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Abstract. This paper presents a boundary element formulation for the computation of mo-
ments at internal points of laminated composite thick plates. Fundamental solutions for or-
thotropic thick plates are obtained using Hörmander operator and Radon transform. So, they
do not have a closed form and numerical integration is necessary to compute fundamental
solutions in each field point. Integral equations for moments are developed and all deriva-
tives of the fundamental solution are computed. A special integration technique is used in
order to improve performance of the method. The obtained results are in good agreement
with literature.
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1. INTRODUCTION

In recent years, the boundary element method (BEM) has become an attractive tool
for resolution of complex problems which have the formulation described by partial differen-
tial equations. Analysis of plate bending problems using the BEM has attracted the attention
of many researchers during the past years, proving to be a particularly adequate field of ap-
plications for that technique. The first work about thick Reissner and Mindlin plates using
boundary method element has been proposed by [1]. Many works have reported the applica-
tion of boundary method elements to bending analysis in thick plates using the theory Reissner
[2], [3], [4], [7], [9] and [10]. [8] presented a boundary method element formulation to thick
Mindlin plates for orthotropic shear deformable plates. This work proposes a numerical pro-
cedure to compute moments at internal points of orthotropic shear deformable plates using a
boundary element formulation that follows the Mindlin hypotheses. It uses the fundamental
solution proposed in [8] that takes into account the effects of shear deformation and was de-
rived by means of Ḧormander operator and the Radon transform. Some numerical examples
concerning orthotropic plate bending problems are analyzed with the BEM.
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2. MINDLIN PLATE THEORY

The Mindlin’s theory assumes displacement distribution through the thickness. Using
the assumptions of the classical theory, he removed the hypothesis of the transverse shear
deformation equal zero in the mid plane, but considering that distortion variation is null.
Thus:

∂γ13
∂x3

= 0. (1)

∂γ23
∂x3

= 0. (2)

So, equations of equilibrium for the plate are given by:

Mαβ,β −Qα = 0. (3)

Qα,α + q = 0. (4)

whereq is the distributed transverse load per unit area in thex3 direction. The bending mo-
mentsMαβ and the shear forcesQα for orthotropic plates are expressed in terms of the rota-
tions and the lateral displacement as:

Mαβ = Dαβ(wα,β + wβ,α) + Cαβwγ,γ . (5)

Qα = Cα(wα + w3,α). (6)

where no summation is assumed in Eq. (5) and Eq. (6) with respect to the indicesα, β.
Material parameters are gives as [11]:

D11 =
D1

2
(1− ν21), D22 =

D2

2
(1− ν12), D12 = D21 = Dk =

G12h
3

12
,

C11 = D1ν21, C22 = D2ν12, C12C21 = 0,

D1 =
E1h

3

12(1−ν12ν21)
, D2 =

E2h
3

12(1−ν12ν21)
, D1ν21 = D2ν12,

C1 = G13kh , C2 = G23kh.

(7)

in whichk = 5/6 in the Reissner plate theory,E1 andE2 represent Young’s moduli,G12, G13

andG23 are shear moduli,ν12 andν21 are Poisson’s ratios, respectively, andh is the thickness
of the plate.

3. DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

The differential equation of equilibrium is give by [8]:

LijUj + bi = 0. (8)



wherebi represent the body force andLij are Navier differential operators, which can be
written as:

L11 = D1
∂2

∂x2

1

+Dk
∂2

∂x2

2

− C1, L22 = Dk
∂2

∂x2

1

+D2
∂2

∂x2

2

− C2,

L12 = L21 = (D1µyx +Dk)
∂2

∂x1∂x2

, L13 = −L31 = −C1
∂

∂x1

,

L23 = −L32 = −C2
∂

∂x2

, L33 = C1
∂2

∂x2

1

+ C2
∂2

∂x2

2

.

