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Abstract. In this paper we describe a new method for the topology design of the inductors
used in the electromagnetic casting technique of the metallurgical industry. The method is
based on a recently proposed topology optimization formulation of the inverse electromag-
netic casting problem, and uses level-sets together with first and second order topological
derivatives of the objective functional, which are herein given, to efficiently find the optimal
solution. Results for two numerical examples show that the technique described can be effi-
ciently used in the design of suitable inductors.
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1. INTRODUCTION

The electromagnetic casting is an industrial technique that allows for contactless heat-
ing, shaping and controlling of chemical aggressive, hot melts. It makes use of the repulsive
forces that an electromagnetic field produces on the surface of a mass of liquid metal. In the
presence of an electromagnetic field, the liquid metal changes its shape until an equilibrium
relation between the electromagnetic pressure and the surface tension is satisfied. The di-
rect problem in electromagnetic casting consists in determining the equilibrium shape of the
liquid metal. In general, this problem can be solved either directly studying the equilibrium
equation defined on the surface of the liquid metal, or minimizing an appropriate energy func-
tional. The main advantage of this last method is that the resulting shapes are mechanically
stable [1–3].

The inverse problem consists in determining the electric currents and the induced ex-
terior field, for which the liquid metal takes on a given desired shape. In [4] and [5] we

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



studied the inverse electromagnetic casting problem considering inductors made of a single
solid-core wire with a negligible area of the cross-section, and the more realistic case where
each inductor is a set of bundled insulated strands. In both cases the number of inductors was
fixed in advance. In a recent paper we overcome this constraint, and looked for configurations
of inductors considering different topologies with the purpose of obtaining better results [6].

Following the general treatment of the inverse problem considered in [6], we formulate
the inverse problem as an optimization problem. The topological asymptotic expansion of the
shape functional considered is given, and an efficient topology optimization algorithm based
on the level-set technique proposed by Amstutz [7] is used tosolve the inverse problem.

Two examples are presented in Section 6 to show the that the optimization method
described can efficiently find the solution to a given design problem. Finally, the conclusions
are presented in Section 7.

2. THE MATHEMATICAL MODEL

The simplified model of the electromagnetic casting problemstudied here concerns the
case of a vertical column of liquid metal falling down into anelectromagnetic field created by
vertical inductors. We consider the quasi-static model andassume that the frequency of the
imposed current is very high so that the magnetic field does not penetrate into the metal. We
assume also that a stationary horizontal section is reachedso that the two-dimensional model
is valid. The equilibrium of the system is ensured by the static balance on the surface of
the metal between the surface tension and the electromagnetic forces. This problem and other
similar ones have been considered by several authors, we refer the reader to papers [1, 2, 8–11]
for the physical analysis of the simplifying assumptions ofthe model.

We denote byΩ ⊂ R
2 the exterior of the domainω occupied by the cross-section of

the metal column, which is assumed closed, simply connected, and with a non-void interior.
The exterior boundary value problem regarding the inverse electromagnetic casting problem
in terms of the flux functionϕ : Ω → R is:





−∆ϕ = µ0j0 in Ω ,
ϕ = 0 onΓ ,

ϕ(x) = c+ o(1) as‖x‖ → ∞ ,
(1)

whereµ0 is the vacuum permeability,j0 is the component of the current density vector normal
to the cross-section, that we assumed compactly supported inΩ and such that the total current
is zero:

∫

Ω

j0 dx = 0 , (2)

Γ is the boundary ofΩ, ‖·‖ denotes the Euclidean norm, and the constantc is the value at
infinity of the solutionϕ, which is also an unknown of (1) [4–6].

Problem (1) has unique solutionsϕ ∈ W 1
0 (Ω) andc ∈ R [12, 13], whereW 1

0 (Ω) is
defined as:

W 1
0 (Ω) = {u : ρ u ∈ L2(Ω) and∇u ∈ L2(Ω)} , (3)



with ρ(x) = [
√
1 + ‖x‖2 log(2 + ‖x‖2)]−1.

The cross-section area of the liquid metal column is known and equal toS0:
∫

ω

dx = S0 . (4)

The equilibrium of the liquid metal boundary between the magnetic pressure and the
surface tension is characterized by the following equation[11, 14–17]:

1

2µ0

∣∣∣∣
∂ϕ

∂n

∣∣∣∣
2

+ σC = p0 onΓ , (5)

whereC is the curvature ofΓ seen from the metal,σ is the surface tension of the liquid and the
constantp0 is an unknown of the problem. Physically,p0 represents the difference between
the internal and external pressures.

