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Abstract. The burned and healthy layers of skin tissue are  considered.  The  temperature 

distribution in the domains is described by the system  of two  Pennes  equations  with the 

different thermophysical parameters. In the healthy layer the metabolic and perfusion heat 

sources are taken into account, while the burned layer is dead and the blood perfusion and 

metabolic do not occur in this region. At the surface between burned and healthy layers the 

ideal contact is assumed (continuity of heat flux and temperature field), at the internal surface 

limiting the system the body temperature is known. Heat transfer between skin surface and 

environment is described by the well known Robin boundary condition  (ambient temperature 

and heat transfer coefficient are given). It is assumed that the shape of surface between 

burned and healthy tissue is unknown. Additional information necessary  to  solve  the inverse 

problem formulated results from a knowledge of skin surface temperature distribution. 

At the stage of direct problem solution the multiple reciprocity boundary element method is 

used. This variant allows one to avoid the discretization of domain interior (inside of the 

healthy tissue sub-domain the volumetric internal heat sources must be taken into account). 

To solve the inverse problem above formulated the gradient method is used and the shape 

sensitivity analysis is applied to determine the coefficients appearing in  the  least  square 

criterion. Here the implicit variant of shape sensitivity analysis is used. In the final part of the 

paper the results of computations are shown. 
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1. INTRODUCTION 

A very important problem in the burns therapy is a correct evaluation of skin burn depth [1, 2, 

3, 4]. One of the possibilities depends on the measurements of the temperature distribution at 

the skin surface (thermographs) and the solution of the problem using an inverse approach.  

So, the burned and healthy layers of skin tissue should be considered. The temperature distri-

bution in the domains is described by the system of two Pennes equations supplemented by 

the boundary conditions. The position of surface between burned and healthy tissues is un-
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known. Additional information necessary to solve the identification problem results from a 

knowledge of skin surface temperature distribution.  

At the stage of direct problem solution the classical boundary element method for burned sub-

domain and multiple reciprocity boundary element method for healthy tissue sub-domain are 

used. These methods are coupled by the boundary condition given at the contact surface be-

tween sub-domains considered. This approach allows one to avoid the discretization of do-

main interior (inside the healthy tissue sub-domain the volumetric internal heat sources must 

be taken into account). 

To solve the inverse problem formulated the gradient method is used. The least square criteri-

on is applied in which the sensitivity coefficients appear. To determine these coefficients the 

implicit variant of shape sensitivity analysis is introduced. In the final part of the paper the 

results of computations are shown. 

2. GOVERNING EQUATIONS 

Let us consider the domain formed by two sub-domains (Figure 1). 

 

 
Figure 1. Domain considered. 

 

The steady state Pennes equation for healthy tissue is of the following form 

  2

2 2 2 2: λ ( ) ( ) 0B B B metx T x W c T T x Q      , (1) 

where T2 (x) is the tissue temperature, λ2  is the tissue thermal conductivity, WB is the blood 

perfusion rate, cB is the specific heat of blood,  TB   is  the  arterial  blood  temperature,  Qmet  

is the metabolic heat source, x are  the  spatial  co-ordinates, x={x1, x2} for 2D problem, 

x={x1, x2,  x3} for 3D problem. 

For burned tissue, blood perfusion and metabolic heat generation are equal to zero, because 

the tissue is dead. So 

 2

1 1 1: λ ( ) 0x T x   , (2) 

where λ1 is the  thermal conductivity of burned tissue. 



 

 

At the surface between sub-domains the continuity of heat flux and temperature field is as-

sumed 
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where Te /n , e=1, 2 denotes the normal derivative, n is the normal outward vector, for 2D 

problem:  n= [cos1  cos2], for 3D problem:  n= [cos1  cos2  cos3].  

At the skin surface being in a thermal contact with an environment the Robin condition 

should be taken into account 
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where α is the heat transfer coefficient, Ta is the ambient temperature. 

At the internal surface  the body core temperature is known 

 
2: ( )in bx T x T  . (5) 

For all others boundaries the zero heat flux can be assumed.  

