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Abstract. A variational multiscale method with multifractal subgrid-scale modeling is pro-
posed for large-eddy simulation of turbulent flow. In the multifractal subgrid-scale model-
ing approach, the subgrid-scale velocity is evaluated from a multifractal description of the
subgrid-scale vorticity, which is based on the multifractal scale similarity of gradient fields
in turbulent flow. The multifractal subgrid-scale modeling approach is integrated into a vari-
ational multiscale formulation, demonstrating a new field of application of the variational
multiscale concept. In addition, the application of the multifractal subgrid-scale modeling
approach to wall-bounded turbulent flow is considered in this study. For this purpose, a near-
wall limit of the multifractal subgrid-scale modeling approach is developed. The novel com-
putational approach of multifractal subgrid-scale modeling within a variational multiscale
formulation is then applied to turbulent flow over a backward-facing step. The results confirm
a very good performance of the proposed method, and improved results are obtained com-
pared to a dynamic Smagorinsky model and a residual-based variational multiscale method.

Keywords: Large-eddy simulation, Multifractal subgrid-scale modeling, Variational multi-
scale method, Wall-bounded turbulent flow, Backward-facing step.

1. INTRODUCTION

Turbulence is driven by vorticity and its self-induced velocity field acting on the vor-
tical structures by stretching and folding them. The repeated stretching and folding of the
vorticity field as well as the strain rate represents a multiplicative process causing multifrac-
tal scale similarity in gradient fields in turbulent flows such as kinetic energy dissipation and
enstrophy, see, e.g., [16]. This observation enables a novel approach to modeling turbulent
flow. Multifractal subgrid-scale (MFS) modeling to estimate unresolved scales in Large-Eddy
Simulation (LES, see, e.g., [15] for an overview) was presented in comprehensive form in
[2] and tested for homogeneous isotropic turbulence in the accompanying study [3]. It was
proposed by those authors to estimate the subgrid-scale velocity field from the subgrid-scale
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vorticity field via the law of Biot-Savart, where the integrated subgrid-scale vorticity field is
reconstructed by a multiplicative process.

The variational multiscale approach to LES was originally introduced in [9]. Up to
now, the variational multiscale method (VMM) has either been used based on a three-scale
separation including a subgrid-viscosity term acting only on the smaller resolved scales as
proposed in [9] and review in [5] or as a residual-based two-scale version using the residual
together with an appropriate parameter to approximate the unresolved-scale quantities (see,
e.g., [1]). An important aspect of the variational multiscale concept is that scales are separated
by variational projection rather than by filtering. Particularly this feature offers a formulation
that enables a straightforward introduction of structural subgrid-scale models into the pro-
jected Navier-Stokes equations.

In this study, we propose multifractal subgrid-scale modeling within a variational mul-
tiscale method, which represents the first approach to integrate multifractal subgrid-scale
modeling into the variational multiscale framework; see [14]. By introducing such a struc-
tural turbulence model into the variational multiscale framework, the variational multiscale
concept for LES is broadened, and a new field of application is demonstrated. Important fea-
tures of the method are scale separation by plain aggregation algebraic multigrid methods to
further decompose the resolved scales, as proposed in [7] and used, e.g., in [6], and the devel-
opment of an appropriate near-wall limit of the multifractal subgrid-scale modeling approach.
The reader is referred to [14] for full methodical details, more elaborate discussion of the
approach and further numerical examples.

The present study is organized as follows. In section 2, we present the variational
multiscale formulation for LES and address the potential introduction of structural velocity-
estimation models. Section 3 is then devoted to the subgrid-scale modeling. The multifractal
subgrid-scale modeling approach is derived, and its near-wall limit is addressed. The esti-
mated subgrid-scale velocity is introduced into a residual-based form of the variational multi-
scale formulation. Multifractal subgrid-scale modeling within a variational multiscale method
is then tested for the widely-used example of turbulent flow over a backward-facing step in
section 4. Conclusions are drawn in section 5.