In the direct problem the electric current densityj0 and the cross-section areaS0 are
given, and one needs to find the shape ofω satisfying (4) such that the flux functionϕ solution
to (1) satisfies also the equilibrium equation (5) for a real constantp0.

2.1. The Inverse Problem

In the inverse problem we have to determine the current density j0 satisfying (2) such
that the solutionϕ of (1) satisfies also the equilibrium equation (5). If the inverse problem
has an exact solution, we say that the target shape is shapable, if it does not, we say that
it is not shapable. Even considering a shapable shape, the inverse problem is inherently ill
posed: small variation of the liquid boundary may cause dramatic variations in the solution
j0 of the inverse problem [9, 18]. In addition, the uniqueness of the solution in terms ofj0
cannot be ensured [6]. Hence, we follow the approach proposed in [6], where the inverse
problem is formulated as an optimization problem, in order to look for a solution (maybe just
an approximate solution) minimizing an appropriate functional.

There are some known facts about the exact solutions of the inverse problem that are
of main importance in what follows. First, at the solution the constantp0 satisfies [6, 9]:

p0 = max
Γ

σC . (6)

Hence, for a given target shape, the value ofp0 can be calculated using (6). Second, calling
p̄ =

√
2µ0(p0 − σC), the equilibrium equation in terms of the flux function reads

∂ϕ

∂n
= κ p̄ onΓ , (7)

whereκ = ±1, with the sign changes located at points where the curvatureof Γ is a global
maximum. The two possible ways of definingκ lead to the same solutionj0 but with the
opposite sign [6].

Third, a necessary condition for the existence of a solutionto the inverse problem is
the following [6]:

∫

Γ

κ p̄ ds = 0 . (8)



3. TOPOLOGICAL DERIVATIVE CONCEPT

The topological derivative measures the sensitivity of a given shape functional with
respect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclu-
sions, source-terms or even cracks. The topological derivative was introduced by Eschenauer
et al. [19] and rigorously investigated by Sokołowski andŻochowski [20] and by Ćea et al.
[21]. Since then, this concept has proved extremely useful in the treatment of a wide range of
problems, such as topology optimization [7, 22–26], and inverse analysis [27–32].

Let us consider that the domainΩ is subject to a non-smooth perturbation confined
in a small ballBε(x̂) of radiusε and center̂x ∈ Ω. Then, if a given shape functionalψ(ε),
associated to the topologically perturbed domain, admits the following topological asymptotic
expansion [20]

ψ(ε) = ψ(0) + f1(ε)D
1
Tψ + f2(ε)D

2
Tψ + o(f2(ε)) , (9)

whereψ(0) is the shape functional associated to the original (unperturbed) domain andfi(ε),
1 ≤ i ≤ 2, are positive functions such thatfi(ε) → 0, andf2(ε)/f1(ε) → 0, whenε → 0,
we say that the functionŝx 7→ Di

Tψ(x̂), 1 ≤ i ≤ 2, are the topological derivatives ofψ
at x̂ (in this paper we call first and second order topological derivatives toD1

Tψ andD2
Tψ,

respectively). The termf1(ε)D1
Tψ + f2(ε)D

2
Tψ can be seen as a second order correction of

ψ(0) to approximateψ(ε). In fact, the topological derivatives are scalar functionsdefined over
the original domain that indicate, at each point, the sensitivity of the shape functional when a
singular perturbation of sizeε is introduced at that point.

In this paper we describe a new method for inverse electromagnetic casting problems
based on the topological expansion (9), which is presented in details in the next section.

4. PROBLEM FORMULATION

The considerations made in Section 2.1 allow us to formulatethe inverse problem as
follows: for a given domainΩ limited by a smooth boundaryΓ, determine an electric current
densityj0 satisfying (2) with compact supportspt(j0) ⊂ Θ, whereΘ is a given compact in
Ω [9], and a real constantc such that the system





−∆ϕ = µ0j0 in Ω ,
ϕ = 0 onΓ ,

∂ϕ

∂n
= κ p̄ onΓ ,

ϕ(x) = c+ o(1) as‖x‖ → ∞ ,

(10)

has a solutionϕ ∈ W 1
0 (Ω). We assume that condition (8) is satisfied. Note that the above

problem is ill-posed, since the boundary conditions onΓ are overdetermined. Therefore, the
idea is to rewrite the inverse problem (10) as an optimization problem.

