PDE, CPT finds the short-
est distance between a given point in the Eulerian domain and the Lagrangian interface. Unlike
the Tryggvason approach, in this case the function is calculated only in the neigbourhood of
the interface [5].

2.2. Mathematical model for the interface

The interface is modeled by an equation for the interface force field and the equations
for its Lagrangian transport:

F(X, t) =

∫
dΩ

σκn(X, t)dΩ =

∮
dΓ

σt× ndΓ (5)

dX(t)

dt
= u(X, t) (6)

where σ is the interface force coefficient, κ is the curvature, n is the interface normal, X(t) is
the spatial Lagrangian coordinate, dΩ is an area element and dΓ is the boundary of dΩ.

2.3. Mathematical model for the fluid-interface communication

Information exchange between fluid and interface is given by interpolation and distri-
bution equations

f(x, t) =

∫
F(X, t)δ(X− x)dX (7)

U(X, t) =

∫
u(x, t)δ(x−X)dx (8)

where X and x are, respectively, positions in the Lagrangian (interface) and the Eulerian
(fluid) domains.

2.4. Numerical method

The time discretization of the differential model is performed by the general model
below:

ρn+1

∆t

(
α2u

n+1 + α1u
n + α0u

n−1
)

= β1h(un) + β0h(un−1) +

λ
(
θ2∇2un+1 + θ1∇2un + θ0∇2un−1

)
−∇p+ ρn+1g (9)

∇ · un+1 = 0 (10)

where λ = L∞(µ) and h depends on the diffusive-, advective- and forcing terms,
according to the following equation:

h(u) = −λ∇2u +∇ · (µ(∇u +∇uT ))− (u · ∇)u + f (11)



The value of α, β and θ are given by:

α0 =
(2γ − 1)ω2

1 + ω

α1 = (1− 2γ)ω − 1

α2 =
1 + 2γω

1 + ω

(12)

β0 = 1 + γ

β1 = −γω

(13)

θ0 = c

(
ω − ω

1 + ω

)
θ1 = 1− γ − cω

θ2 = γ + c
ω

1 + ω

(14)

where ω = ∆tn+1

∆tn
is the rate between two consecutive time steps. A family of numerical

schemes can be established choosing the appropriates values for γ and c [1]:

• Cranck-Nicolson Adams-Bashforth(CNAB):(γ;c) = (0.5;0) ;

• Modied Crank-Nicolson Adams-Bashforth(MCNAB): (γ;c)=(0.5; 0:125);

• Crank-Nicolson Leap-Frog (CNLF): (γ;c)=(0.0;1.0);

• Semi-Backward Difference (SBDF): (γ;c)=(1.0; 0.0).

In the present work the above SBDF temporal time discretization, with variable size
of time step, was chosen in all cases simulated. To handle the pressure-velocity coupling
between Eq. 1 and Eq. 2, the following fractional step method is proposed:

ρn+1

∆t

(
α2u

∗n+1 + α1u
n + α0u

n−1
)

= β1h(un) + β0h(un−1) +

λ
(
θ2∇2u∗n+1 + θ1∇2un + θ0∇2un−1

)
−∇p+ ρn+1g (15)

un+1 = u∗n+1 +
∆t

α2

∇q
ρn+1

(16)

The pressure correction q is obtained using the following equation:

∇ ·
(

1

ρn+1
∇q
)

=
α2

∆t
∇ · u∗ (17)



2.5. Spatial discretization

Space is discretized using a structured adaptive mesh refinement, which is based on
the Immersed Boundary method introduced by Roma et al. [16], and in the hierarchical grid
structure proposed by Berger and Colella [3]. In this scheme, regions of the flow being of
special interest are covered by block-structured grids, defined as a hierarchical sequence of
nested, progressively finer levels (composite grids). Each level is formed by a set of disjoint
rectangular grids and the ratio between two successive refinement levels is constant and equal
to two. Ghost cells are employed around each grid, for all the levels, and underneath finer
grid patches to formally prevent the finite difference operators from being redefined at grid
borders and at interior regions which are covered by finer levels.

