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Abstract. The present work concerns the numerical modeling of noise and vibration reduc-

tion of thin radiating structures in the low frequency range by using shunted piezoelectric 

elements. The aim is to propose an efficient approach able to predict the structures most ra-

diating vibration modes and to attenuate these modes by using piezoelectric patches bonded 

on the structure and connected to resistive or resonant shunt. The first step is to estimate the 

sound power radiated by the structure and determine the vibration modes to be controlled. In 

a second step, an original finite element formulation, adapted to any elastic structures with 

surface-mounted piezoelectric patches, is proposed to solve the electromechanical problem. 

Finally, numerical examples are presented in order to validate and analyze our approach. 
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1. INTRODUCTION 

The use of piezoelectric materials for vibration damping and noise suppression of flex-

ible structures, both in active control [3, 6, 9, 21] and in passive control [4, 7-8, 12-13, 15-24], 

is widely discussed in the literature. These materials, which can be used as sensors or actua-

tors, or even both simultaneously, enable the transformation of mechanical energy into elec-

tric energy (direct piezoelectric effect) and vice-versa (indirect piezoelectric effect). Also, 

they are well adapted to distributed or localized control of structural vibrations and sound 

radiation since they are produced as very thin patches that can be embedded in composite 

structure and allow direct connection with an input/output electrical signal [23].  

Due to the direct piezoelectric effect, a portion of the mechanical energy associated 

with the vibration can be transformed into electric energy and dissipated through a shunt cir-

cuit that compounds a mechanism of passive damping. A detailed description of the use of 

shunt circuit and piezoelectric devices can be found in the pioneer work of Hagood and von 

Flotow [12]. In that work, the expression for the mechanical impedance introduced by the 
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piezoelectric element connected to various type of shunt circuit coupled to mechanical sys-

tems is obtained. Two main electric circuits designs composed by a simple resistor (resistive 

shunt) and a resistor in series with an inductor (resonant shunt) are proposed. Both of those 

designs connected to some piezoelectric patches produce a passive damping system for a sin-

gle vibration mode, so that the electric circuit parameters, as well as the piezoelectric patches 

dimensions and location, have to be chosen in relation to a particular structure’s eigenmode 

[4, 12, 15, 17-18, 20]. Many studies have also been focused on optimizing the shunt circuits 

including resistances, inductances and capacitances in series and/or parallel to produce pas-

sive damping systems for single and/or multi-mode. Examples and comparison between dif-

ferent types of shunt circuits can be found in [4, 7, 13, 19, 23-24]. 

The present work concerns the numerical modeling of noise and vibration reduction of 

thin structures in the low frequency range by using shunted piezoelectric elements. The aim is 

to propose an efficient approach able to predict the structures most radiating vibration modes 

and to attenuate these modes by using piezoelectric patches bonded on the structure and con-

nected to resistive or resonant shunt circuits. 

The first step is to estimate the sound power radiated by the structure (without piezo 

patches) and determine the vibration modes to be controlled. This is done by using the ele-

mental radiators decomposition described in previous works [3, 6, 9, 16]. This method, which 

assumes that the sound radiation is due to a number of discrete pistons in harmonic oscilla-

tion, can be applied to any plane surface in an infinite baffle. It only requires the knowledge 

of the surface geometry, the characteristics of the fluid and the velocity field distribution. In 

this work, a finite element approach is used to evaluate this velocity field by using a sufficient 

number of discrete radiating elements according to the smallest wavelength to be observed. 

In a second step, an original finite element formulation [18], adapted to any elastic 

structures with surface-mounted piezoelectric patches, is proposed to solve the electrome-

chanical problem. This formulation, with only one couple of electrical variables per patch, is 

well adapted to practical applications due to the fact that realistic electrical boundary condi-

tions, such as equipotentiality on the electrodes, naturally appear. The global variables are 

also intrinsically adapted to include any external electrical circuit into the electromechanical 

problem and to simulate the effect of shunt damping techniques. A reduced order model of the 

problem is then introduced, by means of a modal expansion. It is shown that the choice of 

modal basis used to perform the electromechanical reduced order model depends of the 

shunted circuit type. Therefore, the modal basis of the short-circuit problem is the most ap-

propriated for the resistive shunt case, and for the resonant shunt case, the modal basis of the 

coupled electromechanical problem seems to be the best choice. 

