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Abstract. In this paper we describe a new method for the topology design of the inductors
used in the electromagnetic casting technique of the metallurgical industry. The method is
based on a recently proposed topology optimization formulation of the inverse electromag-
netic casting problem, and uses level-sets together with first and second order topological
derivatives of the objective functional, which are herein given, to efficiently find the optimal
solution. Results for two numerical examples show that the technique described can be effi-
ciently used in the design of suitable inductors.
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1. INTRODUCTION

The electromagnetic casting is an industrial technique that allows for contactless heat-
ing, shaping and controlling of chemical aggressive, hot melts. It makes use of the repulsive
forces that an electromagnetic field produces on the surface of a mass of liquid metal. In the
presence of an electromagnetic field, the liquid metal changes its shape until an equilibrium
relation between the electromagnetic pressure and the surface tension is satisfied. The di-
rect problem in electromagnetic casting consists in determining the equilibrium shape of the
liquid metal. In general, this problem can be solved either directly studying the equilibrium
equation defined on the surface of the liquid metal, or minimizing an appropriate energy func-
tional. The main advantage of this last method is that the resulting shapes are mechanically
stable [1-3].

The inverse problem consists in determining the electric currents and the induced ex-
terior field, for which the liquid metal takes on a given desired shape. In [4] and [5] we



studied the inverse electromagnetic casting problem densig inductors made of a single
solid-core wire with a negligible area of the cross-secteomd the more realistic case where
each inductor is a set of bundled insulated strands. In kagbsthe number of inductors was
fixed in advance. In a recent paper we overcome this consteaid looked for configurations
of inductors considering different topologies with the page of obtaining better results [6].

Following the general treatment of the inverse problem ictamed in [6], we formulate
the inverse problem as an optimization problem. The topcidgsymptotic expansion of the
shape functional considered is given, and an efficient tapobptimization algorithm based
on the level-set technique proposed by Amstutz [7] is usestbice the inverse problem.

Two examples are presented in Section 6 to show the that ti@ination method
described can efficiently find the solution to a given desigibfem. Finally, the conclusions
are presented in Section 7.

2. THE MATHEMATICAL MODEL

The simplified model of the electromagnetic casting proldé&udied here concerns the
case of a vertical column of liquid metal falling down into@ectromagnetic field created by
vertical inductors. We consider the quasi-static model asglime that the frequency of the
imposed current is very high so that the magnetic field doép@oetrate into the metal. We
assume also that a stationary horizontal section is reashéthat the two-dimensional model
is valid. The equilibrium of the system is ensured by theistiadlance on the surface of
the metal between the surface tension and the electromadprees. This problem and other
similar ones have been considered by several authors, erghhefreader to papers[1, 2, 8-11]
for the physical analysis of the simplifying assumptionshaf model.

We denote by) C R? the exterior of the domaiw occupied by the cross-section of
the metal column, which is assumed closed, simply conneatediwith a non-void interior.
The exterior boundary value problem regarding the invelsgtr®magnetic casting problem
in terms of the flux functiorp : Q@ — R is:

—Ap = piojo in €,
v =0 onl', Q)
p(x) =c+o(l) as|z] — oo,

wherep, is the vacuum permeability, is the component of the current density vector normal
to the cross-section, that we assumed compactly supporfedmnd such that the total current
iS zero:

/Qjodxzo, )

I" is the boundary of?, ||-|| denotes the Euclidean norm, and the constastthe value at
infinity of the solutiony, which is also an unknown of (1) [4-6].

Problem (1) has unique solutiopse W, (2) andc € R [12, 13], wherelV} (Q2) is
defined as:

Wy (Q) ={u: pue L*(Q) andVu € L*(Q)}, (3)



with p(z) = [/1 + [l]]* log(2 + [|=[*)] "

The cross-section area of the liquid metal column is knowtheaqual toS;:

de:&. @)

The equilibrium of the liquid metal boundary between the neg pressure and the
surface tension is characterized by the following equdtidn 14-17]:

2
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+o0C=py onl, (5)
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whereC is the curvature of seen from the metad; is the surface tension of the liquid and the
constanty, is an unknown of the problem. Physically, represents the difference between
the internal and external pressures.