3. BOUNDARY ELEMENT METHOD 

3.1. Boundary integral equation for burned and healthy tissue 

The direct problem has been solved using the boundary element method [5, 6]. The boundary 

integral equation corresponding to the equation (2) is the following 

            * *

1 1 1 1 1ξ ξ ξ, d ξ, dB T q x T x T x q x
 

     , (6) 

where ξ is the observation point, the coefficient B(ξ) is dependent on the location of source point 

ξ, T
*
( ξ, x) is the fundamental solution,    * *

1 1 1ξ, λ ξ, /q x T x n     is the heat flux resulting 

from fundamental solution,    λ /q x T x n     is the heat flux. 

Fundamental solution of the problem discussed is of the form 
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and then 
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where r is the distance  between  the points ξ and x, while 
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For the healthy tissue sub-domain the multiple reciprocity boundary element method [7, 8] 

has been applied. This variant of the BEM allows one to avoid the discretization  of domain 

interior. So, the following integral equation corresponding to the equation (1) is considered 
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where B B B metQ W c T Q   

Functions  * ξ,lV x  are defined as follows 
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where 
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and 
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The heat fluxes    * *

2ξ, λ ξ, /l lZ x V x n     resulting from the fundamental solutions (11) can 

be calculated analytically and then 
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3.2. Numerical realization of the BEM 

To solve the equations (6) and (10) the boundary Γ is divided into  N elements  Γj =1,2,…,N. 

Next,  the integrals in the equations (6), (10) can be replaced by the sums of integrals over 

these elements, leading to the following equations 
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and 
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where N1 is the number of elements distinguished at the boundary limiting domain Ω1. 

It should be pointed out that different types of boundary elements can be used, namely con-

stant elements, linear or parabolic ones [5, 6]. Here the linear boundary elements are applied 

[5. 6].  

After the mathematical manipulations one obtains the following system of algebraic equations 

corresponding to the burned tissue 
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and the system of equations corresponding to the healthy tissue 
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where K1 is the number of boundary nodes  located at the boundary limiting sub-domain Ω1, 

KK1 is the number of boundary nodes  located at the boundary limiting sub-domain Ω2. For 

example, for 2D problem presented in Figure 2: K1 =48, K=108. It should be pointed out that 

taking into account the boundary conditions, at the contact surface between sub-domains Ω1 



 

 

and Ω2 (nodes 2869 in Figure 2) the double boundary nodes  should be introduced. The re-

maining double nodes (shown in Figure 2) for example 3-4, 24-25 correspond to different 

boundary conditions, namely nodes 4, 25 are connected with the Robin condition, while nodes 

3, 25 are connected with the Neumann condition. 

 
Figure 2. Discretization of boundaries. 

 

The systems of equations (17), (18)  can be written in the matrix form 

 
1 1 1 1G q H T  (19) 

and 

 
2 2 2 2 G q H T P . (20) 

The way of calculation of matrix elements G1, H1, G2, H2, P is described in details in [7]. 

For the needs of further considerations concerning the temperature field calculation the fol-

lowing denotations are introduced (c.f. Figures 1 and 2) 
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 3 4 3 4
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are the vectors of functions T and q at the boundary 

Γ3Γ4Γin of domain Ω2. 

Using above notations, one obtains the following systems of equations 

 for the burned region 
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- for the healthy tissue domain 
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The condition (3) written in the form 
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should be introduced to the equations (21), (22).  

Next, coupling these system of equations one has  
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The remaining boundary conditions should be also taken into account. So 
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or 

 AY B  (26) 

where A is the main matrix of the system of equations (25), Y is the vector of unknowns and 

B is the free terms vector. 

The system of equations (26) allows one to find the ,missing’’ boundary values. Knowledge 

of boundary temperatures and heat fluxes at all nodes constitutes a basis for determination of 

internal temperatures at the optional points selected from the domain considered [7, 8]. 

4. SHAPE SENSITIVITY ANALYSIS 

In literature one can find two basic approaches to sensitivity analysis using the boundary ele-

ment method: the continuous approach and the discretized one [9]. In the case of continuous 

approach (explicit differentiation method) the mathematical model of sensitivity is formulated 

and  next the solution is found numerically using the BEM. The implicit differentiation meth-

od, which belongs to the discretized approach, basis on the differentiation of algebraic bound-

ary element matrix equations. 