(9)

4. FUNDAMENTAL SOLUTION

The fundamental solutions of the orthotropic thick plate taking into account the trans-
verse shear deformation are a set of particular solutions ofthe differential Eq. (8) under a
unit concentrated load, i.e., the solutions satisfy the following inhomogeneous differential
equations:

Ladj
ij U∗

kj(ζ, x) = −δ(ζ, x)δki. (10)

in which δ(ζ, x) denotes the Dirac delta function,ζ represents the source point,x is a field
point andLadj

ij is the adjoint operator. Following Ḧormander’s operator method, the solutions
of Eq. (7) can be written as:

U∗

kj(ζ, x) =
co Ladj

jk φ(ζ, x). (11)

whereφ(ζ, x) is a unknown scalar function andcoLadj
jk is the cofactor matrix of the operator

Ladj
jk that is given by:

coLadj
αβ = Eαβ∇

2∇2
k − Bαβ

∂2

∂xα∂xβ

− C1C2
∂2

∂xα∂xβ

. (12)

coLadj
3α = −coLadj

α3 =
∂

∂xα

(Eα3
∂2

∂x2
2

+ Bα3
∂2

∂x2
1

− C1C2). (13)

coLadj
33 = D1Dk

∂4

∂x4
1

+ (D1D2 −D2
1µ

2
yx − 2D1Dkµyx)

∂4

∂x2
1∂x

2
2

. (14)

+D2Dk

∂4

∂x4
2

− (D1C2 + C1Dk)
∂2

∂x2
1

− (C1D2 + C2Dk)
∂2

∂x2
2

+ C1C2.

The following symbols have been introduced:

E11 = D2, E22 = D1, E12 = E21 = 0,

B11 = D2 −Dk, B22 = D1 −Dk, B12 = B21 = (D1µyx +Dk),

E13 = C1D2 − C2(D1µyx +Dk), B13 = C1Dk, E23 = C2Dk,

B23 = C2D1 − C1(D1µyx +Dk), ∇2
k = C1

∂2

∂x2

1

+ C2
∂2

∂x2

2

, ∇2 = ∂2

∂x2

1

+ ∂2

∂x2

2

.

(15)



By substituting Eq. 11 into 7, we obtain the following equation:

{

∇2
k

[

D1Dk

∂4

∂x4
1

+ (D1D2 −D2
1µ

2
yx − 2D1Dkµyx)

∂4

∂x2
1∂x

2
2

+

]

+D2Dk

∂4

∂x4
2

− C1C2

[

D1
∂2

∂x2
1

+ 2(2Dk +D1µyx)
∂4

∂x2
1∂x

2
2

+D2
∂4

∂x4
2

]}

Φ(ζ, x) = −δ(ζ, x) (16)

The derivation of the fundamental solution of Eq. (7) is reduced to that of Eq. (16). As
soon as the solution of Eq. (16) is obtained, substituting itinto Eq. (11) and by differentiation
we can get the solutions of Eq. (7). Eq. (16) is a sixth order partial differential equation.
Using the plane wave decomposition method, the partial differential Eq. (16) can be reduced
to an ordinary differential equation, which simplifies the treatment of the problem. We first
expandδ(ζ, x) into a plane wave (see, for example, [8]):

δ(ζ, x) = −
1

4π2

∫ 2π

0

| ω1(x− ζ) + ω
2
(y − η) |−2 dθ, (17)

in which (ω1, ω2) are the coordinates of a point on the unit circle, i.e.,ω1 = cos(θ), ω2 =

sin(θ), (x, y) and(ζ, η) are the coordinates of a field point and a source point, respectively.
Similarly,φ(ζ, x) can be written as:

Φ(ζ, x) =

∫ 2π

0

ϕ(ρ)dθ, (18)

whereρ = ω1(x− ζ) + ω2(y − η), ϕ(ρ) is a function depending only onρ.
By substituting Eq. (17) and Eq. (18) into Eq. (16), and considering differential

relationship ∂
∂xα

= ωα
d
dρ

, we obtain the following equation:

d4

dρ4

(

d2

dρ2
− p2

)

ϕ(ρ) =
1

4π2a2
| ρ |−2, (19)

in which
a2 = C1D1Dkω

6
1+C1(D1D2−D2

1µ
2
yx−2D1Dkµyx)ω

4
1ω

2
2 +C1D2Dkω

2
1ω

4
2+C2D1Dkω

4
1ω

2
2+

C2D2Dkω
6
2

+C2(D1D2 −D2
1µ

2
yx − 2D1Dkµyx)ω

2
1ω

4
2,

b2 = C1C2[D1ω
4
1 + 2(2Dk +D1µyx)ω

2
1ω

2
2 +D2ω

4
2],

p2 = b2/a2.

