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Abstract. The methodology and examples of utilising neural networks for assisting, 

controlling and designing technological processes is presented in the paper. Examples 

concern the continuous melting, casting and rolling of aluminium and alloy rod intended for 

drawing for electrical wires. Neural networks allow to build dependencies between the 

performance parameter set, chemical composition of the processed material, and product 

properties. These functions are used for the process control and for determining the optimal 

work point of the technological line. The initial data constitute the analytical results of the 

metal chemical composition and process data collected by the specially built system of 

canvassing realisation parameters of all unit processes. The effectiveness and efficiency of the 

system was assessed.  
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1. PROBLEM FORMULATION 

The results of research concerning empirical dependencies between properties of the 

processed material and the chemical composition and parameters of the processes forming the 

technological line, are presented in the paper. The neural network technique was applied for 

the approximation of the experimental data. 

The problem was solved in full consciousness that in multi-operational technologies in 

some cases only it is possible to predict properties after the selected operation stage 

(especially after the final operation) on the grounds of the properties before this operation and 

information of this operation parameters.  
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The most often the structure state before the operation, formed in successive 

operations should be also taken into account. This information can be given by the 

configuration and parameters of unit processes, it means by the processing history. For 

example, properties of the alloy, which is subjected to the precipitation strengthening after the 

drawing process, will depend not only on its chemical composition and deformation 

dimensions but also on the kind and parameters of the heat treatment before drawing, e.g. 

hyperquenching, natural aging and parameters of eventual artificial aging before drawing. A 

configuration of operations and their parameters are indirect information concerning the 

structure state differently reacting for deformations.  

Likewise, in case of annealing of a material, which is not subjected to the precipitation 

strengthening, not only its chemical composition, temperature and time should be taken into 

account, but also the structure state - at least by giving its cold deformation value. 

In consequence, two types of models were singled out. 

1. Models taking into account the previous operations and the parameters of the operation 

after which the properties are determined: 

PROPERTIES = f(chemical composition; parameters of the previous and actual 

unit process) 

2. Models taking into account the initial property value before the selected operation and 

parameters of this operation: 

PROPERTIES = f(chemical composition; the looked for parameter value before the 

operation, parameters of the operation) 

 

In both cases the problems are multidimensional and non-linear. 

The special program was developed for solving these problems. All technological 

stages, joining unit processes in groups, variables, connections and model designing within 

these variables are defined by the user. Models are remembered and can be improved by the 

new data introduction. The computational results are presented in numerical and graphite 

forms. The measuring data are introduced into the data base regardless of models designing 

and defining procedures. Models can be built for the already existing data in various 

configurations. Network parameters are determined at the stage of its training on the basis of 

the introduced measurement results. The neural network training occurs after each portion of 

experimental data and in this sense the program is of an adaptive character.  

After defining of the models the selection of proper data from the data base and the 

network training program are activated. When the training is finished, the network structure is 

stored in the disc under the model name. The access to it is possible by introducing the name. 

The main monitor of the program is presented in Figure 1. 



 
Figure 1. Main monitor of the program. 

 

Training functions are organised in the monitor shown in Figure 2. 

 

 
Figure 2. Neural network training (model building). 

 

An example of solving the dependence: tensile strength (Rm) as a function of the annealing 

temperature (T) is presented in Figure 3. 

 

 
Figure 3. Presentation of the solution: Rm=f(T). 

 

 

 

 



2. ESSENCE OF MODELING BY NEURAL NETWORKS 

 Artificial neural networks (ANN) are effective tools for solving this type of problems 

mainly due to their ability of approximation of any multidimensional non-linear function. The 

approximated function is obtained in the network training process, and this feature singles it 

out from other technical systems [1-3]. Network training is based on presenting the training 

set it means the set of the process parameters values and the product parameters values. 

During the training process the network modifies its parameters in such a way as to find their 

relations. The result is in a form of the network model, being simultaneously the process 

model. The network excitation by values corresponding to process parameters causes that 

values corresponding to the product parameters occur at the output. The problem is presented 

schematically in Figure 4. 

 
Figure 4. Processing of input data into output data by means of the neural network. 

 

An attraction of a neural networks application is also caused by the possibility of their 

continuous adaptation. During the training process the network adapts itself to the new data. 