2. VARIATIONAL FORMULATION

2.1. Variational formulation of incompressible Navier-Stokes equations

Fluid motion in the domain Ω described by the incompressible Navier-Stokes equa-
tions, given in convective form,

∂u

∂t
+ u · ∇u +∇p− 2ν∇ · ε (u) = f , (1)

∇ · u = 0, (2)

where u denotes the velocity, ε (u) = 1
2

(
∇u + (∇u)T

)
the rate-of-deformation tensor, p the

pressure, ν the kinematic viscosity and f a given body force vector, is considered. Appropriate
initial and boundary conditions close the system. At t = 0, a divergence-free velocity field u0



is prescribed. On the boundary Γ, Dirichlet and Neumann boundary conditions are given as

u = uD on ΓD, (3)

σ · n = h on ΓN, (4)

where σ = −pI+2νε(u) denotes the Cauchy stress tensor and n the outer unit normal vector
on the boundary Γ. Moreover, it is assumed that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ.

Assuming appropriate solution function spaces Su for u and Sp for p as well as weight-
ing function spaces Vu for the velocity weighting function v and Vp for the pressure weighting
function q, the system of equations (1)-(2) is multiplied by v ∈ Vu and q ∈ Vp and integrated
over the domain Ω. Viscous and pressure term are integrated by parts, with boundary condi-
tions (3) and (4) applied to the resulting boundary integrals. The variational formulation of
the incompressible Navier-Stokes equations is given as follows:

BNS (v, q;u, p) = ` (v) . (5)

The form on the left-hand side, comprising momentum and continuity part, is defined as

BNS (v, q;u, p) =

(
v,

∂u

∂t

)
+ (v,u · ∇u)− (∇ · v, p) + (ε (v) , 2νε (u)) + (q,∇ · u) . (6)

The linear form ` (v), including the Neumann boundary condition, is given as

` (v) = (v, f) + (v,h)ΓN
. (7)

Here, (·, ·) = (·, ·)Ω and (·, ·)ΓN
denote the usual L2-inner product on Ω and ΓN, respectively.

2.2. Variational multiscale formulation for large-eddy simulation

For the variational multiscale formulation of the Navier-Stokes equations, velocity and
pressure are decomposed into resolved and unresolved (or subgrid) components as

u = uh + û, (8)

p = ph + p̂, (9)

where resolved scales are identified by a spatial discretization of characteristic element length
h. Subgrid scales are denoted by (̂·). According to the decomposition of the solution func-
tions, direct sum decompositions of the underlying function spaces in the form Su = Sh

u⊕Ŝu

and Sp = Sh
p ⊕ Ŝp, respectively, are assumed. Based on the variational multiscale concept,

we assume a variational projection for separating resolved and unresolved scales. A Galerkin
finite element method may be interpreted as projection; see, e.g., [8] for a discussion of this
issue. Therefore, we introduce a direct sum decomposition of the weighting function spaces
Vu = Vh

u ⊕ V̂u and Vp = Vh
p ⊕ V̂p, respectively. Inserting the decomposition of velocity and

pressure (8)-(9) into the weak form (5), weighting separately by the resolved and the subgrid-
scale part of the decomposed weighting functions and omitting the equation projected onto
the space of unresolved scales, the variational multiscale formulation is obtained as:

BNS

(
vh, qh;uh, ph

)
+ C (

vh;uh, û
)

+R (
vh; û

)
+ B1,lin

NS

(
vh, qh;uh, û, p̂

)
= `

(
vh

)
, (10)



where
C (

vh;uh, û
)

=
(
vh,uh · ∇û + û · ∇uh

)
(11)

is the projection of the cross-stress terms and

R (
vh; û

)
=

(
vh, û · ∇û

)
(12)

the projection of the Reynolds-stress term onto the space of resolved scales. The form

B1,lin
NS

(
vh, qh; û, p̂

)
=

(
vh,

∂û

∂t

)
− (∇ · vh, p̂

)
+

(
ε

(
vh

)
, 2νε (û)

)
+

(
qh,∇ · û)

(13)

contains the remaining linear terms in the unresolved-scale quantities.
The variational multiscale formulation (10) constitutes a mathematical framework

for turbulence modeling in LES. In particular, it allows for directly modeling the cross-
and Reynolds-stress terms by structural velocity-estimation models such as the multifractal
subgrid-scale modeling approach.