Finally, numerical examples are presented in order to validate and analyze our ap-

proach. First, the developed electromechanical model is validated by comparison with a full 

3D model (with one electrical degree-of-freedom per node) showing that the reduced order 

model is capable of capturing the main characteristics of the system dynamic behavior, nota-

bly in terms of attenuation. Then, sensitivity analyses concerning the piezoelectric patch (size 

and position) are performed in order to highlight the role of the modal electromechanical cou-

pling factor (MEMCF) on the optimization procedure of the shunt damping techniques for the 

reduction of sound radiation.  



 

 

2. ACOUSTIC RADIATION FROM PLANAR THIN STRUCTURES 

This section is devoted to the acoustic radiation properties of baffled thin planar struc-

tures. First, the vibroacoustic problem considered in the present work is introduced. Then, the 

elemental radiators approach is recalled. 

2.1. Vibroacoustic Problem 

  

 

 

 

 

Figure 1. Vibroacoustic problem 

 

We consider the case of an elastic structure (domain    ) immersed in an unbounded 

acoustic fluid (domain    ) as show in Fig. 1. The fluid-structure boundary, denoted   , is 

such that           . Considering weak fluid-structure interaction (light fluid medium 

and low frequency domain), elastic and acoustic problems can be solve independently.  As a 

result, the acoustic problem consists in solving the following system [10]: 
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in which the subscript   ̂denotes a quantity in frequency domain,   is the unknown pressure 

wave,   is the velocity field vector,   is the normal unit vector of the surface   , K is the 

wave number expressed as      (  being the angular frequency and    the speed of sound in 

the acoustic medium),   is the Laplace operator,   √    and    is the fluid density. The 

first equation corresponds to the three-dimensional Helmholtz equation, the second is the 

boundary condition at the fluid-structure interface, and the last one is the Sommerfeld radia-

tion condition (in spherical coordinates system).  

The present work aims to study sound radiation in a half free space by baffled thin 

planar structures. In this case, the above problem system can be solving analytically by using 

the Spatial Fourier Transformer Method [10], the elemental radiators approach [3, 6, 9, 16], or 

the Rayleigh Integral [6, 9-10, 25] which is done by:  
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where M is a point inside the volume   , Q is a point on the surface S and r denotes the dis-

tance between M and Q.  
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The elemental radiators method that is used in the numerical simulations of this paper 

will be described in the next section. 

 2.2. Elemental Radiators Method 

 
Figure 2. Principle of elemental radiators approach [6]. 

 

In the elemental radiators approach, the sound radiation is due to N pistons of equal 

size, as showing in Fig. 2. It is assumed that the velocity and pressure fields across each radia-

tor are constant once they are small compared with the acoustic wavelength. Then, the acous-

tic power radiated reduces to the summation: 
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where  ̂ and  ̂  are the vectors of the surface complex acoustic pressure and normal volume 

velocity of the elementary radiators,    is the surface of an elementary radiator, and subscript 

  denotes the Hermitian transpose. Using the relation  ̂     ̂  (  being the matrix of acous-

tic impedances) the acoustic power radiated may be written: 
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where         ( ) is a real, symmetric, positive definite matrix, which is proportional to 

the radiation resistance matrix  ( ). If the radiating surface is plane and in an infinite baffle, 

the terms of   may be calculated analytically using the Rayleigh integral (see Eq. (2)): 

     
      

     
                         (5)  

where     is the distance between the observation position and the elemental radiator (Fig. 2). 

Therefore, the matrix   is given by: 
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This method can be applied to any plane surface in an infinite baffle, independently of 

the boundary conditions. It only requires the knowledge of the surface geometry, the charac-

teristics of the fluid and the velocity field distribution. In this work, a finite element approach 

is used to evaluate this velocity field by using a sufficient number of discrete radiating ele-

ments according to the smallest wavelength to be observed. 

3. ELECTROMECHANICAL FINITE ELEMENT MODEL 

In this section, the general formulation of the equations that govern the mechanical 

and electrical state of an elastic structure equipped with piezoelectric patches is used to derive 

a finite element model [15-20]. Beforehand, the general problem is described and the main 

assumptions are recalled. Standard indicial notations are adopted throughout this section: sub-

scripts         denote the three-dimensional vectors and tensor components and repeated sub-

scripts imply summation. In addition, a comma indicates a partial derivative. 