Values defined in these cells are obtained from interpolation schemes, usually with
second or third order accuracy, and not from solving the equations of the problem. A staggered
composite grid is used, i.e., pressure and others scalar variables are placed at the centers of
the computational cells, while vector variables are located at the respective cell faces. The
discretization of the Laplacian, gradient and divergence differential operators are performed
by standard, cell-centered second order finite difference stecils. Although a variable can be
defined or initialized in any level, in the current work the interface must be completely covered
by the finest level, ensuring that the most important physical phenomena are being captured.

The initial mesh for the Lagrangian interface is generated using GMSH [7]. Volume
conservation is ensured in the surface remeshing during the simulations by applying the mem-
oryless simplification technique by Lindstrom and Turk [11], as provided by the GTS Library
[15]. Nevertheless, the interpolation of the velocity field from the eulerian framework onto
the Lagrangian interface usually is non-conservative. Although the volume change in a single
time step is nearly negligible, it is a cumulative process that may lead to considerable volume
change in long term simulations. To overcome this issue, a simple volume recovery procedure
applied at the end of the advection step will be described next.

2.6. Volume Recovery Algorithm

The mass conservation issue in Front Tracking arises after interpolating the Eulerian
velocity field to the Lagrangian interface, because the interpolation functions are not con-
servative. This problem can be tackled using two different approaches: (i) implementing a
conservative interpolation scheme or (ii) applying a correction step after interpolating the ve-
locity field in order to correct the surface volume. This second approach will be followed
here, since it is much simpler than (i).

Average based volume corrections are not new in Front Tracking Methods [17, 18] and
usually are carried out appart from the remeshing procedure, such that no topological change
is introduced in the mesh. If the volume change is small, it is safe to assume that all variation
occurs in the normal direction. Since the interface is discretized by triangular elements, the
volume change can be seen as the sum of small prisms and formed by the mesh elements and
a small constant height η:



∆V =
Ne∑
i

Aiη (18)

where Ai is the area of the ith-element of the mesh, η is the average length of the normal and
Ne is the total number of elements in the mesh. Since h is constant, eq. 18 can be written as

∆V = η

Ne∑
i

Ai = A.η (19)

whereA is total surface area. Also, the volume change may also be computed as the difference
between the initial and current interface volume, i.e.: ∆V = Vc − Vi,

A.η = Vc − Vi (20)

and the length of the normal will be just

η =
Vc − Vi
A

(21)

That is, the volume correction can be achieved by just expanding or shrinking the
surface in the normal direction by a factor equal to η. The correction is then given by eq. 22,
where xold and xnew are the original and new coordinates of the mesh vertices.

xnew = xold − η · nv (22)

Since this movement will be applied to the vertices, an accurate pseudo-normal com-
putation must be provided. A good approximation is given by an weighted average of the
normals of the elements sharing a given vertex [10] according to Eq. 23:

nv =
Nt∑
i=1

nisin(αi)

‖ei1‖‖ei2‖
(23)

Here, Nt is the number of triangles which share the vertex, ni is the normal of element
i, ei1 and ei2 are the edges of the ith-element which are employed to compute this element’s
normal, and αi is the angle between them.

3. RESULTS

Firstly a verification of the volume-conserving abilities of the front tracking algorithm
will be made, based on an analytical shear flow test. Then, results showing the simulation of
rising bubbles will be presented.

3.1. Analytical Shear Flow

The test consists in subjecting a surface, usually spherical, to a solenoidal, periodic,
analytic velocity field and assessing its volume change as the flow evolves. Assuming a ve-
locity field with a period T , the surface is stretched until t = T/2 and then returns to its



original position and shape. The velocity field may be calculated either directly on the La-
grangian vertices or interpolated from an auxiliary grid, allowing to assess the influence of the
interpolation functions on the volume change during the simulation.