3. SUBGRID-SCALE MODELING

3.1. Multifractal subgrid-scale modeling

In the multifractal-subgrid scale modeling approach, the subgrid-scale velocity û is
explicitly evaluated via the law of Biot-Savart

û(x, t) =
1

4π

∫

x′

ω̂(x′, t)× x− x′

‖x− x′‖3
d3x′. (14)

Therein, the associated subgrid-scale vorticity field ω̂ = ‖ω̂‖eω̂ is recovered by a multifractal
process consisting of two steps, which are outlined in this section. For an exhaustive presenta-
tion of the derivation, the reader is referred to [2] and, in the particular form for wall-bounded
turbulent flow, to [14].

First, the magnitude of the subgrid-scale vorticity field ‖ω̂‖ is derived by a multi-
plicative cascade distributing the subgrid-scale enstrophy Q̂ = ‖ω̂‖2 within each element.
Therefore, the subgrid-scale enstrophy Q̂ is determined as a function of the enstrophy at the
smaller resolved scales δQh = ‖δωh‖2, i.e., a scale range between the element length h and a
larger scale αh, which is assumed to be located in the inertial range. The enstrophy spectrum
in the inertial range scales as ∼ k

1
3 , where k is the wave number. Integrating the enstrophy

spectrum both from the wave number kh to the viscous wave number kν and from the smaller
wave number kαh to kh enables a formulation for the subgrid-scale enstrophy depending on
the enstrophy of the smaller resolved scales:

Q̂ =
(
1− α−

4
3

)−1

δQh

[(
kν

kh

) 4
3

− 1

]
. (15)

A three-dimensional stochastic multiplicative cascade distributes the subgrid-scale en-
strophy over each element. After a sufficient number of cascade steps, the resulting field
becomes highly intermittent and displays multifractal scale-similarity; see, e.g., [4]. The



repeated application of a scale-invariant distribution of multipliersMn, mapping the subgrid-
scale enstrophy in consecutive cascade steps to successively smaller subelements, leads to the
following expression for the magnitude of the subgrid-scale vorticity:

‖ω̂‖(x, t) =

[(
1− α−

4
3

)−1

‖δωh‖2

((
kν

kh

) 4
3

− 1

)
(
2N

)3
N∏

n=1

Mn(x, t)

] 1
2

, (16)

where N denotes the number of cascade steps.
Second, the orientation of the subgrid-scale vorticity êω is derived from an additive

decorrelation cascade. The orientation in the subgrid-scale vorticity field ω̂ decorrelates at
successively smaller scales from the orientation of the smaller resolved scales δeh

ω as

êω = δeh
ω +

N∑
n=1

fn, (17)

where fn denotes the decorrelation increments. As the strongest vortical structures maintain a
preferred alignment with the local strain rate tensor over a relatively large range of scales, an
intermittency factor I is defined from a correlation between ω̂ and δωh as

I =

∫
x′

ω̂ · δωhd3x′

∫
x′
‖ω̂‖ ‖δωh‖d3x′

. (18)

The orientation of the subgrid-scale vorticity can then be reformulated:

êω(x, t) = Iδeh
ω(x, t) + (1− I)

N∑
n=1

f∗n, (19)

where f∗n are modified decorrelation increments.
After combining both cascades and introducing the resulting subgrid-scale vorticity

ω̂, which is assumed approximately equal to its expectation value, into the law of Biot-Savart
(14), the subgrid-scale velocity can be calculated as

û(x, t) =
(
1− α−

4
3

)− 1
2
2

3
2
N

(
2

4
3
N − 1

) 1
2
〈
M 1

2

〉N
Iδuh(x, t). (20)