3.1. Hypotheses and Variational Formulation 

We consider the special case of an elastic structure, occupying a domain denoted   , is 

equipped with P piezoelectric patches (Fig. (3)). Each piezoelectric patch has its upper and 

lower surfaces covered with a very thin electrode and can be slightly curved. The  -th patch, 

    {     }, occupies a domain  ( ) such that  (    
( )    ( )) is a partition of the whole 

domain  . The domain   is subjected to prescribed body forces   
  and the domain boundary, 

denoted   , is subjected to a prescribed displacement   
 on a part    and to a prescribed sur-

face force density   
  on the complementary part    such that         .  

 
Figure 3. Left: an elastic structure with two piezoelectric patches. Right: the p-th piezoelectric 

patch submitted to the potential difference  ( ), with its electrodes containing the free electric 

charges  ( ) and   ( )on their surface in contact with the patch [18]. 
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A set of hypotheses, applicable to a wide spectrum of practical applications, can be 

used in order to obtain an efficient variational formulation of the problem. The main assump-

tions, detailed in [18], are summarized below.  

 Only the piezoelectric patches are made of piezoelectric material. Consequently, the 

piezoelectric material constants      vanish in   . The electric displacement vector of 

component    is neglected in the elastic domain   , as compared to its value in any of 

the piezoelectric patches  ( ).  

 The piezoelectric patches are thin with a constant thickness, denoted ℎ( ) for the  -th 

patch, smaller than its characteristic longitudinal length. The thickness of the elec-

trodes is much smaller than ℎ( ) and is thus neglected. 

 The piezoelectric patches are polarized in their transverse direction (i.e. the direction 

normal to the electrodes). Moreover, the electric field vector, of components   , is 

normal to the electrodes and uniform in the piezoelectric patch, so that for all   

{     } 
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( ) (7)  

where  ( )   +
( )    

( ) is the potential difference between the  -th patch upper and 

lower electrodes surfaces  +
( )

 and   
( )  and    is the  -th component of the normal 

unit vector to the surface of the electrodes.  

With appropriate initial conditions and considering the above hypotheses the varia-

tional formulation of the electromechanical problem is such that: 
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where  ( )      
( ) (ℎ( ))

 
 is the capacitance of the  -th piezoelectric patch (    

        being the piezoelectric permittivity in the direction normal to the electrodes and  ( ) 

is the average area of the patch) and  ( ) the electric charge contained in the upper electrode 

of the  -th piezoelectric patch. For more details about the derivation of this original formula-

tion, we refer the reader to [18]. It can be noted that we have defined    as the space of suffi-

ciently regular functions    defined in the whole domain   and   
  {           on   }  

3.2. Finite Element Formulation 

Using any finite element procedure to discretize the mechanical part of Eq. (8) and (9) 

leads to introduce U, the vector of nodal values of   . By introducing   ( ( ) ( )  ( ))
 
 



 

 

and   ( ( ) ( )  ( ))
 
, the column vectors of electric charges and potential differences, 

one finally obtains the general finite element formulation of the electromechanical problem: 
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In the above equation,    and    are the mechanical mass and stiffness matrices, of 

size    , where   is the number of mechanical degrees of freedom.    is the electrome-

chanical coupling matrix, of size    .    diag( ( )  ( )) is the diagonal matrix filled 

with the P capacitances of the piezoelectric patches. F is the column vector of mechanical 

forcing, of length N.  

The above discretized formulation equation is particularly adapted when the piezoelec-

tric patches are shunted, that is to say, connected to a passive electrical network. In this case, 

neither V nor Q are prescribed by the electrical network but the latter imposes only a relation 

between them, that can be write as  ( ̈       ̈     )  . This additional relation writes, in the 

cases of a resistive shunt composed of a resistance    and a resonant shunt composed of a 

resistance    and an inductance    connected to the  -th patch: 

  ( )       
( )                         (11)  

  ( )      ̈
( )       

( )                        (12)  

Depending on whether the patches are short-circuited (   ) or in open-circuit 

(   ), the homogeneous problem associated to the discretized formulation (Eq. (10)) takes 

the following forms: 

     ̈                     -         (13)  

      ̈   (          
- 
   

 )                -         (14)  

Therefore, one can notice the effect of open-circuit electromechanical coupling on the 

elastic structure appears as an added stiffness term      
- 
   

 . 

