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Abstract. This paper presents a probabilistic approach based on polynomial chaos 

expansion, in order to provide accurate explicit approximation of the structural response to 

be considered in the limit state function. The main difficulties in this approach are related to 

the calculation of the expansion coefficients which are defined by multi-dimensional integrals. 

As an alternative to the quadrature methods, Monte-Carlo simulations based on low 

discrepancy Halton sequence have been used for this issue. The accuracy and the efficiency of 

the proposed approach have been approved through analytical models. It is shown that the 

use of low discrepancy sequence provides more rapidly converging estimates. The proposed 

approach has been applied to assess the integrity of a cracked pipe. 

Keywords: Polynomial chaos expansion, Quasi-Monte Carlo, Sensitivity analysis, 

Reliability, Nonlinear fracture mechanics. 

 

 

1. INTRODUCTION 

The engineering experience has shown that fracture mechanics is one of the main causes of 

failure of structures and mechanical components. Form the deterministic point of view, 

modeling the mechanical behavior of cracked components is not a trivial task, as it involves 

large singularities in the structural response. The progress of finite element analysis offers 

solutions for wide varieties of structural behaviors with various complexity levels, allowing 

for accurate predictions of the integrity of cracked structures and consequently the remaining 

resistance capacity. The failure mode of cracked structures can be analyzed by applying the 

deterministic fracture mechanics theory. Although this theory is widely used, the obtained 

predictions are conservative since the system parameters are considered as deterministic. 

However, it has been widely recognized that uncertainties can strongly arise in material 

proprieties, crack geometry and loading parameters. For this reason, stochastic approaches 

have been developed to take account for various sources of uncertainties in the assessment of 

structural performance. For instance, the applied reliability approaches are mainly based on 

second moment reliability methods, such as FORM/SORM [1]. In these methods, a closed 
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expression is often required to define the limit state function. Unfortunately, in engineering 

practice, the limit state function cannot be defined by explicit function of the basic random 

variables, and only implicit structural response can be available when numerical methods are 

involved (i.e. finite element model). Although the sampling methods [2] such as Monte-Carlo 

simulations are very useful, they require high computation effort, especially when the finite 

element model is complex and the failure probability is low. To cope with these difficulties, 

the Response Surface Method (RSM) [3] has been developed in the past decades, in order to 

reduce the number of calls to the mechanical model. The main idea of this approach is to 

build a second order polynomial approximation of the limit state function based on a limited 

number of realizations of the implicit function. This polynomial approximation is refined 

during an iterative process in order to obtain the best closed form. However, the obtained 

solution is only accurate in the vicinity of the most likely failure point. Consequently, the 

accuracy is often reduced when estimating the failure probability. In the literature, several 

RSM approaches have been proposed [4-7], but all of them have the same backbone, as the 

main differences lie in the choice of the experiment design points and the convergence 

criteria.  

As an alternative to these approaches, the present work proposes a stochastic response surface 

approach based on the polynomial chaos expansion [8] of the limit state function in the 

standard space. This approximation is defined as a projection in the basis of multidimensional 

Hermite polynomials. The unknown coefficients of the polynomial chaos expansion, which 

are defined by multidimensional integrals, are computed using Monte-Carlo simulations based 

on low discrepancy random number sequences, which are more efficient than classical 

pseudo-random numbers [9, 10] (i.e. the sampling points are more uniformly distributed in the 

random space). The specificity of this approach is that the explicit function is constructed by 

taking into account the whole available statistical information of the input parameters. 

Consequently, the obtained approximation is close to the target limit state function not only in 

the vicinity of the most likely failure point, but also in the whole random space. The 

efficiency and the accuracy of the proposed approach are evaluated through an example 

dealing with nonlinear fracture mechanics. 

This paper is divided into three sections. In the first one, the mathematical formulation of the 

polynomial chaos expansion are presented for implicit response, and completed by the 

computation of multidimensional integrals using quasi Monte-Carlo simulations. In the 

second section, the accuracy and the efficiency of the proposed approach are shown through 

an analytical test model. The third section is dedicated to perform the sensitivity analysis on a 

cracked pipe under internal pressure, and then to estimate its failure probability. 

