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Abstract. This paper presents a boundary element formulation for the computation of mo-
ments at internal points of laminated composite thick plates. Fundamental solutions for or-
thotropic thick plates are obtained usingHmander operator and Radon transform. So, they

do not have a closed form and numerical integration is necessary to compute fundamental
solutions in each field point. Integral equations for moments are developed and all deriva-
tives of the fundamental solution are computed. A special integration technique is used in
order to improve performance of the method. The obtained results are in good agreement
with literature.
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1. INTRODUCTION

In recent years, the boundary element method (BEM) has become an attractive tool
for resolution of complex problems which have the formulation described by partial differen-
tial equations. Analysis of plate bending problems using the BEM has attracted the attention
of many researchers during the past years, proving to be a particularly adequate field of ap-
plications for that technique. The first work about thick Reissner and Mindlin plates using
boundary method element has been proposed by [1]. Many works have reported the applica-
tion of boundary method elements to bending analysis in thick plates using the theory Reissner
[2], [3], [4], [7], [9] and [10]. [8] presented a boundary method element formulation to thick
Mindlin plates for orthotropic shear deformable plates. This work proposes a numerical pro-
cedure to compute moments at internal points of orthotropic shear deformable plates using a
boundary element formulation that follows the Mindlin hypotheses. It uses the fundamental
solution proposed in [8] that takes into account the effects of shear deformation and was de-
rived by means of Ermander operator and the Radon transform. Some numerical examples
concerning orthotropic plate bending problems are analyzed with the BEM.



2. MINDLIN PLATE THEORY

The Mindlin’s theory assumes displacement distributiaodlgh the thickness. Using
the assumptions of the classical theory, he removed thethggpis of the transverse shear
deformation equal zero in the mid plane, but considering thstortion variation is null.
Thus:
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So, equations of equilibrium for the plate are given by:
Maﬁ,ﬁ - Qa = 0. (3)

Qa,a+q = 0. (4)

wheregq is the distributed transverse load per unit area inzthdirection. The bending mo-
mentsM,; and the shear force3,, for orthotropic plates are expressed in terms of the rota-
tions and the lateral displacement as:

Mop = Dop(Wa,p + wpa) + Captty - (5)

Qa = Ca(wa + w3,a)- (6)

where no summation is assumed in Eg. (5) and Eq. (6) with o¢gpethe indicesy, 5.
Material parameters are gives as [11]:

Dy = 211 — vy), Doy = £22(1 — 1), D1y = Doy = Dy, = G%thy
Ci = Divyy, Coo = Do, C12C5 = 0,
E1h3 Eoh3 (7)
Dl = 12(1—v12v21)? D2 = 12(1—v12v21)? D1V21 - D2V12’
Cl == Glgkh 5 CQ - Gggkh.

in whichk = 5/6 in the Reissner plate theork,; andE, represent Young's modukiy;2, G13
and(Go3 are shear moduly;, andw,, are Poisson’s ratios, respectively, dni the thickness
of the plate.

3. DIFFERENTIAL EQUATIONS OF EQUILIBRIUM
The differential equation of equilibrium is give by [8]:



whereb,; represent the body force ard, are Navier differential operators, which can be
written as:

Ly =Dy 25 + D25 - €, Ly = D25 + Dy s — Co,
1 2 1 2
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4. FUNDAMENTAL SOLUTION

The fundamental solutions of the orthotropic thick platertg into account the trans-
verse shear deformation are a set of particular solutiorteeoflifferential Eq. (8) under a
unit concentrated load, i.e., the solutions satisfy théwhg inhomogeneous differential
equations:

L Uiy (C ) = =0(C, 7). (10)
in which 6(¢, ) denotes the Dirac delta functiog,represents the source pointjs a field

point andL“dJ Is the adjoint operator. Followingdtmander’s operator method, the solutions
of Eq. (7) can be written as:

Uy (G ) = LiP (¢, ). (11)
where¢((, x) is a unknown scalar function aﬁdL?,f] is the cofactor matrix of the operator
LY that is given by:
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The following symbols have been introduced:
Ell - D27 E22 - Dl, E12 = E21 - 07
By = Dy — Dy, Boy = Dy — Dy, Biy = Boy = (Dhjiyz + Dy),
Er3 = C1Dy — Co(D1piye + D), Big = C1 Dy, Eog = CyDy,,
Bas = CyDy — Cy(Dyjiye + Dy), Vi=Cilhs+ G, V=Tt s

(15)