 

3.3. Modal Expansion 

In this section, a reduced-order formulation of the discretized problem is derived by 

expanding the mechanical displacement unknowns vector onto the (i) short-circuit 

eigenmodes basis for the resistive shunt case and, (ii) coupled electromechanical basis for the 

resonant shunt case. Beforehand, the general finite element formulation in Eq. (10) will be 

rewrite in terms of the electrical unknown Q. This (U, Q) formulation is well suited for shunt-

ing applications [18]. 



 

 

3.3.1. Electromechanical problem with resistive shunt circuit 

In the case of the piezoelectric patches are coupled to the resistive shunt circuits and 

considering a mechanical viscous damping in the system, the general finite element formula-

tion of the electromechanical problem becomes: 
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where    is the mechanical damping matrix and    represent the diagonal electrical re-

sistance matrix. In case the undamped free vibration is considered (   ) and harmonic time 

dependency is assumed (   ̂      and    ̂     ), Eq. (15) reduces to the short-circuit ei-

genvalue problem:  
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Combining the second and first lines, we can easily see that the above discretized sys-

tem correspond to the short-circuit eigenvalue problem       ̂     ̂   which depends 

only on the mechanical properties of the system, i.e. the stiffness and mass of the structure 

with patches. The solution of this eigenvalue problem comprises N natural angular frequen-

cies    and corresponding eigenvectors  ̂  : 
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3.3.2. Electromechanical problem with resonant shunt circuit 

In the case of the piezoelectric patches are coupled to the resonant shunt circuits and 

considering a mechanical viscous damping in the system, the general finite element formula-

tion of the electromechanical problem becomes: 
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where    represent the diagonal electrical inductance matrix. If we consider the undamped 

free vibration problem and if a harmonic time dependency is assumed, Eq. (18) reduces to the 

coupled electromechanical eigenvalue problem: 
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As in the resistive shunt case, we can easily prove that the above discretized system do 

not correspond to short-circuit nor open-circuit eigenvalue problem. The solution of this ei-



 

 

genvalue problem comprises N+P natural angular frequencies    and the corresponding ei-

genvectors    [ ̂   ̂ ] 
 : 
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In order to reduce the mechanical part of the problem, we only use the mechanical ei-

genvectors portion, defined by: 

   [ ̂    ̂     ̂  ] (21)  

3.3.3. Modal Expansion 

The mechanical displacement vector is sought as:  ( )   ∑     ( )
 
   . As a result, 

the problem consists in solving the following system: 
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where     and   is solution of Eq. (13) for resistive shunt circuits and      and   is 

solution of Eq. (19) for the resonant shunt circuits. 

3.4. Modal Electromechanical Coupling Factors (MEMCF) and Shunt Electrical Com-

ponents 

The well-known effective electromechanical modal coupling factor (EEMCF) charac-

terizes the energy exchanges between the mechanical structure and the piezoelectric patches 

[1, 12, 15, 17-20, 22]. This parameter can be defined, for the system i-th mode, by 
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 ̂ 
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where    and  ̂  are, respectively, the short-circuit and open-circuit i-th system natural fre-

quencies (with all piezoelectric patches, respectively, short circuited or in open circuit).  

The optimal values for the electrical parameters of both resistive and resonant shunts, 

in forced vibration condition, are presented in the table 1. These classical results [19] depends 

only on (i) the natural frequency in short circuit of the considered vibration mode as well as 

its modal coupling factor (ii) the equivalent electrical blocked capacity of the patches. 

 

 

 

 

 



 

 

Table 1. Optimal electrical parameter values for the resistive and resonant shunt where     is 

the equivalent piezoelectric patches capacitance (see [19] for details). 