2. POLYNOMIAL CHAOS EXPANSION 

2.1. Construction of the Stochastic Response Surface (SRS) 

Let us consider a mechanical model having N uncertain parameters gathered in the vector � � ���, … , ��	. Mathematically speaking, the model response can be represented by the 

function: 


 � ���	                                                                        �1	 

where 
 is the model response, which is considered to be scalar throughout this paper without 

loss of generality, obtained by explicit (i.e. analytical equations) or implicit (i.e. finite element 

analysis) representation of the function �. Let � � ���	 be the stochastic model associated 



 

with the model defined by equation (1), where � is a N-dimensional random variable 

modeling the uncertainties in the input parameters �, and � a scalar random variable 

representing the response 
. In practical problems, the components of the N-dimensional 

random variable have different probability distributions and can also be correlated. This 

difficulty can be overcome by applying probabilistic transformations [11, 12], which allow us 

to represent the N-dimensional random variable � by N-dimensional standard Gaussian 

variable (i.e. the components are independent Gaussian variables with zero mean and unit 

standard deviation). Therefore, the ��� order polynomial chaos expansion of the random 

variable � is defined by [8]: 

� � ���	 � � � ���	 � � ��
���
��� ����	                                                �2	 

where � denotes the probabilistic transformation,  ��!������ are the unknown deterministic 

coefficients of the polynomial chaos expansion, and  ����	!������ are multivariate Hermite 

polynomials which form an orthonormal basis with respect to Gaussian probability density. 

The number of terms " in the above summation depends on the stochastic dimension N and 

the order � of the polynomial chaos expansion; it is given by: 

" # 1 � �� # $	!�! $!                                                               �3	 

The expansion defined by equation (2) converges in the sense of the '(-norm, that is: 

lim�,-. /� 0 � ��
���
��� ����	/12

( � lim�,-.3 45� 0 � ��
���
��� ����	6(7 � 0                  �4	 

where 3:. < is the expectation operator. 

As the polynomial chaos expansion is defined in the standard random space, the N-

dimensional Hermite polynomial  �=�>	, = ? @�! can be constructed as the tensor products 

of N one-dimensional Hermite polynomials ABC: 

�=�>	 � D ABC�>	�
E��                                                       �5	 

where = is a N-dimensional index, whose components  GE, H � 1, … , $! represent the orders 

of the one-dimensional Hermite polynomials IABCJE���
. To build the polynomial chaos 

expansion of the random variable �, we just need to compute the unknown coefficients  ��!������.  

Classically, two classes of approaches are distinguished for the computation of the expansion 

coefficients: the intrusive and non-intrusive approaches. In the first one, the unknown 

coefficients are obtained through the minimization of the residual under the constraint that 

this later is orthogonal in the polynomial chaos basis. This procedure is often called Galerkin 

projection scheme, which usually requires the modification of the numerical code. When the 

mathematical model involves nonlinearities, this procedure can be a challenging task and 

difficult to implement. To overcome these difficulties, the non-intrusive approaches have been 



 

developed. They only require the computation of the deterministic model at some realizations 

of the input parameters. Among the various types of non-intrusive methods, the projection 

methods are the most widely applied in the literature. In this paper, Monte-Carlo simulations 

based on low discrepancy random sequences are proposed for the computation of the 

expansion coefficients.   

