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Abstract. Boundary element formulations for the static analysis of Euler-Bernoulli and Timo-
shenko beams are presented in this work. As the problems are stated in one dimension, the 
boundary is constituted only by the extreme nodes of the beam. The four usual types of beams, 
i.e. pinned-pinned, fixed-fixed, fixed-pinned and fixed-free are solved for a loading uniformly 
distributed along the length of the beam. The potentialities of the proposed formulations are 
assessed by comparing the numerical results with the analytical ones. 
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1. INTRODUCTION 

This article is concerned with the solution of problems related to the Euler-Bernoulli 
and Timoshenko beams by the Boundary Element Method (BEM). It is important to mention 
that the analysis of beams by the BEM is a subject in which the method presents some fea-
tures that have turned it one powerful tool for the solution of several problems in engineering 
and sciences in general: easiness computational implementation and high level of accuracy in 
the results. 

Note that, as the problems are one-dimensional ones, the boundary is constituted only 
by the two nodes at the extremities of the beams: one node at x = 0 and the other node at 
x = L, if the beam with length L is located on the x-axis with the left node at the origin. The 
domain discretization is required in both formulations, as one can see along the text, and is 
accomplished with the use of linear cells. 

In the development presented here, initially the governing differential equations are 
presented and discussed. In the sequence, the BEM integral equations, obtained after follow-
ing a weighting residual procedure, are presented. 

The basic hypothesis of the Euler-Bernoulli beam theory, also called classical beam 
theory, states that the plane cross-sections, initially perpendicular to the axis of the beam, re-
main plane and perpendicular to the neutral axis after bending. The problem is described by 
only one differential equation. This matter is well discussed in several text books, for instance 
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Graff [6], Rao [7]. A BEM approach can be found at the classic book by Brebbia, Telles and 
Wrobel [3]. Note that the problem presents two natural boundary conditions, namely, the 
bending moment and the shear force, and two essential boundary conditions, namely, the 
transverse displacement and the rotation of the cross-section. In this way, each boundary node 
presents four variables and, consequently, only one integral equation is not enough for the 
solution of the problem, an additional integral equation being required for its numerical solu-
tion. Starting from the basic integral equation, related to the transverse displacement, the re-
quired additional equation is obtained by taking the derivative of the former with respect to 
the field point coordinate; consequently, the additional equation is related to the rotation of 
the cross-section. A set of two integral equations is thus obtained and the problem can be 
solved appropriately. Note that each equation is applied to the boundary nodes and, conse-
quently, the four equations, which are necessary for the solution, of the problem are obtained. 

In the Timoshenko beam theory, e.g. Graff [6], Rao [7], Timoshenko [8], the effect of 
the shear deformation is taken into account, generating an improved theory that gives more 
reliable results than the classical one in dynamic analyses, especially for higher frequencies. 
The problem is described by a set of two differential equations. For this reason, the two BEM 
integral equations, necessary to the solution of the problem, are obtained quite naturally in 
this formulation. For BEM static analysis, the reader is referred to Antes [1]. 

The examples presented at the end of the article are constituted by the four usual kinds 
of beams, that is: pinned-pinned, fixed-fixed, fixed-pinned (fixed at x = 0 and pinned at x = L) 
and fixed-free. A loading uniformly distributed along the length of the beam is considered in 
all analyses. The numerical results are compared with the corresponding analytical solutions. 
The good agreement observed between them shows that the BEM formulations are appropri-
ate tools for the solution of static problems related to the Euler-Bernoulli and Timoshenko 
beam theories. 

2. THE EULER-BERNOULLI THEORY OF BEAMS 

The basic hypothesis of the Euler-Bernoulli states that the plane cross-sections, initial-
ly perpendicular to the axis of the beam, remain plane and perpendicular to the neutral axis 
after bending, e.g. Graff [6], Rao [7].  

For the system of coordinates described in Figure 1, the governing equation of the 
problem is written as: 

 EI 
d4u
dx4 = q(x) (1) 

where u = u(x) is the transverse displacement, E is the Young’s modulus and I is the moment 
of inertia of the cross-section of area A, admitted constant. The loading, q = q(x), is represent-
ed by a function of position. In the problems analyzed here, the loading is a constant function, 
uniformly distributed along the length of the beam. 

The boundary conditions are: 
 



 
 

i) essentials: 

 u(x) = u−(x): transverse displacement (2) 

 ϕ(x) = 
du
dx = ϕ−(x): rotation of the cross-section (3) 

ii) naturals: 

 − EI 
d2u
dx2 = M

−
(x): bending moment (4) 

 − EI 
d3u
dx3 = Q

−
(x): shear force (5) 

 
Figure 1. Beam under general loading. 