Shunt Circuit Optimal Electrical Parameter 

Resistive 
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3.5. Electromechanical Finite Element Model Validation  

This section aims to validate the proposed electromechanical formulation (with one 

couple of electrical variables per patch as described in section 3) by comparison with a full 

3D model (with one electric degree of freedom per node) [2, 5, 11, 18] and to show that the 

reduced order model is able to capture the main characteristics of the system dynamic behav-

ior, especially in terms of attenuation. The considered example consist of a clamped-free 

beam-like structure made of aluminum material (E=70 GPa, =0.33, =2700 kg/m
3
) with one 

piezoelectric patch made of PZT-4 material (see [11] for the properties). The geometrical di-

mensions are 175×20×2 mm
3
 for the structure and 50×20 mm

2
 for the piezoelectric patch. The 

thickness of the piezoelectric patch varies between 1 to 5 mm. To construct the two electro-

mechanical models and solve the problems, the finite element code Nastran is used in associa-

tion with Matlab software. Nastran is exploited here to create the elastic part of the models 

and to solve the complete electromechanical systems by means of DMAP language [14]. 

Matlab is used as a shell to manage Nastran and to construct the electric part of the models 

(see next section).  The beam is modeled with quadratic quadrilateral shell elements (QUAD 

8) and the piezoelectric patch is modeled using quadratic cubic solid elements (HEXA 20). A 

rigid connection between them is realized using RBE3 boundary element [14] (perfect bound-

ing condition).  

 

 
Figure 4. Clamped-free beam-like structure with one shunted piezoelectric patch: Finite ele-

ment model into Nastran code.  
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The frequency response functions (FRF) for a load case consisting of a unit point force 

in the z-direction and applied at co-ordinates (x, y) = (145 mm, 10 mm) is considered. Me-

chanical damping is introduced in the models through a structural damping coefficient   

    . The shunt circuit coupled to the piezoelectric patch was adjusted to attenuate the first 

vibration mode of the beam. The results are presented in Table 2 and Fig. 5. Table 2 shows 

the comparison of MEMCF between the proposed electromechanical formulation and the 

standard 3D electromechanical formulation. Fig. 5 show the transfer between the force point 

and the displacement at the location where this force is applied by using a resonant shunt cir-

cuit. It’s important to note that: 

 The results presented in Fig. 5 are obtained by using the same electrical parameters 

values (inductance and resistance) for the various electromechanical models; 

 The reduced models were obtained using the formulation described in section 3 

and with the ten first eigenmodes.   

 

Table 2.  EEMCF Comparison between the proposed electromechanical formulation and the 

standard 3D electromechanical formulation 

Modal Electromechanical Coupling Factors (MEMCF) in % 

Vibration 

modes 

patch thickness=1mm patch thickness=5mm 

Standard  

formulation 

Proposed  

formulation 

Standard  

formulation 

Proposed  

formulation 

1 12.12 12.21 2.73 2.85 

2 10.50 10.55 4.46 4.62 

3 0.00 0.00 0.00 0.00 

4 3.82 3.81 2.64 2.61 

5 0.00 0.00 0.00 0.00 

6 2.00 2.05 0.73 0.84 

7 0.00 0.00 0.00 0.00 

8 0.00 0.00 1.56 1.75 

9 4.35 4.42 0.00 0.00 

10 0.00 0.00 1.96 2.41 

  

We can see that the proposed formulation is in good agreement with the full 3D stand-

ard electromechanical model. Even if the difference between them increases with the thick-

ness and size of piezoelectric patch, it remains very small for a patch with 5 mm of thickness. 

So we can conclude that our formulation is validated to compute electromechanical systems 

with added piezoelectric elements bounded on the host structure.  

The results also validate the reduced models presented into the Section 3.3. 

 



 

 

 

Figure 5. Transfer function between point force and beam response using a resonant shunt 

circuit and for patch thickness equal to 1 mm.  

4. STRATEGY FOR THE COUPLING BETWEEN STRUCTURAL VIBRATION AND 

ACOUSTIC RADIATION 

This section presents the numerical strategy used to solve the vibroacoustic problem. 

As stated in section 2.1, the structural vibration and acoustic radiation problem can be solved 

independently due to the weak fluid-structure interaction. The commercial finite elements 

analysis program Nastran will be used in association with Matlab software.  