2.2. Computation of the PCE coefficients by simulations 

The projection methods use the orthogonality property of the polynomial chaos basis to define 

the unknown coefficients using N-dimensional integrals. The projection of the polynomial 

chaos expansion (Eq. (2)) on the polynomial basis  �=, |=| L �!, with respect to the inner 

product MN, OP Q 3:N, O< gives: 

�= � 3:��=<3:�=(<                                                               �6	 

which can be written as: 

�= � 13:�=(< S � � ��T	 �=�T	UV  W��T	 XT                                         �7	 

where the expectation 3:�=(< can be computed analytically by using the orthogonality of the 

one-dimensional Hermite polynomials, and W� denotes the probability density of N-

dimensional standard Gaussian variable. To simplify the notations, let us consider the 

following N-dimensional integral: 

Z=� � S � � ��T	 �=�T	UV  W��T	 XT                                                 �8	 

It is clear that the major difficulty in computing the expansion coefficients lies in the 

evaluation of the integral Z=�. To this end, it is proposed herein to use Monte-Carlo  

simulations for which the integral Z=� can be estimated by the following sum: 

Z\=� � 1] � � � �^TE_ �=^TE_`
E��                                                        �9	 

where ITEJE��`
 are sample points generated according to N-dimensional Gaussian density. 

Monte-Carlo simulations are robust and converge for any '(-function. The mean square error b`c of the integral estimate Z=� is given by: 

b`c � 3:�Z=� 0 Z\=�	(< � d:� � ��T	 �=�T	<]                                      �10	 

with d:. < the variance operator. This expression shows the convergence rate of Monte-Carlo 

simulations, which is only proportional to 1 √]⁄ . This low convergence rate is mainly due to 

the use of pseudo-random number generators for which the sampling points ITEJE��`
 are not 

uniformly distributed in the random space. To overcome this problem, other sampling 
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unit hypercube :0,1<�. It is necessary to transform the later into ] realizations  T�, … , T`! of 

N-dimensional standard Gaussian variable �. This can be achieved by the following change 

of variables: 

gEh � Φ��jkl^mEh_n    ,   H � 1, … , $   ,   o � 1, … , ]                                  �13	 

where Φ and kl are respectively the cumulative distributions of standard Gaussian variable 

and uniform variable over :0,1<. The estimation of the unknown coefficients  ��!������ of the 

polynomial chaos expansion is obtained by injecting the ] realizations  T�, … , T`! in 

equation (9). Due to the deterministic nature of Halton sequence, it is not possible to obtain 

the confidence bounds for the estimates. As mentioned above, Monte-Carlo simulations based 

on low discrepancy sequences are generally more efficient than those based on pseudo-

random numbers. However, the efficiency might be considerably reduced for high dimension 

problems (i.e. $ p 10). This behavior has been explained by Caflish et al. [16] by introducing 

the notion of effective dimension, which has also been demonstrated by Kucherenko et al. 

[15] on the basis of Sobol’s sensitivity indices. 

2.3. Computation of the statistical moments 

The statistical moments of the random variable � (i.e. representing the model response) can 

be analytically obtained by the polynomial chaos expansion, using the orthogonality of 

Hermite polynomials. The first four statistical moments, namely the mean, the standard 

deviation, the skewness and the kurtosis respectively, are computed by: 

q̂s,t � 3 u � �=
t

|=|�� �=��	v w �xy                                                                        �14	 

zxs,t( � d u � �=
t

|=|�� �=��	v � � �=(
t

|=|�� 3:�=(< w � �x=(
t

|=|��                               �15	 

{|s,t w 1zxs,t} � � � �x=�x~�x�
t

|�|��
t

|~|��
t

|=|�� 3j�=�~��n                                              �16	 

�̂s,t w 1zxs,t� � � � � �x=�x~�x��x�
t

|�|��
t

|�|��
t

|~|��
t

|=|�� 3j�=�~����n                           �17	 

where 3:. < and d:. < denotes resepectively the expectation and the variance. The expectations 3j�=�~��n and 3j�=�~����n can be easily derived by using the orthogonality of Hermite 

polynomials. Note that, most of the terms in the above summand are nil, which greatly 

simplifies the computations. Having the polynomial chaos expansion of the random variable �, the associated probability density function can be easily constructed by Monte-Carlo 

simulations. This procedure is accurate and efficient since it requires very low computing 

time. 