In the direct problem the electric current densityand the cross-section arfa are
given, and one needs to find the shape shtisfying (4) such that the flux functignsolution
to (1) satisfies also the equilibrium equation (5) for a reaistanty,.

2.1. Thelnverse Problem

In the inverse problem we have to determine the current gefissatisfying (2) such
that the solutiony of (1) satisfies also the equilibrium equation (5). If thearse problem
has an exact solution, we say that the target shape is skeapfltildoes not, we say that
it is not shapable. Even considering a shapable shape,\tBesenproblem is inherently ill
posed: small variation of the liquid boundary may cause dtanvariations in the solution
jo of the inverse problem [9, 18]. In addition, the uniqueneisthe solution in terms ofj,
cannot be ensured [6]. Hence, we follow the approach prapos§s], where the inverse
problem is formulated as an optimization problem, in orddook for a solution (maybe just
an approximate solution) minimizing an appropriate fuorcdl.

There are some known facts about the exact solutions of vieese problem that are
of main importance in what follows. First, at the solutioe ttonstanp, satisfies [6, 9]:

Po = max oC. (6)

Hence, for a given target shape, the valugp€an be calculated using (6). Second, calling
P = +/2u0(po — 0C), the equilibrium equation in terms of the flux function reads
I

%Z%ﬁ onl’, (7)

wheres = +1, with the sign changes located at points where the curvatureis a global
maximum. The two possible ways of defininglead to the same solutiofy but with the
opposite sign [6].

Third, a necessary condition for the existence of a solutioine inverse problem is
the following [6]:

A%p@:o. 8)



3. TOPOLOGICAL DERIVATIVE CONCEPT

The topological derivative measures the sensitivity of\eegishape functional with
respect to an infinitesimal singular domain perturbatioichsas the insertion of holes, inclu-
sions, source-terms or even cracks. The topological demvevas introduced by Eschenauer
et al. [19] and rigorously investigated by Sokotowski afmthowski [20] and by €a et al.
[21]. Since then, this concept has proved extremely usefilie treatment of a wide range of
problems, such as topology optimization [7, 22—26], anéiisg analysis [27-32].

Let us consider that the domainis subject to a non-smooth perturbation confined
in a small ballB.(z) of radiuse and centeft € . Then, if a given shape functional(¢),
associated to the topologically perturbed domain, ading$dllowing topological asymptotic
expansion [20]

¥(e) = ¥(0) + fi1(e)Dytp + fa(e) Ditb + o(fa(e)) , ()]

where)(0) is the shape functional associated to the original (unpgeetl) domain andf;(¢),
1 <4 < 2, are positive functions such thgte) — 0, and fa(¢)/ f1(¢) — 0, whene — 0,
we say that the function8 — DZ+(7), 1 < i < 2, are the topological derivatives of
atz (in this paper we call first and second order topologicalvdgities to D1y and D21,
respectively). The ternf,(¢) D1y + fo(e) D34 can be seen as a second order correction of
1 (0) to approximate)(¢). In fact, the topological derivatives are scalar functidaned over
the original domain that indicate, at each point, the seitgiof the shape functional when a
singular perturbation of sizeis introduced at that point.

In this paper we describe a new method for inverse electragtagcasting problems
based on the topological expansion (9), which is presentdétails in the next section.

4. PROBLEM FORMULATION

The considerations made in Section 2.1 allow us to formutetenverse problem as
follows: for a given domainf2 limited by a smooth boundary, determine an electric current
densityj, satisfying (2) with compact suppaspt(j,) C O, where® is a given compact in
2 [9], and a real constamtsuch that the system

—Ap = pojo in 2,
p =0 onl',
10
e =xp onI', (10)
on

p(r) =ct+o(l) asfa] = oo,

has a solutionp € W (). We assume that condition (8) is satisfied. Note that the @bov
problem is ill-posed, since the boundary conditiond oare overdetermined. Therefore, the
idea is to rewrite the inverse problem (10) as an optimizgpimblem.