Consider the following shape functional based on the Kohn–Vogelius criterion [6],

ψ(0) = J(φ) =
1

2
‖φ‖2L2(Γ) =

1

2

∫

Γ

φ2 ds , (11)



where the auxiliary functionφ depends implicitly onj0 andc by solving the following bound-
ary-value problem





−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄− d(j0) onΓ ,

φ(x) = c+ o(1) as‖x‖ → ∞ ,

(12)

where, denoting|Γ| =
∫
Γ
ds, d(j0) is defined as

d(j0) = |Γ|−1

∫

Ω

µ0j0 dx . (13)

Note thatφ can be computed for a current densityj0 not necessarily satisfying condi-
tion (2). The approach described here to deal with (10) is thefollowing: determine an electric
current densityj0 satisfying (2) and the constantc such that the solutionφ to (12) minimizes
the shape functional (11). We note that the minimum of the shape functional (11) is attained
whenφ ≡ 0 onΓ. This means that in this situation, from the well-posednessof problems (1)
and (12), we haveφ ≡ ϕ in Ω.

In a first step we can eliminate the variablec of the optimization problem defin-
ing it as the global minimumc∗(j0) of (11) for any fixedj0, i.e., we takec = c∗(j0) =

argminc J(φ(j0, c)). It is easy to see that the global minimum with respect toc is such that∫
Γ
φ ds = 0 [6]. Hence, we can formulate an equivalent optimization problem as follows:

minimize the shape functional (11), whereφ ∈ W 1
0 (Ω) depends implicitly onj0 only, by

solving the following problem:




−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄− d(j0) onΓ ,∫

Γ

φ ds = 0 .

(14)

4.1. The topological derivative calculation

Associated toφ we define the functionφε solution to the perturbed problem. In this
context, the perturbation is characterized by changing theelectric current distributionj0 by
a new onejε which is identical toj0 everywhere inΩ except in a small regionBε(x̂) ⊂ Ω,
whereBε(x̂) denotes a ball of radiusε and center̂x. More precisely,jε is given by

jε = j0 + αIχBε(x̂) , (15)

whereI is a given current density value andα = ±1 is the sign of the current density in
Bε(x̂). In this way, the shape functional associated to the perturbed problem reads:

ψ(ε) = J(φε) =
1

2

∫

Γ

φ2
ε ds , (16)

whereφε is unique solution inW 1
0 (Ω) to the following problem:





−∆φε = µ0jε in Ω ,
∂φε

∂n
= κ p̄− d(jε) onΓ ,∫

Γ

φε ds = 0 .

(17)



Theorem 1. The functionalψ admits the topological expansion

ψ(ε) = ψ(0) + f1(ε)D
1
Tψ + f2(ε)D

2
Tψ , (18)

with the functionsf1(ε) = πε2, f2(ε) = π2ε4 and the topological derivatives

D1
Tψ(x̂) = αµ0I

∫

Γ

φf ds , (19)

D2
Tψ(x̂) =

1

2
µ2
0I

2

∫

Γ

f 2 ds , (20)

where the functionf ∈ W 1
0 (Ω) satisfies the following problem:




−∆f = (πε2)−1χBε(x̂) in Ω ,
∂f

∂n
= −|Γ|−1 onΓ ,∫

Γ

f ds = 0 .

(21)

Alternatively, the first order topological derivative can be computed efficiently using
the adjoint statev, see [6],

D1
Tψ(x̂) = −αµ0Iv(x̂) , (22)

wherev is the unique solution inW 1
0 (Ω) to the following problem:





−∆v = 0 ,
∂v

∂n
= −φ onΓ ,∫

Γ

v ds = 0 .

(23)

5. A TOPOLOGICAL DERIVATIVE-BASED LEVEL-SET ALGORITHM

In this section we state a level-set topology design algorithm based on the topological
derivatives obtained in the previous section. We consider domainsΩ which possess a central
symmetry. In this case we can devise a level set algorithm that generate a sequence of current
density functionsj0 satisfying (2) at each iteration. In this case the current densityj0 is sought
as the solution of the general optimization problem stated as

Minimize
j0

J(φ) ,

subject to
∫

Ω

j0 ds = 0 . (24)

It should be stressed that the design variable in problem (24) is the topology of the
support ofj0, and its sign. Hence, the use of theexact topological sensitivity information
provided by the topological derivatives (19) and (20) emerges as a natural alternative in the
development of a numerical optimization algorithm to tackle the problem.