 

3. VALIDATION EXAMPLE 

This analytical example aims at validating the efficiency and the accuracy of the proposed 

approach, in estimating the statistical characteristics (i.e. statistical moments and probability 

density) of the model response. Let us consider a three order polynomial function with input 

Gaussian variables � �  �E!E��}  having identical mean q � 1 and standard deviation z: 


��	 � ��( # �(( # �}( # ���( # 2�(�} # 4���}                                  �18	 

The accuracy of the statistical moments is investigated for Monte-Carlo simulations based on 

different sample scheme: pseudo-random numbers, Latin Hyper-cube sampling and Halton 

low discrepancy sequence. The global accuracy of the polynomial chaos expansion is 

measured by the lack of fit b1�� [17], which is the normalized error in the mean square sense. 

In other words, b1�� allows us to evaluate the capacity of the polynomial chaos expansion to 

reproduce the target model; it is defined as: 

b1�� � 3 ��
��	 0 
`,t��	�(�d:
��	<                                                   �19	 

where 
`,t is the ��� order polynomial chaos expansion of the response, whose coefficients 

are obtained by Monte-Carlo simulations based on ] sample points. The computation of the 

quantities in equation (19) is a heavy task when the model is not available in explicit form. 

Therefore, the lack of fit b1�� is estimated using Monte-Carlo simulations, as following: 

b1̂�� � 1] zs�,�( � �
^�E_ 0 
`,t^�E_�(`
E��                                         �20	 

where zs�,�(  is the standard deviation computed using equation (15). 

In the cases of moderate uncertainties (z � 0.3) and large uncertainties (z � 0.6), 

respectively, Figures 2a and 2b show the evolution of the estimate of the lack of fit b1̂�� in 

terms of the number of simulations, according to the three sample schemes. It can be noted 

that, the numerical computation is carried out by adopting 2
nd

 order polynomial chaos 

expansion, in order to reproduce the exact model. Consequently, the approximation error is 

only due to the integration errors when computing the coefficients of the polynomial chaos 

expansion. 
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Halton 10.270 3.520 0.4

Exact 10.27 3.545 0.507
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Figure  4 : Analytical test model 

4. STOCHASTIC ANALYSIS 

4.1. Finite element model 
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0.470 3.297 12.6 11.129 7.299 0.918

0.543 3.407 11.9 11.063 7.325 0.947

0.491 3.328 1.38 11.08 7.226 1.018
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The probability density function of the random variable  is estimated by various methods. 

On one hand, the exact solution is obtained by crude Monte-Carlo simulations applied to 

samples. On the other hand, the estimates of the probability density 

function are constructed using 10
6
 runs of the polynomial chaos expansion

figure 4 that the probability density function obtained by Latin Hyper-cube sampling and low 

crepancy Halton sequence are much closer to the exact solution. 

 

Analytical test model - comparison of the probability density function

STOCHASTIC ANALYSIS OF CRACKED PIPE 
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Figure  6 : Ramberg-Osgood constitutive law 
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the exact solution of the J-integral is only known for academic problems. For engineering 

problems, the computation of the J-integral is only possible through numerical procedures. In 

order to predict the behavior of the cracked pipe, a finite element model has been developed 

using the software Cast3m [21]. Due to the symmetry of the problem, only one half of the 

pipe has been modeled. The mesh is composed of 709 quadratic elements and 1553 nodes, as 

depicted in figure 7. 

 

Figure  7: Mesh of the cracked pipe 

4.1. Sensitivity analysis 

At first, the statistical moments and the probability density function of the mechanical 

responses, calculated by the J-integral, are evaluated. In this example, the uncertain 

parameters are the Young’s modulus �, the reference stress z� and the two parameters G and � of the Ramberg-Osgood law. These variables are considered as independent, with the 

parameters given in table 2. 