The model of the single artificial neuron and the way of training and answering computation 

is presented in Figure 5. 
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Figure 5. Neuron model. 
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During the training process the neuron modifies its balance to minimise the quality 

index (1). Training consists in looking for the minimum of function (1) by the iterative 

method of the steepest descent. The obtained algorithm is very simple and reduced to adding a 

certain part of input signals vector to the balance vector. 

Unidirectional neural network is composed of layers containing neurons of the same 

type. The network topology (Figure 6) is very regular. Each layer input is joined with each 

neuron. Each input has the assigned balance. Each layer output is joined with each neuron of 

the next layer or can constitute the network output. This enables a generalization of the 

algorithm training single neuron into the whole network. In case of training multilayer 

networks the back-propagation algorithm is used. 
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Figure 6. Neural network model. 

 

Depending on the number of layers the network has not only the ability for 

approximating more and more complex functions but also for the identification of various 

shapes in a multidimensional space. This feature can be used for the determination of the 

process work point (set of optimal parameters). The two-layer network built of ideal 

perceptrons is able to recognize simplexes sets. Three-layer network built from the same 

elements identifies concave and disjoint sets. Giving at the network input the process 

parameters set and at the output the binary information: 1 – process without defects, 0 – 

process with defects, such trained network can be used either to the process control or to the 

determination – by the simulation method – of allowable changes of input parameters. 

Substituting ideal perceptrons by real neurons of e.g. sigmoidal transfer function causes that 

only some determination strictness of the transfer limit from one state into another is lost. The 

example of visualisation is presented in Figure 7. 
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Figure 7. Example of the process, in which defects depend on two parameters and occur in the 

triangle shape  

a) two-layer network, b) three-layer network. 

3. EXAMPLES OF MODELS FOR VARIUS TECHNOLOGICAL PROBLEMS  

3.1. Evolution of properties of AlMgSi alloys in production processes of self-supporting  

electrical wires. 

Self-supporting electrical wires are produced from AlMgSi alloy. A charge for wire 

drawing, from which cables are twisted is a round wire rod of a diameter 9.5mm produced in 

the continuous casting and rolling line under conditions which warrant hyperquenching 

during rolling and cooling behind the rolling mill.  

Wire and cable properties are formed by the chemical composition (basic additions 

content, according to the standard, is: ~0.4÷0.8%Mg and ~0.4÷0.8%Si), utilising effects 

resulting from deformations (drawing), precipitation strengthening (natural and artificial 

aging) and effects of the heat-plastic treatment. This treatment occurs during hot-rolling in the 

continuous casting and rolling line with simultaneous hyperquenching and also during 

drawing when the wire temperature obtains values from the range corresponding to the 

artificial aging conditions. Wire properties can undergo successive changes during an 

insulation placement. This operation is carried out at a temperature app. 160ºC and is 

followed by the next heat treatment in special lines at a temperature of 350ºC for 3÷4 minutes. 

In the end the chemical composition, technological paths (alloys after another 

hyperquenching can be processed in various configurations of operations: natural aging - NA, 

artificial aging - AA, drawing - D, final heat treatment - FHT) and parameters of individual 

operations provide a chance of obtaining wires in the cable of a tensile strength to app. 

380400MPa, elongation 3.510%, resistance 30÷32.5nΩm and warrant the remaining 

exploitation features, including stability of properties at increased temperature, creep 

resistance and fatigue strength. 
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Examples of the possibility of forming properties are illustrated in Figure 8, where the 

dependence of the tensile strength and resistance on the basic alloying additions content for 

various technological variants is shown. Phase transformations occurring in the alloy cause 

that the determination of properties after a certain stage of processing (especially – the final) 

requires creation type 1 model. It means that it requires not only initial values before the 

operation and its parameters, but also information on the initial structure state, which reduces 

to the information on the configuration and parameters of previous operations.  
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Figure 8. Dependence of tensile strength and resistance of wires on Mg and Si content for 

various technology. 

 

If e.g. the aim is to design properties and to select process parameters in the 

technological line: NA-AA-D, the property function is of a form: 

 

Property (e.g. Rm) = f(%Mg, %Si; T0, 0; tNA TAA; tAA; the; tw, w; Vd) 

 

where:  

-%Mg, %Si – percentage content of alloying additions,  

-To – temperature of ingot before rolling mill (and hyperquenching),  

-o – rod diameter,  

-TNA – natural aging time,  

-TAA – temperature of artificial aging of a rod,  

-tAA – artificial aging time,  

-the, tho – heating and holding time at the assumed temperature of individual layers of coil 

(dependent on a coil mass and furnace characteristics),  

-w – wire diameter,  

-Vd – drawing rate. 