2.1. BEM Formulation to the Euler-Bernoulli Beam 

Applying a residual statement to Equation (1), in which the weighting function is the 
fundamental solution that satisfies Equation (6) below: 

 EI 
∂4u*

∂x4  = δ(x − ξ) (6) 

one obtains the basic BEM equation, written as: 

 u(ξ) = [u*(ξ,x) Q(x)]|x=L − [u* (ξ,x) Q(x)]|x=0 −  

 [ϕ* (ξ,x) M(x)] |x=L + [ϕ* (ξ,x) M(x)] |x=0 +  

 [M*(ξ,x) ϕ(x)] |x=L − [M*(ξ,x) ϕ(x)] |x=0 −  

 [Q*(ξ,x) u(x)]|x=L + [Q*(ξ,x) u(x)]|x=0 +  

 
⌡
⌠

0

 L

 

 
 u

* (ξ,x) q(x) dx (7) 



 
 

Equation (7) already took into account that M(x) = − EI 
d2u

dx2 and Q(x) = − EI 
d3u(x)

dx3 , 

see Equations (4) and (5). The following functions are defined: 

 ϕ* (ξ,x) = 
∂u*(ξ,x)

∂x
 (8) 

 M*(ξ,x) = − EI 
∂2u*(ξ,x)

∂x2  (9) 

 Q*(ξ,x) = − EI 
∂3u*(ξ,x)

∂x3  (10) 

The fundamental solution is given by: 

 u*(ξ,x) = 
 x − ξ3

12EI  (11) 

and, as usual in the BEM nomenclature, x is the field point and ξ is the source point. 
 
As the boundary is constituted only by the extreme nodes of the beam, the two equa-

tions represented by Equation (7), written for ξ = 0 and for ξ = L, are not sufficient for the 
complete solution of the problem. Consequently, two additional equations are required. These 
equations can be those corresponding to the rotation of the cross-section at the two boundary 
nodes and are obtained by taking the derivative of Equation (7) with respect to ξ. In this way, 
one has: 

 ϕ(ξ) = [uξ  * (ξ,x) Q(x)]|x=L − [uξ  * (ξ,x) Q(x)]|x=0 −  

 [ϕξ  * (ξ,x) M(x)] |x=L + [ϕξ  * (ξ,x) M(x)] |x=0 +  

 [Mξ   * (ξ,x) ϕ(x)] |x=L − [Mξ   * (ξ,x) ϕ(x)] |x=0 −  

 [Qξ   * (ξ,x) u(x)]|x=L + [Qξ   * (ξ,x) u(x)]|x=0 +  

 
⌡
⌠

0

 L

 

 
 uξ  * (ξ,x) q(x) dx (12) 

The index ξ in Equation (12) refers to the derivative with respect to the source point 
coordinate. 

After writing Equations (7) and (12) for ξ = 0 and ξ = L, the problem can be solved. 
Note that the BEM formulation presents a domain integral, related to the loading, which turns 
the domain discretization necessary. Linear cells are employed with this purpose and the re-
sulting integrals are evaluated analytically. 



 
 

In order to obtain a good picture of the transverse displacements along the beam, the 
displacements at internal points are computed together with the boundary variables. The re-
sulting system of equation is thus written as follows: 

 









    Hbb  − Pbb    0

    0      H
−−−− bb    0

 − Hdb  − P
−−−−db    I

 







ub

ϕϕϕϕb

ud

 = 









 Gbb    Lbb

 G
−−−− bb    L

−−−−bb

 G
−−−−db    L

−−−−db

 






Qb

Mb  + 







f

−−−−b

f
−−−−b

f
−−−−d

  (13) 

In Equation (13), the superscript b means boundary, d means domain (internal points) 
and the double superscript is interpreted as follows: the first is associated with the position of 
the source point and the second, with the position of the field point. The vector f is related to 
the external loading and I is the identity matrix. 

After the imposition of the boundary conditions, the system of equations is solved by 
employing standard procedures. Together with the boundary variables, the solution also con-
tains the displacements at the internal points. 

3. THE TIMOSHENKO THEORY OF BEAMS 

In the Timoshenko theory of beams, e.g. Graff [6], Rao [7], Timoshenko [8], the effect 
of the shear deformation is taken into account, generating an improved theory. The plane 
cross-sections remain plane but not necessarily perpendicular to the neutral axis after bending. 