Tableau 2 : Cracked pipe problem – statistical characteristics of the uncertain parameters 

Variable Distribution type µ σ � lognormal 175500 ]"� 1000 ]"� z� lognormal 259.5 ]"� 10 ]"� � normal 3.5 0.1 G normal 1.15 0.15 

The first four statistical moments of the crack driving force are computed from the 

coefficients of the 3
rd

 order polynomial chaos expansion, which are estimated by Monte-Carlo 

simulations based on 10000 samples generated by low discrepancy Halton sequence. Note 

that the reference solution is obtained by Lagrange polynomial-based stochastic collocation 

method (L-SRS) [20]. The estimates of the statistical moments when using pseudo-random 

numbers and Halton sequence, are reported in table 3 together with the reference values. 

Tableau 3 : Cracked pipe problem – comparison of the statistical moments 

 PCE-MC PCE-Halton L-SRS q̂s,t  15.7360  14.1408  14.1398 zxs,t  1.0484  1.0750  1.0584 {|s,t  0.5093  0.2328  0.2580 �̂s,t  9.1910  3.0900  3.1268 

As can be seen, accurate estimates of the four moments are obtained when using low 

discrepancy Halton sequence for computing the expansion coefficients. The estimates of the 

mean are in good agreement with the reference solution. The higher relative error is observed 

on estimates of the kurtosis, which is only about 11.76%. As expected, the accuracy of the 

proposed method decreases with the order of the statistical moment. However, when using 

pseudo-random numbers to compute the unknown coefficients of the polynomial chaos 



 

expansion, the proposed approach failed to estimate the statistical moments. The accuracy is 

more affected for statistical moments of higher order. The relative error for the skewness is b � 97.4%. In general, the proposed approach offers the best compromise between efficiency 

and accuracy.  

4.2. Reliability analysis 

Under the applied tensile load z�, the failure occurs when the crack driving force � exceeds 

the strength ��� representing the material toughness. The limit state function reads: 

���	 � ��� 0 �                                                            �23	    

In addition to the uncertain parameters used in the sensitivity analysis, the material toughness ��� is modeled as lognormal random variable with mean q � 59 ]"�. �� and standard 

deviation z � 9.5 ]"�. ��. The failure probability "� is estimated by Monte-Carlo 

simulations applied to the 3
rd

 order polynomial chaos expansion of the limit state function. 

The coefficients of the polynomial chaos expansion are estimated by Monte-Carlo simulations 

with 10000 samples generated from low discrepancy Halton sequence. The estimates of the 

failure probability for various levels of the applied tensile load z� are given in table 4. 

Tableau 4 : Cracked pipe problem –failure probability in terms of the applied tension.  z��]"�	 100 120 140 "� 1,1059 10
-11

 1,4434 10
-6

 1,5855 10
-3

 

As expected, we can see that the failure probability increases with the applied tensile load z�. 

An increase of 25% of the applied tensile load z� produces an increase of the failure 

probability by a factor of 10
5
. The role of the applied tensile load z� is therefore very 

important for assessing the integrity of the cracked pipe. 

5. CONCLUSION 

In this paper, a polynomial chaos expansion-based probabilistic approach is presented to 

perform sensitivity and reliability analyses of structures. The originality of the approach lies 

in computing the expansion coefficients by using quasi Monte-Carlo simulation method. This 

method is based on low discrepancy sequence which ensures a better uniformity of the sample 

points in the random space than the pseudo-random numbers classically used in Monte-Carlo 

simulations. On the basis of the validation example, the low discrepancy Halton sequence 

improves the accuracy and the efficiency of the Monte-Carlo simulations, compared to Latin 

Hyper-cube samples and pseudo-random numbers. Therefore, the statistical moments of the 

response can be accurately estimated with low computation cost. The proposed approach is 

then applied to assess the integrity of cracked pipe. The stress field singularity in the 

neighborhood of the crack tip and the residual fracture strength can be adequately 

characterized by the J-integral concept applied to the finite element model with Ramber-

Osgood constitutive law. It is shown that the applied tensile load is the most important 

parameter for the integrity of the cracked pipe. In the future, it would be interesting to use 

other low discrepancy sequences to enhance the efficiency of the Monte-Carlo simulations in 

particular when dealing with higher stochastic dimensions. 
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