We decompose the working compact setΘ ⊂ Ω into disjoint partsΘ+, Θ−, andΘ0,
representing the regions ofΘ where the current densityj0 is, respectively, positive, negative



or zero. For clarity of exposition, let us assume thatΘ+, Θ−, andΘ0 are open domains
(perturbations with center̂x on the domain boundaries will not be considered). Introduction
of a circular region of current densityαI and center̂x ∈ Θ0 changes the value of the objective
function of problem (24) according to the topological expansion (18). Note also that the
topological expansion corresponding to introduction of a circular region of zero current and
centerx̂ ∈ Θ+ is also given by (18) withα = −1. For a circular region of zero current and
centerx̂ ∈ Θ− we can use (18) withα = +1.

Consider now an optimal configuration of inductors with respect to the class of per-
turbations we are analyzing. Introduction of a small circular region of current densityαI and
centerx̂ ∈ Ω0 = Ω − (Θ+ ∪ Θ−) should not increase the objective function. Hence, accord-
ing to the expression of the first order topological derivative, an optimal configuration should
satisfy the following necessary condition:

−αµ0Iv(x̂) ≥ 0 ∀x̂ ∈ Ω0 . (25)

Sinceα could be positive or negative, for the optimal configurationwe have

v(x̂) = 0 ∀x̂ ∈ Ω0 . (26)

Sincev is harmonic, it must be zero on the entire domainΩ, and by (19) the first order
topological derivativeD1

Tψ vanishes inΩ for any optimal configuration, i.e.,

D1
Tψ = 0 in Ω . (27)

Having made the above considerations, we are ready to devisee topological derivative-
based optimization algorithm based on the ideas presented in [7] to solve problem (24). The
procedure relies on a level-set domain representation [33]and approximation of the topolog-
ical optimality conditions by a fixed point iteration. In particular, the algorithm presented in
[7] displays a marked ability to produce general topological domain changes uncommon to
other methodologies based on a level-set representation and has been successfully applied in
[7] to topology optimization in the context of two-dimensional elasticity and flow through
porous media.

The main difficulty of applying the ideas in [7] to the presentcase is that the first
order topological derivative vanishes at the solution according to (27). Thus, the first order
topological derivative alone cannot be used to define the level sets of the fixed point algorithm
stated in [7]. Fortunately, the expected variation of the objective functional given by the
topological expansion (18) can be used instead of the first order topological derivative to
overcome this difficulty.

With the adoption of a level-set domain representation, theregionΘ+ is characterized
by a functionψ+ ∈ L2(Θ) such that

Θ+ = {x ∈ Θ, ψ+(x) < 0} , (28)

whereas the regionΘ− is is characterized by a functionψ− ∈ L2(Θ):

Θ− = {x ∈ Θ, ψ−(x) < 0} . (29)



Let EV (x̂, ε, α) be the expected variation of the objective function of problem (24) for a
perturbation ofj0 consisting in a circular region of current densityαI of radiusε and center
x̂, namely,

EV (x̂, ε, α) = f1(ε)D
1
Tψ(x̂) + f2(ε)D

2
Tψ(x̂) . (30)

A sufficient condition of local optimality for the class of perturbations considered is
that the expected variation of the objective function be positive, i.e.,

EV (x̂, ε, α) > 0 , ∀x̂ ∈ Θ+ , andα = −1 , (31)

EV (x̂, ε, α) > 0 , ∀x̂ ∈ Θ− , andα = +1 , (32)

EV (x̂, ε, α) > 0 , ∀x̂ ∈ Θ0 , andα = ±1 . (33)

Following [7], to devise a level-set-based algorithm whoseaim is to produce a topol-
ogy that satisfies (31)–(33), we choose a value forε (in the numerical approach we define a
mesh of cells in the domainΘ and take a value forε related to the size of the cells) and define
the functions

g+(x) =

{
−EV (x̂, ε,−1) if x̂ ∈ Θ+ ,
EV (x̂, ε,+1) if x̂ ∈ Θ0 ∪Θ− ,

(34)

g−(x) =

{
−EV (x̂, ε,+1) if x̂ ∈ Θ− ,
EV (x̂, ε,−1) if x̂ ∈ Θ0 ∪Θ+ .