The ratio of the element length h to the viscous length scale λν determines the number of
cascade steps N via

N = log2

(
h

λν

)
. (21)

The ratio of h to λν scales as ∼ Re
3
4
h , where Reh is the local element Reynolds number. The

local element Reynolds number as proposed in [14] is given by

ReR
h =

‖uh‖h
ν

. (22)

The necessary proportionality constant is set to 0.1, based on the experimental value given in
[13]. The subgrid-scale velocity û should become independent of Reh for Reh → ∞ and,



consequently, N → ∞. This implies an expression for the intermittency factor I subject to
N . Finally, the subgrid-scale velocity û reads as

û(x, t) = Bδuh(x, t), (23)

where

B = Csgs

(
1− α−

4
3

)− 1
2
2−

2
3
N

(
2

4
3
N − 1

) 1
2
. (24)

The proportionality constant Csgs arises from the high Reynolds number limit of I and is set to
0.25 in this study. It is referred to [14] for a detailed discussion of Csgs. The required smaller
resolved scales δuh are identified by further explicitly decomposing the resolved scales uh

via level-transfer operators from plain algebraic multigrid methods, as already used for scale
separation in, e.g., [6], where α = 3 was chosen. Eventually, the modeled forms of the cross-
and Reynolds-stress terms, (11) and (12), respectively, read

C (
vh;uh, δuh

) ≈ (
vh, B

(
uh · ∇δuh + δuh · ∇uh

))
, (25)

R (
vh; δuh

) ≈ (
vh, B2δuh · ∇δuh

)
. (26)

For wall-bounded turbulent flow, a near-wall limit of the proposed multifractal subgrid-
scale modeling approach was derived in [14]. In the near-wall region, among other things, the
vorticity field becomes highly anisotropic. The resulting stronger correlations in the orienta-
tion of the subgrid-scale vorticity cause an increase of the intermittency factor I. Higher inter-
mittency factors are associated with an increase of the proportionality constant Csgs. Based on
these considerations, Csgs is enhanced by an anisotropy factor Cai for wall-bounded turbulent
flow:

Cnw
sgs = CsgsCai. (27)

Assuming that (i) Cnw
sgs tends to a finite value as Reh →∞ and Cnw

sgs → 0 as Reh → 1, (ii) the
intermittency factor I is bounded as 0 ≤ I ≤ 1 and (iii) the strain rate represents a measure
for anisotropy, the anisotropy factor Cai is defined as

Cai =
(
1− (

ReS
h

)− 3
16

)
, (28)

where

ReS
h =

‖ε(uh)‖h2

ν
(29)

is the element Reynolds number based on the norm of the strain rate tensor.

3.2. Residual-based multiscale modeling

As an introduction of artificial dissipation is not intended by the multifractal subgrid-
scale modeling approach, its is incorporated into a residual-based form of the variational
multiscale formulation to account for potential destabilizing effects induced by the numerical
scheme. Appropriate stabilization terms are obtained by a residual-based approximation of
subgrid-scale velocity and pressure, as shown, e.g., in [10]. The final modeled variational
multiscale formulation is then given as

BNS

(
vh, qh;uh, ph

)
+

(
vh, B

(
uh · ∇δuh + δuh · ∇uh

))
+

(
vh, B2δuh · ∇δuh

)

+
(
uh · ∇vh, τMRh

M

)
+

(∇qh, τMRh
M

)
+

(∇ · vh, τCRh
C

)
= `

(
vh

)
,

(30)
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Figure 1. Geometry of backward-facing step and channel used to generate a turbulent inflow
velocity profile.

with the multifractal subgrid-scale modeling terms in the first line (second and third term)
and the residual-based multiscale modeling terms in the second line (first three terms), which
constitute, from left to right, a Streamline/Upwind Petrov-Galerkin (SUPG), a Pressure Sta-
bilizing Petrov-Galerkin (PSPG) and a grad-div term, where Rh

M and Rh
C denote the discrete

residuals of momentum and continuity equation, respectively. The stabilization parameters
τM and τC as proposed in [17] and [18] are given by

τM =
1√

4
∆t2

+ uh ·Guh + CIν2G : G
, (31)

τC =
1

τMtr (G)
, (32)

where Gij =
∑3

k=1
∂ξk

∂xi

∂ξk

∂xj
utilizes the coordinate system ξ of the element domain. The time-

step size of the temporal discretization is denoted by ∆t, and CI is a positive constant, which
is chosen to be 36.0 for (tri-)linearly interpolated finite elements as used in this work.