By substituting Eq. 11 into 7, we obtain the following equatio

84 5 9 84
D1Dy— + (D1Dy — DMW — 2D Dypiye) 5=+

oz Or20x3
o 0? '
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84
D, R0(C ) = o) (16)
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The derivation of the fundamental solution of Eq. (7) is reshlito that of Eq. (16). As
soon as the solution of Eq. (16) is obtained, substitutimgda Eq. (11) and by differentiation
we can get the solutions of Eg. (7). Eg. (16) is a sixth ordetigdadifferential equation.
Using the plane wave decomposition method, the partiadwdfitial Eq. (16) can be reduced
to an ordinary differential equation, which simplifies theatment of the problem. We first
expandi((, x) into a plane wave (see, for example, [8]):

1 27

5(<7ZL’) = _m o

in which (w;,w-) are the coordinates of a point on the unit circle, i@.,= cos(#), ws =
sin(#), (x,y) and(¢,n) are the coordinates of a field point and a source point, réspsc
Similarly, ¢(¢, x) can be written as:

’ wl(x - C) + w2(y - 77) |_2 d@, (17)

(C.x) = / " (o), (18)

wherep = w;(z — () + wa(y — ), ¢(p) is a function depending only gn
By substituting Eq. (17) and Eqg. (18) into Eq. (16), and coesid) differential
relationship% = wadip, we obtain the following equation:

4 2
- (57 - p2) olo) = 153 1017 (19)
in which
a? = C1 Dy Dyw§ + Cy(Dy Dy — D3 i, — 2D Dy fiye )wiws +C1 Dy Dywiwy + Co Dy Dywiws +
OQDQDkWS

+Co(D1 Dy — DY}, — 2D1 Digfuy)wiws,
v? = C1Cy[Diwt + 2(2Dy, + D puye)wiws + Dawy],
p? = b*/a’.

The solution of Eq. (16) is now reduced to solve the ordinaffeiential Eq. (19).
After four times integration of Eq. (19) and leaving out tlimstants of integration, we obtain:

d*¢(p 1
A elp) = gt | 9] (20)

The solution of Eq. (20) can be written as follows:

©(p) = filp)exp(pp) + fa(p)exp(—pp). (21)



By the method of variation of parameters, the coefficiefity) and f»(p) can be
obtained. By substituting; (p) and f(p) into Eq. (21), we obtain:

1

- Sm2pia?
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o
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Substituting Eq. (22) into Eq. (18) and integrating, we chtam the functionb((, x).
The generalized displacement and boundary tractions cexgdressed in the following forms:

21
Uy = [ Tylolas 23)
0
2
PiCo = [ Pyoas (24)
0
Details of the implementation of Eq. (23) and Eq. (24) candumdl in [8].

5. BOUNDARY INTEGRAL EQUATIONS

The boundary integral equation of the orthotropic thickgdaaking into account the
transverse shear deformation is given by:

S(OUO + £ ¢ U @ar = [UscoP@ar+ [ awUi(¢ o, @)
where(,z € I are source point and field point, respectively. The value;gf) is equal
to ¢;;/2 whenz is located on a smooth boundary. Equation (25) represerge fhtegral
equations, twoi(= « = 1, 2) for rotations and one (= 3) for deflection.

Bending moments at any internal poijntan be computed by differentiating Eq. (25)
with respect to the coordinate of the source pqirind then substituting in Eq. (7) and Eq.
(11) to give:

My = /F U o1 (¢, 2)prdl () — /F Pis(C, x)up(x)dT (z) + g /F Was(G)dl () (26)

The last integrals on the right hand side of equation (25) @6, that are domain
integrals, were transformed into boundary integrals bydlél integration method (see [12]).
where the kernel#,, P, andW;, are computed following [13] but extending the formu-
lation for the orthotropic case.



6. NUMERICAL RESULTS

Consider a square clamped-plate under uniformly distribldad with amplitude; =
—2.07 x 10° N/m?. The plate is orthotropic with the following material profies: £, =
0.6895 x 10" Pa,E, = 2 x E, andv = 0.25. The edges of plate is = 0.254 m and thickness
h = 0.0127 m. This problem has been analysed by [11]. Constant boundamyeats with
equal length were used in the discretization.

As can be seen in Table 1, results are in good agreement wathtlire. Compared
with results of [11], it was obtained a difference of 1.79 %tfte displacement at the central
point and 0.002% for moment indirection at central point.

Table 1: Displacement and Moment at the center of plate.

NE | Displacement (m) Moment (Nxm/m)
40 6.94 x 1073 4,119.3
80 6.84 x 1073 4,088.5
[11] 6.72 x 1073 4,089.5

7. CONCLUSIONS

This paper presented a boundary element formulation fazdahgputation of moments
at internal points. The moment integral equation was obthioy computing the derivative
of the displacement integral equation with respect to thecopoint position. Derivatives of
fundamental solutions were computed and the domain idtedgeato the distributed load is
transformed into boundary integral by the radial integratmethod. So, all integrals in the
formulation are boundary integrals. The obtained formatatvere applied to a orthotropic
square plate under uniformly distributed load. The momeuit displacement at the central
point of the plate were compared with literature showingdyagreement.
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