Regarding the interface advection, the two most common time integration schemes are
first order Euler and second order trapezoidal rule, respectively Eqs. 24a and 24b. Note that,
as long as there is a time history of the Eulerian velocity field, it is possible to implement
second order methods for the advection of the Lagrangian interface.

xn+1 = xn + ∆t · un+1 (24a)

xn+1 = xn +
∆t

2
·
(
un+1 + un

)
(24b)

Surface stretching requires remeshing, which also may also interfere on the conser-
vation process. Regardless its volume conservation properties, any remeshing algorithm de-
stroys the Lagrangian velocity history, requiring a new interpolation of the velocity field.
Since interpolation schemes are usually non-conservative, a conservative remeshing algorithm
could still lead to a non-conserving outcome owing to the need for velocity interpolation.

In order to assess the influence of such variables on the flow outcome, a series of
tests was performed, in which three main parameters were analysed: (i) the velocity field
interpolation, (ii) the surface remeshing and (iii) the volume recovery algorithm. These cases
are summarized in table 1.

Case Description
Velocity Interpolation Volume Recovery Remeshing

1 no no no
2 no no yes
3 yes no no
4 yes no yes
5 no yes no
6 no yes yes
7 yes yes no
8 yes yes yes

Table 1. Shear Flow. Case description for each test performed.

The velocity profile is given by equation 25 [17] and the interpolation of the velocity
field was performed using equation 26 [21].

u(x, y, z, t) = cos(πt/T )sin2(πx)(sin(2πz)− sin(2πy))
v(x, y, z, t) = cos(πt/T )sin2(πy)(sin(2πx)− sin(2πz))
w(x, y, z, t) = cos(πt/T )sin2(πz)(sin(2πy)− sin(2πx))

(25)

δ(r) =

{
1
4
(1 + cos(π

2
r)), r < 2

0, r ≥ 2
(26)



Figure 1 shows snapshots of the sphere shape during a typical simulation at t = 0,
t = T/4, t = T/2, t = 3T/4 and t = T . The flow stretches the surface until T = T/2 and
then symmetrically returns it to its initial position, so that the shape and position are the same
not only t = 0 and t = T , but also at t = T/4 and t = 3T/4. The period is T = 4s, the same
which was used in the simulations presented here.

Figure 1. Geometry deformation when subjected to the analytical velocity field given by Eq.
25. Snapshots taken at t = 0, t = T

4
, t = T

2
, t = 3T

4
e t = T

Figure 2 shows the time evolution of the relative volume error (εvol = (Vf/Vi − 1) ×
100) for all cases simulated. Graphs on the left column show the cases in which volume recov-
ery was not applied, while the right column shows the results achieved with volume recovery.
Notice that, in this case, the error was kept within the specified threshold, that is±0.01%. Re-
garding the non-conservative cases, both interpolation process and interface remeshing have
shown to play little influence on the final volume error when the time integration is carried
out with Euler scheme. Although velocity interpolation changes the time history of volume
error, the final value achieved is similar in both cases. The trapezoidal rule, although being
more sensitive to both surface remesh and velocity interpolation, leads to considerably smaller
errors.

3.2. Rising Bubbles

This section presents the simulation of rising bubbles in various flow regimes. Firstly,
a case study is performed in order to assess the influence of some geometry-correction tools
on the outcome of the flow. Then a set of low Reynolds cases is simulated, in order to assess
the influnce of the Morton number on the prediction of the terminal Re number. All cases in
this set have the same Eo number. Finally, a wobbling case is simulated. In all cases simulated
in this paper, the initial distance from the center of the bubble to the domain boundaries is four
times the bubble diameter. Also, the maximum edge length allowed for the Lagrangian mesh
is half the length of the Eulerian grid spacing at its finest level.

Geometry-Correction Tools

The physical parameters defining the rising bubble flow regime in this section are:
Eo = 40, M = 0.056, Re = 20.6, ρC = 1000kg/m3, µC = 0.273556Pa · s, λρ = 100,
λµ = 100. The bubble diameter is φ = 0.02m. Eo is the Eotvos number, M is the Morton
number, ρC and µC are the density and dynamic viscosity of the continuous phase and λρ
and λµ are the density ratio and viscosity ratio between the continous and dispersed phase,
respectively.