4.1. Numerical Strategy: Modeling of Noise and Vibration Reduction of Thin Structure  

As stated in section 1, the present work aims to propose an efficient approach able to 

predict the most radiating vibration modes of the structures and to attenuate these modes by 

using piezoelectric patches bonded on the structure and connected to resistive or resonant 

shunt circuits. To do that, two main steps are used: (i) determination the vibration modes of 

the structure (without piezoelectric patches) to be controlled and then, (ii) attenuation these 

modes by using shunted piezoelectric patches. 

The first step is done by estimating the sound power radiated by the structure (without 

piezoelectric patches), in the frequency range of interest, using the elemental radiators method 

(see section 2.2). 

Then, the next step consists in adding shunted piezoelectric patches on the structure to 

attenuate the selected vibration modes. The finite element formulation described in section 3 

is used to solve the electromechanical problem. First, the modal analyses of the system short 

Frequency [Hz] 

Frequency [Hz] 



 

 

circuited and in open circuit are computed by resolving the Eq. (13) and (14), respectively. 

Then, the modal couplings factor (MEMCF) for the selected vibration modes and the optimal 

electrical parameters of the shunt circuits are obtained using Eq. (23) and the expressions pre-

sented in the table 1, respectively. Next, the vector of normal velocity on the structure surface 

is calculated solving the system described by Eq. (22). Finally, the sound power radiated is 

determined using the elemental radiators approach (section 2.2).  

4.2. Numerical Implementation: Modeling of Noise and Vibration Reduction of Thin 

Structure 

The above proceeding was numerical implemented according to the Fig. 6. Any modal 

analysis is done with the commercial finite element analysis program Nastran. It is a widely 

used software in the industry and is efficient for eigenmodes computation of large systems 

(several tens of thousands dofs). The Matlab software is exploited here as a shell manager, 

and as function to create and solving the electromechanical finite element model, and com-

pute acoustic analysis. Throughout the procedure, much information is exchanged between 

Matlab, Patran and Nastran, for this reason, the programming language Awk is used because 

it allows reading and writing very fast. 

5. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSES OF THE ELECTRO-

VIBRO-ACOUSTIC PROBLEM 

This section aims to apply the general procedure introduced in Section 4 to a plate 

with one and several shunted piezoelectric patches. The main purposes of this section are to: 

 Show the effectiveness of the proposed approach – reducing sound radiation from thin 

structures in the low frequency range by using shunted piezoelectric element; 

 Perform sensitivity analyses concerning the piezoelectric patch (position and size) in 

order to highlight the role of the modal electromechanical coupling factor (EEMCF) 

on the optimization procedure of the shunt damping techniques for the reduction of 

sound radiation. 

5.1. Numerical examples 

To validate and illustrate the proposed approach, we consider a rectangular plate with 

two rectangular reinforcements perfectly bounded on its underside surface, both with 2 mm of 

thickness and made of aluminum material (E=70 GPa, =0.33, =2700 kg/m3). The plate is 

in an infinite baffle and surround by the air (              ,           ). The complete 

problem description is given in Fig. 7.  

 



 

 

 
 

Figure 6. Left: First step - determination the vibration modes of the structure to be controlled. 

Right: Second step – attenuation of the select modes by using piezoelectric patches bonded on 

the structure and connected to resistive shunt circuits. For resonant shunt circuits, one addi-

tional modal analysis (section 3.3) needs to be performed before to do the reduced order mod-

el. This additional analysis is done by Nastran with Matlab management.  
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The plate is excited by two transverse point forces of constant amplitude (1 N) whose 

positions are given in Fig. 7. It’s modeled with 1536 linear quadrilateral shell elements with 4 

nodes (Mindlin plate theory). The calculation of the eigenmodes of the system and the sound 

power radiated into the frequency band of interest [0, 430] Hz (solid blue line curve in Fig. 8) 

show that vibration modes 1, 6 and 14 are the most radiating for the particular excitation. To 

attenuate these modes, three piezoelectric patches both with 1 mm of thickness and made of 

PIC151 material (see [18] for the properties) are bounded on the underside plate surface. The 

position and dimensions of these patches are given in Fig. 7. Patches 1, 2 and 3 are connected 

to a shunt circuit to attenuate the plate vibration modes 1, 6 and 14, respectively. The system 

response is obtained by projection on the modal basis constructed from the first 40 

eigenmodes of the structure (plate and shunted piezoelectric patches), according to section 

3.3. Mechanical damping is introduced through a modal damping coefficient        for all 

eigenmodes in the selected modal basis. 