4. TURBULENT FLOW OVER A BACKWARD-FACING STEP

The proposed method is investigated for turbulent flow over a backward-facing step.
Based on the step height H and the mean centerline velocity Uc at the inlet, the step Reynolds
number ReH = UcH/ν is defined. The expansion ratio ER = 1.5 , which is the ratio of the
channel height downstream and upstream of the step, is chosen according to the geometry of
the experiment reported in [11]. The step height H = 0.041m is also chosen similar to that
study. The Reynolds number examined in that study was ReH = 5540. A Direct Numerical
Simulation (DNS) of flow over a backward-facing step was presented in [12], where a step
Reynolds number of 5100, which is close to the one in [11], and ER = 1.2 were used. Fig. 1
depicts the geometry of the step as well as the channel used to generate a turbulent inflow for
the backward-facing step.

At the inlet of the backward-facing step, the velocity profile at a selected plane of the
channel is prescribed as Dirichlet condition. No-slip boundary conditions are prescribed at
the top and bottom wall, including the vertical step wall. Periodic boundary conditions are
assumed in spanwise x3-direction. At the outlet, a zero-traction Neumann boundary condition
(i.e., h = 0) is prescribed. In addition, a convective term is applied to ensure that potentially
arising eddies at the outflow boundary are appropriately convected out of the domain; see,



e.g., [14] for the respective formulation. At the inflow channel, no-slip boundary conditions
are prescribed at the top and bottom wall. In homogeneous streamwise and spanwise direc-
tions, periodic boundary conditions are assumed. A constant pressure gradient in streamwise
direction drives the flow through the channel. In [11], a friction Reynolds number Reτ = 290

was evaluated upstream of the step. Based on the step height, which equals the channel half-
width, and the kinematic viscosity ν = 1.5268 · 10−5m2/s, the prescribed pressure gradient
dp/dx1 in the inflow section is 0.2844518N/m3.

A generalized-α time-integration scheme is applied. The parameter ρ∞ is chosen
to be 0.5, such that second-order accuracy in time is achieved. A constant time-step size
∆t = 0.0008s is used. After a sufficient number of time steps for turbulence to fully develop,
statistics are collected during another 5000 time steps, representing approximately six flow-
through times. Two spatial discretizations are considered. The coarser discretizations contains
18 × 32 × 48 elements upstream of the step, 68 × 48 × 48 downstream and 32 × 32 × 48 in
the channel in streamwise, wall-normal and spanwise direction, respectively. The finer dis-
cretization is obtained by doubling the number of elements. While the elements are uniformly
distributed in spanwise direction, they are refined towards the step in streamwise direction
and, in wall-normal direction, towards a horizontal line defined by the upper corner of the
step as well as towards the upper and lower wall.

The results obtained with the proposed method are compared to results obtained with
a dynamic Smagorinsky model (DSM) and the residual-based variational multiscale method
(RBVMM) according to [1]. Fig. 2 depicts the mean streamwise velocity at various locations
behind the step. As differences between the results obtained with the coarser and the finer dis-
cretization are only of small amount, the mean streamwise velocity profiles of the simulations
using the finer discretization are merely depicted. Differences between the models are hardly
observable. All models provide results that are in good agreement with the experimental re-
sults. Small discrepancies between experiment and simulations occur around x1/H = 8 and
further downstream. These deviations are attributed to the relative coarse mesh used in this
region also for the finer discretization.
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Figure 2. Backward-facing step: normalized mean streamwise velocity 〈u1〉
Uc

at various loca-
tions x1

H
using the finer discretization.