The solution of Eq. (16) is now reduced to solve the ordinary differential Eq. (19).
After four times integration of Eq. (19) and leaving out the constants of integration, we obtain:

d2ϕ(ρ)

dρ2
− p2ϕ(ρ) = −

1

8π2a2
p2ln | ρ | . (20)

The solution of Eq. (20) can be written as follows:

ϕ(ρ) = f1(ρ)exp(pρ) + f2(ρ)exp(−pρ). (21)



By the method of variation of parameters, the coefficientsf1(ρ) and f2(ρ) can be
obtained. By substitutingf1(ρ) andf2(ρ) into Eq. (21), we obtain:

ϕ(ρ) =
1

8π2p4a2
[p2ρ2ln | ρ | +2ln | ρ | +3

+exp(pρ)

∫

∞

ρ

exp(−pσ)

σ
dσ

−exp(−pρ)

∫ ρ

−∞

exp(pσ)

σ
dσ]. (22)

Substituting Eq. (22) into Eq. (18) and integrating, we can obtain the functionΦ(ζ, x).
The generalized displacement and boundary tractions can beexpressed in the following forms:

U∗

ij(ζ, x) =

∫ 2π

0

Ũ∗

ij(ρ)dθ, (23)

P ∗

ij(ζ, x) =

∫ 2π

0

P̃ ∗

ij(ρ)dθ. (24)

Details of the implementation of Eq. (23) and Eq. (24) can be found in [8].

5. BOUNDARY INTEGRAL EQUATIONS

The boundary integral equation of the orthotropic thick plates taking into account the
transverse shear deformation is given by:

cij(ζ)Uj(ζ) +

∫

Γ

− P ∗

ij(ζ, x)Uj(x)dΓ =

∫

Γ

U∗

ij(ζ, x)Pj(x)dΓ +

∫

Ω

q(x)U∗

i3(ζ, x)dΩ, (25)

whereζ, x ∈ Γ are source point and field point, respectively. The value ofcij(x) is equal
to δij/2 whenx is located on a smooth boundary. Equation (25) represents three integral
equations, two (i = α = 1, 2) for rotations and one (i = 3) for deflection.

Bending moments at any internal pointζ can be computed by differentiating Eq. (25)
with respect to the coordinate of the source pointζ and then substituting in Eq. (7) and Eq.
(11) to give:

Mαβ =

∫

Γ

U∗

αβk(ζ, x)pkdΓ(x)−

∫

Γ

P ∗

αβk(ζ, x)uk(x)dΓ(x) + q

∫

Γ

W ∗

αβ(ζ, x)dΓ(x) (26)

The last integrals on the right hand side of equation (25) and(26), that are domain
integrals, were transformed into boundary integrals by theradial integration method (see [12]).
where the kernelsU∗

ijk, P
∗

ijk andW ∗

ijk are computed following [13] but extending the formu-
lation for the orthotropic case.



6. NUMERICAL RESULTS

Consider a square clamped-plate under uniformly distributed load with amplitudeq =
−2.07 × 106 N/m2. The plate is orthotropic with the following material properties: Ey =

0.6895×1010 Pa,Ex = 2×Ey andν = 0.25. The edges of plate isa = 0.254 m and thickness
h = 0.0127 m. This problem has been analysed by [11]. Constant boundary elements with
equal length were used in the discretization.

As can be seen in Table 1, results are in good agreement with literature. Compared
with results of [11], it was obtained a difference of 1.79 % for the displacement at the central
point and 0.002% for moment inx direction at central point.

Table 1: Displacement and Moment at the center of plate.

NE Displacement (m) Moment (N×m/m)
40 6.94× 10

−3 4,119.3
80 6.84× 10

−3 4,088.5
[11] 6.72× 10

−3 4,089.5

7. CONCLUSIONS

This paper presented a boundary element formulation for thecomputation of moments
at internal points. The moment integral equation was obtained by computing the derivative
of the displacement integral equation with respect to the source point position. Derivatives of
fundamental solutions were computed and the domain integral due to the distributed load is
transformed into boundary integral by the radial integration method. So, all integrals in the
formulation are boundary integrals. The obtained formulation were applied to a orthotropic
square plate under uniformly distributed load. The moment and displacement at the central
point of the plate were compared with literature showing good agreement.
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