In the paper the implicit differentiation method is applied. Let us assume that b is the shape 

parameter [9, 10]. The system of equations (25) should be differentiated with respect to pa-

rameter b and then 
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It should be pointed out that the derivatives of the boundary element matrices are calculated 

analytically [11].  The additional problem defined by the system of equations (28) has been 

solved using the BEM. The main matrix of the systems of equations (26) and (28) is the same. 

5. INVERSE PROBLEM 

The rectangular domain of dimensions 2LL with internal boundary Γc shown in Figure 1 is 

considered. The inverse problem formulated here bases on the assumption that the tempera-

ture distribution at the skin surface Γex is known (e.g. thermographs), while the position of  

Γc is unknown. The ‘measured’  temperatures  at  the  skin  surface  are  denoted   by  Td i, i = 

1,2,…M, where M  is the number of sensors. 

 

 

 



 

 

The surface Γc is defined by the parabolic function 
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where (L, yp) is the parabolic vertex. The inverse problem consists in the identification of val-

ue b = yp which determines maximum burn depth in the domain considered. 

The criterion which should be minimized is of the form [12] 
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where  Ti are the calculated temperatures. These temperatures are obtained from the direct 

problem solution with an estimate for unknown value of b.  

Using the necessary condition of minimum, one obtains 
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where 
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are the sensitivity coefficients, k is the number of iteration, for k = 0 b
0
 is the arbitrary as-

sumed value  of parameter b, while b
k
 for k > 0 results from the previous iteration. It should 

be pointed out that in order to determine the coefficients (32) the shape sensitivity analysis 

described in chapter 4 is used. 

Function Ti is expanded in the Taylor series about known value of b
k
, this means 
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Introducing (33) into (31) one obtains 
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where K is the assumed number of iterations. 



 

 

6. RESULTS OF COMPUTATIONS 

The domain of dimensions 0.04m 0.02m has been considered. At first, the direct problem 

described in Chapter 1 has been solved. The following input data have been assumed: thermal 

conductivity of burned tissue λ1=0.1 W/(mK), thermal conductivity of healthy tissue λ2=0.2 

W/(mK), blood perfusion rate WB =0.5 kg/((m
3
s), specific heat of blood cB=4200 J/(kgK), 

arterial blood temperature TB=37
o
C,  metabolic heat source Qmet =200 W/m

3
,  heat transfer 

coefficient α=10 W/ (m
2
K), ambient temperature Ta=20

o
C.  The discretization of boundaries 

of  burned and healthy tissue sub-domains using the linear boundary elements is shown in 

Figure 2.  

In Figure 3 the temperature distribution at the skin surface for three different values of para-

bolic vertex b (c.f. Figure 2) this means 0.012 m, 0.014 m and 0.016 m is shown.  The last 

curve corresponds to the constant burn depth, of course. 

 

 
Figure 3. Temperature distribution at the skin surface: 1– b=0.012m, 2 – b=0.014 m, 

3 – b=0.016 m. 

 

Next, the inverse problem has been solved using the values of temperatures at the skin surface 

(nodes 4-24 shown in Figure 2)  obtained from the solution of direct problem – c.f. Figure 3. 

The parameter b has been estimated in iterative way (equation (35)). In  Figures 4, 5, 6 the 

results of inverse problems solution are shown. These Figures illustrate the values of parame-

ter b for successive iterations and the curves correspond to the different initial values of pa-

rameter b
0
. In the all cases presented the iteration process was convergent and the exact value 

of b has been obtained after the several iterations.  

 

 

 

 

 



 

 

 
Figure 4. Results of identification for different initial values of b

0
 (breal =0.012 m). 

 
Figure 5. Results of identification for different initial values of b

0
 (breal =0.014 m). 

 
Figure 6. Results of identification for different initial values of b

0
 (breal =0.016 m). 



 

 

7. CONCLUSIONS 

The possibilities of burn shape estimation on the basis of knowledge of skin surface tempera-

ture are shown. To this end the mathematical model basing on the system of two Pennes equa-

tions for burned and healthy tissue has been formulated and least square criterion has been 

applied. The inverse problem has been solved by gradient method coupled with the BEM. In 

future, real values of skin temperatures obtained from experiments will be applied. 
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