Consider the following shape functional based on the Kohgelas criterion [6],

1 1
0(0) = 9(0) = 5l = 5 [ ¢ ds. (1)



where the auxiliary functiop depends implicitly oy, andc by solving the following bound-
ary-value problem

—A¢ = pojo inQ,
o _ .
™ =xp—d(jo) onl, (12)
n
¢(x) =c+o(l) as||z| — oo,
where, denotingl’| = [ ds, d(jo) is defined as
i) =0 [ pdode. (13)
Q

Note that¢ can be computed for a current densjgynot necessarily satisfying condi-
tion (2). The approach described here to deal with (10) i$dh@wing: determine an electric
current densityj, satisfying (2) and the constansuch that the solution to (12) minimizes
the shape functional (11). We note that the minimum of thepsHanctional (11) is attained
when¢ = 0 onI'. This means that in this situation, from the well-posedmdgsoblems (1)
and (12), we have = ¢ in (.

In a first step we can eliminate the variahleof the optimization problem defin-
ing it as the global minimuna*(j,) of (11) for any fixedjy, i.e., we takec = ¢*(jo) =
arg min, J(¢(jo, c)). Itis easy to see that the global minimum with respeect i®such that
J-#ds = 0[6]. Hence, we can formulate an equivalent optimizationbgm as follows:
minimize the shape functional (11), whepee W/} () depends implicitly onj, only, by
solving the following problem:

—%f; = [oJo inQ,
/gbds =0.
r

4.1. Thetopological derivative calculation

Associated tap we define the functior. solution to the perturbed problem. In this
context, the perturbation is characterized by changingeteetric current distribution, by
a new onej. which is identical toj, everywhere i except in a small regio®.(z) C €,
whereB.(z) denotes a ball of radiusand centet:. More preciselyy. is given by

Je = Jo +alXB.() (15)

where! is a given current density value and= +1 is the sign of the current density in
B.(%). In this way, the shape functional associated to the pestlipsoblem reads:

1
vle) = J(o) = 5 [ otds, (16)
r
whereg. is unique solution if¥;} () to the following problem:
_A¢e = loJe in Q,
0¢. _ _
¢ = %xp—d(j.) onl, (17)

on
/qﬁgds =0.
r



Theorem 1. The functionak) admits the topological expansion

¥(e) = ¥(0) + fi(e)Dptp + fale) D), (18)

with the functionsf; (¢) = me?, f2(e) = 72¢* and the topological derivatives
Di(#) = apiol /F of ds., (19)
Dhoa) = piit? [ s, (20)
where the functiorf € W (2) satisfies the following problem:

—Af = (7“52)_1)(35(:?3) in Q,
of _
= —‘F’ ! onl’, (21)

on
/fds =0.
r

Alternatively, the first order topological derivative caa bomputed efficiently using
the adjoint state, see [6],

Dip() = —applv(@), (22)
wherev is the unique solution i} () to the following problem:

—Av =0,
ov
8_72, = —¢ onI’ , (23)

/vds =0.
r

5. ATOPOLOGICAL DERIVATIVE-BASED LEVEL-SET ALGORITHM

In this section we state a level-set topology design algoribased on the topological
derivatives obtained in the previous section. We considerans() which possess a central
symmetry. In this case we can devise a level set algorithirgirzerate a sequence of current
density functiong, satisfying (2) at each iteration. In this case the currensigj, is sought
as the solution of the general optimization problem stated a

Minimize J(¢),

Jo

subject to/ Jods =0. (24)
Q

It should be stressed that the design variable in probleri€the topology of the
support ofjy, and its sign. Hence, the use of theacttopological sensitivity information
provided by the topological derivatives (19) and (20) erasrgs a natural alternative in the
development of a numerical optimization algorithm to tadkle problem.