(35)

With the above definitions and (28)–(29), it can be easily established that the sufficient
conditions (31)–(33) are satisfied if the following equivalence relations between the functions
g+ andg− and the level-set functionsψ+ andψ− hold

∃ τ+ > 0 s.t. h(g+) = τ+ ψ+ , (36)

∃ τ− > 0 s.t. h(g−) = τ− ψ− , (37)

whereh : R → R must be an odd and strictly increasing function, e.g.,

h(x) = sign(x)|x|β with β > 0 . (38)

In fact, if x̂ ∈ Θ+, thenψ+(x̂) < 0. By (36) and sinceh preserves the sign we haveg+(x̂) <
0, and by (34) we haveEV (x̂, ε,−1) > 0, proving (31). The proofs of (32) and (33) are
analogous considerinĝx respectively inΘ− andΘ0.

Let us see how to find the optimal topology ofΘ+. The case ofΘ− is completely
analogous. Starting from an initial level-set functionψ+

0 ∈ L2(Θ) which defines the chosen
initial guess for the optimum topology ofΘ+, the algorithm produces a sequence(ψ+

i )i∈N
of level-set functions that provides successive approximations to the sufficient condition for
optimality. The sequence satisfies

ψ+
0 ∈ L2(Θ) ,

ψ+
n+1 ∈ co(ψ+

n , h(g
+
n )) ∀n ∈ N ,

(39)



whereco(ψ+
n , h(g

+
n )) is the convex hull of{ψ+

n , h(g
+
n )}. In the actual algorithm the initial

guessψ+
0 and subsequent iteration points can be normalized, see [7] for further details. The

non-normalized sequences for bothΘ+ andΘ− are

ψ+
n+1 = (1− tn)ψ

+
n + tnh(g

+
n )

ψ−

n+1 = (1− tn)ψ
−

n + tnh(g
−

n )

}
∀n ∈ N , (40)

wheretn ∈ [0, 1] is a step size determined by a line-search in order to decrease the value of
the cost functionalJ(φ). The iterative process is stopped when for some iteration the obtained
decrease inJ(φ) is smaller than a given numerical tolerance. The anglesθ+ andθ− can be use
as indicators of the accuracy of (36) and (37) at the final iteration and can be used to determine
the necessity of a mesh refinement [7].

If there is no previous information about the optimum, a suitable initial guess that
satisfies the inequalityψ+

0 +ψ−

0 ≥ 0 isψ+
0 = ψ−

0 = 1, which corresponds to zero positive and
negative currents.

6. NUMERICAL EXAMPLES

Two numerical examples are presented. The first example has aknown solution, since
the target shape considered is an equilibrium shape for given current density distributions. The
next example consists of a more realistic design problem. The same boundary element method
used in [6] was used here to solve the boundary value problemsand to compute approximately
the first and second order topological derivatives.

The target shape of the first example is the solution of a direct free-surface problem
for a liquid metal column of cross-section areaS0 = π, considering six distributed currents of
densityI = 0.4 as shown in Fig. 1. The result obtained for a mesh of size0.02, defined in the
region shown in Fig. 1, is shown in Fig. 2.

(a) (b)

Figure 1. Example 1. (a) Initial configuration of the direct free-surface problem. (b) Target
shape and exact solution. Black area: positive inductors, gray area: negative inductors, dashed
line: target shape, thin solid line: boundary of the mesh of cells.



Figure 2. Example 1. Solution for a mesh of cells of size0.02 with β = 3. Black area:
positive inductors, gray area: negative inductors, dashedline: target shape, thin solid line:
equilibrium shape.

The target shape of the second example is depicted in Fig. 3. The current density
I = 0.2, σ = 1.0× 10−4 andµ0 = 1.0. The result obtained for a mesh of size0.02, defined in
the region shown in Fig. 3, is shown in Fig. 4.

(a) (b)

Figure 3. Example 2. (a) Description of the problem geometry. (b) Target shape. Dashed line:
target shape, thin solid line: boundary of the mesh of cells.

7. CONCLUSIONS

We have described a new method for the topology design of inductors in electromag-
netic casting. The method is based on the topology optimization formulation presented in [6]
and uses level-sets together with first and second order topological derivatives to design suit-
able inductors.

The complete asymptotic expansion of the objective functional regarding the introduc-
tion of a small inductor was given in this paper, generalizing the results of [6]. In the case
of centrally symmetric geometries, the method described generates a sequence of solutions
satisfying all the equality constraints.



Figure 4. Example 2. Solution for a mesh of cells of size0.02 andβ = 3. Black area: positive
inductors, gray area: negative inductors, dashed line: target shape, thin solid line: equilibrium
shape.

The set of examples considered show that the method described is effective and ef-
ficient, and therefore can be successfully used in the designof inductors in electromagnetic
casting.
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