According to this theory, the rotation of the cross-section is made up of two contribu-
tions: one, denoted by ψ, measures the rotation of the cross-section due to bending whereas 
the additional contribution, γ0, is due to the shearing effects. One can write: 

 
du
dx = ψ + γ0 (14) 

For the system of coordinates described in Figure 1, the governing equations of the 
problem are written as: 

 κGA 






d2u

dx2 − 
dψ
dx = − q(x) (15) 

 κGA 






du

dx − ψ  + EI 
d2ψ
dx2= 0 (16) 

In Equations (15) and (16) κ is an adjusting coefficient, or corrective factor, designat-
ed as shear coefficient, that depends on the shape of the cross-section, see Borges [2], or, ac-
cording to the approach, on the Poisson coefficient, see Cowper [4]. The coefficient κ corrects 
the error introduced when the shear stresses are assumed to be functions only of the variable 
x, that is, when not taking into account their variation in the cross-section. Additionally, G is 



 
 

the shear modulus. The other constants that appear in Equations (15) and (16) are the same 
that have already appeared in Equation (1). 

The boundary conditions are: 

 u(x) = u−(x): transverse displacement (17) 

 ψ(x) = ψ−(x): rotation due to bending (18) 

 − EI 
dψ
dx = M

−
(x): bending moment (19) 

 κGA 






du

dx − ψ  = Q
−

(x): shear force (20) 

3.1. BEM Formulation to the Timoshenko Beam 

In order to develop a BEM formulation for the Timoshenko beam theory, Equa-
tions (15) and (16) are considered separately and, for each one, a corresponding integral equa-
tion is written. In this formulation the presence of domain integrals, other than that related to 
the loading, turns the domain discretization imperative and, consequently, the final system of 
equations contains the variables at the internal points. 

Applying a residual statement to Equation (15), in which the weighting function is the 
fundamental solution that satisfies Equation (21) below: 

 
∂2u*
∂x2  = δ(x − ξ) (21) 

one obtains: 

 u(ξ) = 






∂u*(ξ,x)

∂x
 u(x) |x=L

 − 






∂u*(ξ,x)

∂x
 u(x) |x=0

 −  

 






u*(ξ,x) 

du(x)
dx |x=L

 + 






u*(ξ,x) 

du(x)
dx |x=0

 +  

 
⌡
⌠

0

 L

 

 
 u

* (ξ,x) 
dψ(x)

dx  dx −  

 
1

κGA
 
⌡
⌠

0

 L

 

 
 u

* (ξ,x) q(x) dx (22) 

Integrating by parts the first domain integral, one has: 

 
⌡
⌠

0

 L

 

 
 u

* (ξ,x) 
dψ(x)

dx  dx = [ ]u*(ξ,x) ψ(x) |x=L
 − [ ]u*(ξ,x) ψ(x) |x=0

 −  



 
 

 
⌡
⌠

0

 L

 

 
 
∂u*(ξ,x)

∂x
 ψ(x) dx (23) 

Substituting Equation (23) into Equation (22), the latter is rewritten as: 

 u(ξ) = 






du*(ξ,x)

dx  u(x) |x=L
 − 






du*(ξ,x)

dx  u(x) |x=0
 −  

 






u*(ξ,x) 







du(x)

dx  − ψ(x) |x=L
 + 






u*(ξ,x) 







du(x)

dx  − ψ(x) |x=0
 −  

 
⌡
⌠

0

 L

 

 
 
∂u*(ξ,x)

∂x
 ψ(x) dx −  

 
1

κGA
 
⌡
⌠

0

 L

 

 
 u

* (ξ,x) q(x) dx (24) 

Bearing in mind the expression for the shear force, Equation (20), one finally has: 

 u(ξ) = 






du*(ξ,x)

dx  u(x) |x=L
 − 






du*(ξ,x)

dx  u(x) |x=0
 −  

 






u*(ξ,x) 

Q(x)
κGA |x=L

 + 






u*(ξ,x) 

Q(x)
κGA |x=0

 −  

 
⌡
⌠

0

 L

 

 
 
∂u*(ξ,x)

∂x
 ψ(x) dx −  

 
1

κGA
 
⌡
⌠

0

 L

 

 
 u

* (ξ,x) q(x) dx (25) 

The fundamental solution is given by: 

 u*(ξ,x) = 
 x − ξ2

2  (26) 

Before applying a residual statement to Equation (16), it is initially rewritten as fol-
lows: 

 
d2ψ
dx2 − β ψ + β du

dx= 0 (27) 

where: 

 β = 
κGA
EI  (28) 

The fundamental solution, by this time, is the solution of the equation: 



 
 

 
∂2ψ* (ξ,x)

∂x2  − β ψ* (ξ,x) = 0 (29) 

and is given by: 

 ψ* (ξ,x) = 
sinh β x − ξ

2 β
 (30) 

After applying a residual statement to Equation (27), and taking into account Equa-
tion (29), one has: 