 

Due to the fact that models are taking into account the heating characteristics of a coil 

(via time of a temperature increase up to the assumed level) the information on the properties 

scatter caused by the layer position in a coil are obtained. The layer position in a coil is 

identified by the wire amount obtained to the determined moment. 



One of the solutions for path NA-AA-D is presented in Figure 9. Diagrams present 

wire properties for alloys of the selected chemical compositions, made from rod 

hyperquenched in the line (ingot temperature was 520°C), and subjected to artificial aging at a 

temperature of 180°C.  
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Figure 9. Solution example: strength and resistance of a wire from AlMgSi alloy as a function 

of heating and holding time at a temperature during the artificial aging of rod. 

3.2. Properties of aluminium in rod production processes and its transformation into 

wires 

The task is to create the function of controlling the continuous casting and rolling 

process in order to obtain required mechanical and electrical properties of the round 

aluminium rod.  

The main elements of the line, with marked essential parameters and points at which 

their control is possible:  

metal preparation, cannels and filter preparation, refining unit, casting machine, 

straightening machine, milling machine, induction heater, rolling mill, quenching chamber, 

wire shear, coilers. 

The additions content and temperature during rolling are the most important 

parameters, on which the final rod properties depend. The 12 elements content is determined, 

in which the highest fraction belongs to iron and silica. 

The strip temperature is a function of a liquid metal temperature, casting rate, 

crystalliser cooling conditions (pressure and discharge of cooling water and its distribution on 

the crystalliser perimeter), increased ingot temperature during eventual reheating in an 

induction furnace (T), and conditions of the a strip cooling during rolling (pressure and 

consumption of cooling-lubricating emulsion). By changes of the casting conditions and the 

ingot temperature before the rolling mill the tensile strength can be changed within the range: 

90÷150MPa. A field of mechanical properties changes is illustrated in Figure 10. 
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Figure 10. Strength and elongation of Al. rod as a temperature function for aluminium of a 

different purity and for various crystallisation and rolling conditions. 

 

The model is of a form: 

 

Rm; A250;  = f(chemical composition; casting conditions, rolling conditions) 

 

where: 

-Rm – tensile strength;  

-A250 – elongation in a tension test;  

- – resistance 

 

When assuming that the most important final casting parameter constitutes the ingot 

temperature before the rolling mill the following model is obtained: 

 

Rm; A250;  = f(chemical composition; ingot temperature, rolling parameters) 

 

Data collected during the exploitation allowed to build the model. Examples of 

network simulations are presented in Figure 11-12. 

 

 
Figure 11. Rm=f(ingot temp.) for various Fe content. 



 
Figure 12. Rm=f(Fe content) for various Si content. 

3.3. Rod annealing 

In order to obtain product of strength <100MPa, the rod is subjected to soft-annealing. 

The problem is to select a temperature and heating time for the charge produced in the 

continuous casting and rolling line, being in a different initial state and differently reacting to 

a heat treatment. The following model was built: 

 

Rm; A250;  = f(chemical composition; Rm(o); T; ) 

where: 

-T – temperature of annealing; 

-– time of annealing

 

Special experiments allowed to find the solution presented in Figure 13-14. 

 

 
Figure 13. Rm=f(high temp.) for various times, Rm0=123MPa, Fe=0.3%, Si=0.15. 



 

 
Figure 14. Rm=f(Rm0) for various Fe content, T=200°C, =2h, Si=0.15%. 

3.4. Properties of strips made of AlMg alloys subjected to soft-annealing. 

Strips were produced in the technological line:  

melting – gaseous refining – semi-continuous casting – heating of ingots ––hot rolling  –cold 

rolling  – annealing. 

One of the variants was intermediate annealing. Kinetics of processes occurring in a material 

during heating (properties level after annealing) depend not only on a temperature but also on 

a chemical composition and this material energy state formed in individual operations, 

starting from the crystallisation, then hot-rolling up to cold-rolling (first of all).  