We decompose the working compact €etc (2 into disjoint parts9*, ©—, ande?°,
representing the regions 6f where the current density is, respectively, positive, negative



or zero. For clarity of exposition, let us assume thdt, ©—, and©° are open domains

(perturbations with center on the domain boundaries will not be considered). Intradact

of a circular region of current densityl and centei: € ©° changes the value of the objective
function of problem (24) according to the topological exgian (18). Note also that the

topological expansion corresponding to introduction ofrautar region of zero current and
centerz € ©1 is also given by (18) withv = —1. For a circular region of zero current and
centerz € ©~ we can use (18) withh = +1.

Consider now an optimal configuration of inductors with resge the class of per-
turbations we are analyzing. Introduction of a small ciacukgion of current density/ and
centerz € QY = Q — (61 U ©™) should not increase the objective function. Hence, accord-
ing to the expression of the first order topological denxgtan optimal configuration should
satisfy the following necessary condition:

—apelv(z) >0 Vie Q. (25)
Sincea could be positive or negative, for the optimal configuratimhave
v(#) =0 VieQ. (26)

Sincev is harmonic, it must be zero on the entire dom@jrand by (19) the first order
topological derivativeD1y vanishes inf2 for any optimal configuration, i.e.,

Dip=0 inQ. (27)

Having made the above considerations, we are ready to detogp®mlogical derivative-
based optimization algorithm based on the ideas presemi&d io solve problem (24). The
procedure relies on a level-set domain representationgdB88Japproximation of the topolog-
ical optimality conditions by a fixed point iteration. In piaular, the algorithm presented in
[7] displays a marked ability to produce general topologdmmain changes uncommon to
other methodologies based on a level-set representatibhasbeen successfully applied in
[7] to topology optimization in the context of two-dimensal elasticity and flow through
porous media.

The main difficulty of applying the ideas in [7] to the preseate is that the first
order topological derivative vanishes at the solution adiog to (27). Thus, the first order
topological derivative alone cannot be used to define thed Bmits of the fixed point algorithm
stated in [7]. Fortunately, the expected variation of thgecitive functional given by the
topological expansion (18) can be used instead of the fidtratopological derivative to
overcome this difficulty.

With the adoption of a level-set domain representationrég@nO™ is characterized
by a functiom)™ € L?(0) such that

Ot ={ze0, v*() <0}, (28)
whereas the regio®~ is is characterized by a functiafr € L*(0):

O ={re0, v (z) <0}. (29)



Let EV (z,e,a) be the expected variation of the objective function of peabl(24) for a
perturbation ofj, consisting in a circular region of current density of radiuse and center
z, namely,

EV(i,e,a) = fi(e) Dy () + f2(e) Dib(@) . (30)

A sufficient condition of local optimality for the class of gerbations considered is
that the expected variation of the objective function bdatpes i.e.,

EV(%,e,a) >0, VieO', anda= -1, (31)
EV(Z,e,a) >0, V€O ,anda=+1, (32)
EV(i,e,a) >0, Vie@’, anda = =+1. (33)

Following [7], to devise a level-set-based algorithm whase is to produce a topol-
ogy that satisfies (31)—(33), we choose a value=f@n the numerical approach we define a
mesh of cells in the domaid and take a value for related to the size of the cells) and define
the functions

—EV(i,e,—1) ifze€0*

+ — ) Y 5

7o { EV(i,e,+1) ifze0UO™, (34)
oy | EV(Ze+1) fzeo,

o= { EV(ie,—1) ifze0’uor. (35)

With the above definitions and (28)—(29), it can be easilgld&hed that the sufficient
conditions (31)—(33) are satisfied if the following equeste relations between the functions
gt andg~ and the level-set functiong™ and«~ hold

7t >0 st h(gh)=71"¢", (36)
d77 >0 st h(g)=7 ¢, (37)

whereh : R — R must be an odd and strictly increasing function, e.g.,
h(x) = sign(x)|z|® with 5> 0. (38)

In fact, if € ©F, theny™(z) < 0. By (36) and sincé preserves the sign we hayé(z) <
0, and by (34) we havé’V (z,e,—1) > 0, proving (31). The proofs of (32) and (33) are
analogous consideringrespectively iro~ and©°.