The mean reattachment length is determined by the location of zero wall-shear stress
τW or skin-friction coefficient Cf = 2τW/Uc, respectively. Fig. 3 shows the skin-friction
coefficient along the bottom wall. Results obtained with the coarser and finer discretization
are marked by “(C)” and “(F)”, respectively. DNS data from [12], named “DNS LMK97’,
are also included. Using the coarser discretization, MFS, RBVMM and DSM yield very
similar results. Compared to DNS, they show a higher negative peak value. This peak is
also somewhat shifted to the left. For the finer discretization, MFS captures the peak quite
well, while RBVMM and DSM produce slightly too negative values. The predicted mean
reattachment lengths Xr/H obtained with the finer discretization are summarized in Tab. 1,
where results from other studies are also included. MFS provides a value relatively close to
the one taken from [12]. Smaller reattachment lengths are obtained for DSM and RBVMM.

���������������������������������������������������
� � � � 	 �� �� �� �� �	 ��
 �

��� ��� ���������� ������ ������ �������� ������ ������ ���
Figure 3. Skin-friction coefficient Cf = τW

1
2
Uc

along bottom wall of backward-facing step: red
lines: coarser discretization; blue lines: finer discretization.

Table 1. Mean reattachment lengths Xr

H
of backward-facing step flow from present simulations

and other numerical and experimental results.
present results numerical results experimental results

MFS (F) RBVMM (F) DSM (F) DNS LKM95 [12] Exp KM95 [11]
Xr

H
6.18 5.72 5.81 6.28 6.51

Differences between the results obtained with the methods considered here are ob-
servable for the more sensitive Reynolds-stress values, for instance 〈u′1u′2〉, shown in Fig. 4.
In the recirculation zone as well as behind the reattachment region, MFS provides the best
approximation for both discretizations. RBVMM and DSM provide similar approximations.
Moreover, convergence to the experimental data is observed for all methods. Evaluations
of computing times reveal notably reduced computational cost compared to DSM and only
marginally enhanced cost compared to RBVMM.

5. CONCLUSIONS

A variational multiscale method with multifractal subgrid-scale modeling has been
proposed for large-eddy simulation of turbulent flow. In the multifractal subgrid-scale model-
ing approach, the subgrid-scale velocity is evaluated based on a multifractal reconstruction of
the subgrid-scale vorticity and calculated via the law of Biot-Savart. The required smaller re-
solved scales have been identified by further separating the resolved scales via level-transfer
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Figure 4. Backward-facing step: normalized Reynolds-stress 〈u′1u′2〉
Uc

at various locations x1

H
:

red lines: coarser discretization; blue lines: finer discretization.

operators from plain algebraic multigrid methods. Moreover, a near-wall limit of the mul-
tifractal subgrid-scale modeling approach has been included, which allows for particularly
taking into account the near-wall effects of turbulent flow. The proposed multifractal subgrid-
scale modeling approach has been embedded into a residual-based variational multiscale for-
mulation. This novel approach has shown the integration of structural subgrid-scale models
into the variational multiscale framework.

Turbulent flow over a backward-facing step has been examined to evaluate the pro-
posed method including the near-wall limit of the multifractal subgrid-scale modeling ap-
proach. The results have been compared to results obtained with the widely-used dynamic
Smagorinsky model and the residual-based variational multiscale method. Experimental and
numerical results have also been included for comparison. Only slight differences between
the different methods have been observed for the mean velocity. Notable differences between
the respective methods have occurred for the more sensitive values. For the component of
the Reynolds-stress tensor, the proposed form of the multifractal subgrid-scale modeling ap-
proach has revealed notably better approximations than the two other methods. For the finer
discretization, the reattachment length has also been approximated better by the proposed
method than by the two other methods.

In our future work, we intend to extend the proposed method to scalar transport in
turbulent flow, in particular for variable-density flow at low Mach number and combustion.
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