Besides the well-known non-conservative behaviour of the velocity interpolation pro-
cess, another common problem in front tracking methods is the development of small un-
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Figure 2. Influence of the volume recovery algorithm on the volume change during the ana-
lytical shear flow test. Left column: no recovery performed. Right column: volume recovery
applied.



dulations or wrinkles that occurs at the rear of rising bubbles. The TSUR-3D algorithm [6]
eliminates such undulations by requiring that the normal of a given edge in the mesh be par-
allel to the resultant of the approximate normals of the vertices of this edge.

Four cases were run in order to assess the role of the geometric correction tools on
the flow simulation. In case A1 the standard Front Tracking Method was used, without any
further intervention. In case A2 a volume correction step was applied at the end of the interface
advection, while in case A3 only TSUR-3D was used. Case A4 applies both, volume recovery
and TSUR-3D algorithms. Table 2 shows the terminal Re achieved in each simulation, as well
as the relative error.

Case Description Re Error (%)

A1 Standard Front Tracking Algorithm 23.5 12.3
A2 S1 + Volume Recovery 23.3 11.6
A3 S1 + Wrinkle removal 19.9 3.5
A4 S1 + Volume Recovery + Wrinkle Removal 19.8 4.0

Table 2. A-series: Cases description and error on the terminal Re number.

The effect of the geometric tools on the Re number and terminal velocity is shown in
figure 3. Notice that the volume recovery algorithm has little influence at the beginning of the
flow. In fact, only after reaching the terminal regime a small decrease in the Re number can
be seen. Surface wrinkle removal, on the other hand, affects the early stages of the flow by
smoothing the transient region and decreasing the Re maximum at the overshoot region. The
final position of the bubbles, depicted on the right, shows that the algorithm affects the rise
velocity, not the bubble volume.

Figure 3. A-series: Terminal Reynolds number depending on the geometric intervention ap-
plied.

Figure 4 shows details of the bubble shape at the end of the flow for cases A1 and A3.
Figure 5 show that the presence of the wrinkles lead to the formation of artificial vortices on
the bubble rear, influencing the flow inside and outside the bubble.



Figure 4. Bubble shape at the end of the simulation. Top: no geometric intervention. Bottom:
volume recovery and wrinkle removal.

Figure 5. A-series: Streamlines at the rear of the bubble. Case A1 vs A4.

3.3. Low Reynolds flows

After assessing the influence of the geometry correction tools on the bubble behaviour,
a set of low Re flows was simulated using the volume recovery and TSUR-3D algorithms. For
all cases simulated, Eo=116 while M ranged between 1.31 and 848. Figure 6 shows the time
history of the Reynolds number for all cases on the left and the error on the terminal Re on the
right. Table 3 shows the results of the simulations and compares the terminal bubble shape and
Re number to the experimental work of Bhaga [4]. Despite the difference in the density ratio
(1370 in the experiment vs 100 here), the errors were small even for high Morton numbers,
which usually demands more effort on the solver. Notice also that in all cases the predicted
shapes are in good agreement with the experiments.

Figure 6. Reynolds profile and terminal Re error for the low Reynolds cases.



Table 3. Comparison of terminal shapes and Reynolds number observed in experiments and
predicted by numerical simulations.

Experiments Simulations

Eo = 116 Re = 2.34
M = 848 ε = 5.32%
Re = 2.47
Eo = 116 Re = 3.67
M = 266 ε = 2.68%
Re = 3.57
Eo=116 Re = 6.97

M = 41.1 ε = 2.607%
Re = 7.16
Eo=116 Re = 12.89

M = 5.51 ε = 3.11%
Re = 13.3
Eo=116 Re = 19.64

M = 1.31 ε = 3.71%
Re = 20.4

4. CONCLUSIONS

The numerical method to solve the Navier-Stokes equations and the front-tracking
method for the two phase flow interfaces treatment was implemented in an AMR framework.
The methodology was verified and validated under comparison with experimental results. The
preliminaries conclusions are that the methodology represents well the main physical charac-
teristics of this very complex problem. The next steps for the present project is to improve
this methodology in order to capture coalescence and fragmentation of bubbles in turbulent
two phase flows as well as to make numerical experiments to obtain statistical parameters as
drag, lift, added mass and Basset force.
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