Let us see how to find the optimal topology ©f. The case 0B~ is completely
analogous. Starting from an initial level-set functioh € L?(©) which defines the chosen
initial guess for the optimum topology @™, the algorithm produces a sequeneg );cx
of level-set functions that provides successive approtiona to the sufficient condition for
optimality. The sequence satisfies

vy € L*(6),

Ul € co(t h(gr))  VneN, (39)



whereco(¢;F, h(g;")) is the convex hull o), h(g})}. In the actual algorithm the initial
guess); and subsequent iteration points can be normalized, seef{Tjifther details. The
non-normalized sequences for béh and©~ are

w = (L=t + tuh(g))
Vpr = (1= ta)0, +tah(g,,)

wheret,, € [0,1] is a step size determined by a line-search in order to deztbasvalue of
the cost functional/(¢). The iterative process is stopped when for some iteratienkitained
decrease it (¢) is smaller than a given numerical tolerance. The angjtesndd~ can be use
as indicators of the accuracy of (36) and (37) at the finaditen and can be used to determine
the necessity of a mesh refinement [7].

If there is no previous information about the optimum, aahlg initial guess that
satisfies the inequality; +1, > 0is; = ¢, = 1, which corresponds to zero positive and
negative currents.

} Vn €N, (40)

6. NUMERICAL EXAMPLES

Two numerical examples are presented. The first example kasven solution, since
the target shape considered is an equilibrium shape fongaaent density distributions. The
next example consists of a more realistic design problera.séime boundary element method
used in [6] was used here to solve the boundary value proldecho compute approximately
the first and second order topological derivatives.

The target shape of the first example is the solution of a tfree-surface problem
for a liquid metal column of cross-section arga= m, considering six distributed currents of
density/ = 0.4 as shown in Fig. 1. The result obtained for a mesh of 8i@e, defined in the
region shown in Fig. 1, is shown in Fig. 2.

A -

‘ 0.4 ‘ 1.3
‘ :

(a) (b)

Figure 1. Example 1. (a) Initial configuration of the direxd-surface problem. (b) Target
shape and exact solution. Black area: positive inductoay, @rea: negative inductors, dashed
line: target shape, thin solid line: boundary of the meshetitc
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Figure 2. Example 1. Solution for a mesh of cells of siz& with 5 = 3. Black area:
positive inductors, gray area: negative inductors, dasined target shape, thin solid line:
equilibrium shape.

The target shape of the second example is depicted in Fig.h& clirrent density
I=02,0=10x10"*andu, = 1.0. The result obtained for a mesh of siz62, defined in
the region shown in Fig. 3, is shown in Fig. 4.

0.4

!

04

1.0

0.4, 0.6

(@) (b)

Figure 3. Example 2. (a) Description of the problem geomélryTarget shape. Dashed line:
target shape, thin solid line: boundary of the mesh of cells.

7. CONCLUSIONS

We have described a new method for the topology design otiodsiin electromag-
netic casting. The method is based on the topology optimizébrmulation presented in [6]
and uses level-sets together with first and second ordelagipal derivatives to design suit-
able inductors.

The complete asymptotic expansion of the objective funetioegarding the introduc-
tion of a small inductor was given in this paper, generatjzine results of [6]. In the case
of centrally symmetric geometries, the method describetigges a sequence of solutions
satisfying all the equality constraints.
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Figure 4. Example 2. Solution for a mesh of cells of $iZ¥ and/ = 3. Black area: positive
inductors, gray area: negative inductors, dashed lingetahape, thin solid line: equilibrium
shape.

The set of examples considered show that the method dedasledfective and ef-
ficient, and therefore can be successfully used in the desigrductors in electromagnetic
casting.
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