Fig. 8 shows the results for the resonant shunt case and Fig. 9 shows the results for the 

resistive shunt case. They demonstrate the efficiency of noise attenuation by using shunted 

piezoelectric elements. The attenuation obtained for the three modes remains around 12 to15 

dB using resonant shunts and 2 to 5 dB using resistive shunt. It is important to remember that: 

 The level of vibration attenuation through the application of shunted piezoelectric el-

ements depends on the modal damping coefficient (see [19]). For small damping coef-

ficient, effective attenuation is large and, the effectiveness of attenuation decreases as 

the damping coefficient increases; 

 The level vibration attenuation can be increased by optimizing the placement and size 

of piezoelectric patches [17, 20]. 

  

Figure 7. Left: Example layout without piezoelectric patches. Right: Example layout with 

piezoelectric patches. 
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Figure 8. Sound power radiated for resonant shunt circuit case 
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Figure 9. Sound power radiated for resistive shunt circuit case 



 

 

5.2. Sensitivity Analyses for Electro-Vibro-Acoustic Optimisation 

It is well known that mechanical and electrical optimization can be realized separately 

[17, 19-20]. The only parameter to maximize is the modal electromechanical coupling factors 

(MEMCF), which characterize the energy exchanges between the mechanical structure and 

the piezoelectric patches for a given mode. Since the optimal value of the electric circuit pa-

rameters are known as functions of the MEMCF and the system structural characteristics, they 

can be evaluated in a second step. Our objective is to optimize the placement and size of the 

piezoelectric patches for minimization of the acoustic power radiated. To achieve this, we 

consider the same rectangular plate as in the section 5.1, but with a single piezoelectric patch 

(same properties and dimensions of the patches presented in the Fig. 7). Moreover, we modi-

fied the placement of the patch on the plate surface. Fig. 10 shows the attenuation of the plate 

vibration mode 6 for two different positions of the piezoelectric patch shunted with a resistive 

shunt circuit (positions of the patch 1 and 2 of the Fig. 7). 

 

 
Figure 10. Sound power radiated for two positions of the piezoelectric patch shunted with a 

resistive shunt circuit 

 

We can notice that the level of attenuation of the system with the piezoelectric patch 

on the position 1 (MEMCF =6.91%) is larger than it is with the piezoelectric patch on the 

position 2 (MEMCF =5.40 %), but the level of the sound power radiated for the system with 

the piezoelectric patch on the position 2 is less than it is with the piezoelectric patch on the 

position 1. This can be explaining by to the added mass and stiffness the piezoelectric patch. 

This example case brings us to conclude that the maximization of the MEMCF guarantee the 

maximization of the attenuation level but doesn’t ensure the lowest level, especially for the 

resistive shunt type (low performance of attenuation). For systems with distributed patches 
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throughout the structure, and for the case of the dynamic behavior is slightly modified by the 

piezoelectric elements (small patches), the maximization of this parameter guarantee the op-

timal placement and size of piezoelectric patches in an acoustic optimization procedure.  

6. CONCLUSIONS AND PERSPECTIVES 

In this study, an efficient numerical model for noise and vibration reduction of thin ra-

diating planar structures in the low frequency range by using shunted piezoelectric elements 

has been proposed. First, the elemental radiators method used to solve the acoustic problem 

was recalled. Then, an original electromechanical finite element formulation, adapted to any 

elastic structures with surface-mounted piezoelectric patches, was presented and validated. 

Reduced order models of the electromechanical problem were then derived, by means of a 

modal expansion, taking account two types of electrical shunted circuits. These reduced mod-

els in association with the elemental radiators method were used to solve the electro-vibro-

acoustic problem. Preliminary examples are proposed in order to validate the approach. Fu-

ture works concern the extension to (i) non planar thin structures taking into account the fluid-

structure interaction, and (ii) multi-modal attenuation using a network of piezoelectric ele-

ments. Appropriate reduced order models will be also developed in order to optimize such 

coupled system.  
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