In consideration of the kind of available data on parameters of individual processes 

(samples for investigations were taken from coils made in established conditions of casting, 

heating, hot- and cold-rolling) the following model was built: 

 

Rm; R02= f(%Mg, %Fe; %Si; strip thickness after hot-rolling; strip thickness after 

intermediate rolling; strip thickness after final rolling; temperature and time of heating) 

 

A chemical composition was changed from app. 1.8% Mg to app. 3.2% Mg. This 

model was built for predominating quantitatively additions – Fe and Si. During a special 

experiment strips were annealed at temperatures: 200, 220, 250, 275, 300, 350ºC for 2, 5, 22 

hours. Rm was estimated in a tensile test. Some examples of the neural network simulation 

results are presented in Figure 15-16.  

 



   
Figure 15. Rm=f(temp. FHT) for various times, Mg=2%, Si=0.35%, j=0.05. 

 

 
Figure 16. Rm=f(Mg content) for various =5h; temp. FHT=5h; [Si]=0.35%; j=0.05. 

3.5. Properties of aluminium strips subjected to soft-annealing. 

The function describing property changes of the cold-rolled Al strip during annealing 

to the determined level of strength properties – is looked for. The strip is produced according 

to the scheme: 

melting – gaseous refining – semi-continuous casting – ingot heating – hot-rolling – cold-

rolling – annealing. 

Samples for investigations were taken from coils made for the established ingot 

temperature and established conditions of carrying rolling processes, hot and cold. In 

consideration of the kind of possessed data it was possible to build the following dependence: 

 

Rm;= f(%Fe; %Si; Rm(o); strip thickness after hot-rolling; strip thickness after cold-rolling; 

temperature and heating time) 



The chemical composition was changing from app. 99.7% Al to app. 99.5% Al. The 

predominating quantitatively additions Fe and Si were selected for building the model. In the 

experiment used for collecting data, annealing was performed at temperatures: 200, 220, 235, 

250, 270, 290ºC for 1, 2, 3, 4 hours. Rm was determined in the tensile test. Strip thickness 

before rolling was 12mm and after hot and cold rolling was 1mm. Some examples of the 

neural network simulation results are presented in Figure 17-18. 

 

 
Figure 17. Rm =f(initial thickness) for various Rm0, Fe=0,26%, Si=0,15%, T=235ºC; =2h. 

 

 
Figure 18. Rm =f(Fe content) for various annealing temperatures, Rm0=174MPa, Fe=0.26%, 

Si=0.15%; =2h, Rm=100Mpa. 



 

3.6. Properties of copper rod produced in continuous melting, casting and rolling line 

(CONTIROD). 

An example concerns a copper annealing ability. The test of a loaded elongation is 

used for assessing the possibility of copper resistance annealing in the drawing or enamelling 

line. The spring is made of wire 2mm, drawn from rod 8mm, annealed under standard 

conditions. The following function is looked for: 

 

Lspr = f(chemical composition; parameters of processes in the CONTIROD line) 
 

Some examples of the neural network simulation results are presented in Figure 19-20. 

 

 
Figure 19. Elongation as the function of the oxygen content in rod. 

 

 
Figure 20. Elongation as the function of the iron content in rod. 



3.7. Strengthening  curves for material of diversified chemical composition and different 

initial state  

The following function is looked for: 

 

Properties after deformation (e.g. Rm, R0,2) = f(deformation value, chemical composition, 

initial properties) 

 

The example concerns the dependence Rm=f() for aluminium. A charge material for 

investigations carried out in order to collect data was the rod from example 1 of various level 

of initial values and a compact. A metal purity was changing from 99÷99.9% Al. 

If there is a need of solution in the analytical form (formula), then values Rm, R0,2, .determined 

by means of the model for various deformations of composition and initial conditions  can be 

approximated by function e.g. nBA   in the module of the classic approximation by the 

least square method. 

Solutions performed by the neural network were presented in Figure 21-22. In Figure 21 they 

are presented in the classic system of coordinates Rm() for various Fe content and in Figure 

22 the simulation results are in the system Rm(Rmo) for various Fe content.  

 

 
Figure 21. Rm() for various Fe content, Si=0.13%. 

 



 
Figure 22. Rm(Rm0) for various Fe content, Si=0.13%, (log)=2.2. 

4. CONCLUSIONS  

An attention should be directed toward the practical aspect of the presented simulation 

method. Both, the method and the designed by the authors program allow collecting new data 

portions, model adaptation and thus its systematic improvement. Due to that the method can 

be applied at the investigation stage, identification as well as in the process control. 
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