 ψ(ξ) = 






∂ψ* (ξ,x)

∂x
 ψ(x) |x=L

 − 






∂ψ* (ξ,x)

∂x
 ψ(x) |x=0

 −  

 






ψ* (ξ,x) 

dψ(x)
dx |x=L

 + 






ψ* (ξ,x) 

dψ(x)
dx |x=0

 −  

 β 
⌡
⌠

0

 L

 

 
 ψ* (ξ,x) 

du(x)
dx  dx (31) 

The domain integral is integrated by parts, giving: 

 
⌡
⌠

0

 L

 

 
 ψ* (ξ,x) 

du(x)
dx  dx = [ ]ψ* (ξ,x) u(x) |x=L − [ ]ψ* (ξ,x) u(x) |x=0 −  

 
⌡
⌠

0

 L

 

 
 
∂ψ* (ξ,x)

∂x
 u(x) dx (32) 

Substituting Equation (32) into Equation (31) comes: 

 ψ(ξ) = 






∂ψ* (ξ,x)

∂x
 ψ(x) |x=L

 − 






∂ψ* (ξ,x)

∂x
 ψ(x) |x=0

 −  

 






ψ* (ξ,x) 

dψ(x)
dx |x=L

 + 






ψ* (ξ,x) 

dψ(x)
dx |x=0

 −  

 β [ ]ψ* (ξ,x) u(x) |x=L + β [ ]ψ* (ξ,x) u(x) |x=0 +  

 β 
⌡
⌠

0

 L

 

 
 
∂ψ* (ξ,x)

∂x
 u(x) dx (33) 

The final integral equation, written after taking into account the expression for the 
bending moment, given by Equation (19), is written below: 

 ψ(ξ) = 






∂ψ* (ξ,x)

∂x
 ψ(x) |x=L

 − 






∂ψ* (ξ,x)

∂x
 ψ(x) |x=0

 +  



 
 

 






ψ* (ξ,x) 

M(x)
EI |x=L

 − 






ψ* (ξ,x) 

M(x)
EI |x=0

 −  

 β [ ]ψ* (ξ,x) u(x) |x=L + β [ ]ψ* (ξ,x) u(x) |x=0 +  

 β 
⌡
⌠

0

 L

 

 
 
∂ψ* (ξ,x)

∂x
 u(x) dx (34) 

In this formulation, the presence of two domain integrals beside the loading domain 
integral, see Equations (25) and (34) turns the domain discretization imperative. Consequent-
ly, in the final system of equation the values of the displacement and of the rotation ψ at the 
internal points appear as unknowns together with the boundary unknowns. 

The system of equations is written below: 

 









    Hbb     Pbb      0      Pbd

 − P
−−−−bb     H

−−−− bb  − P
−−−−bd     0

 − H
−−−− db     Pdb      I      Pdd

 − P
−−−−db  − H

−−−− db  − P
−−−−dd     I

 







ub

ψψψψb

ud

ψψψψd

 = 









 Lbb    0 

 0     G
−−−−bb

 L
−−−−db    0

 0     G
−−−−db

 






Qb

Mb  + 









 f 
b

 0
 f 

d

 0

  (35) 

The superscripts b and d in Equation (35) have the same interpretation of that in Equa-
tion (13). The terms ud and ψd appear due to the domain integrals in Equations (25) and (34). 
The vector f is related to the external loading. 

4. NUMERICAL EXAMPLES 

The numerical examples deal with a concrete beam with length L = 4.0 m for the cases 
of pinned-pinned, fixed-fixed and fixed-pinned beams. For the case of fixed-free beam, ones 
has L = 2.0 m. The material is the concrete with E = 50 GPa; the Poisson ratio is ν = 0.2. The 
cross-section is a rectangular one, with height h = 0.60 m and width b = 0.20 m. Consequent-
ly, I = 0.0036 m4 and A = 0.12 m2. The loading, uniformly distributed along the length of the 
beam, is given by q(x) = q = 100 kN/m. 

4.1. Euler-Bernoulli beams 

Initially, the results concerned with the Euler-Bernoulli theory are presented. As men-
tioned earlier, the discretization is due to the loading and the number of internal points can be 
chosen only to provide a good picture of the behaviour of the transversal displacements along 
the length of the beam. For this reason, in all analyses 15 internal points equally spaced were 
selected, which means that the domain was discretized by employing 16 cells of the same 
length. 

The analytical solutions are presented below, see Fleischfresser [5]: 
 



 
 

i) pinned-pinned beam: 

 u(x) = 
q

24EI (x
4 − 2Lx3 + L3x) (36) 

ii) fixed-fixed beam: 

 u(x) = 
q

24EI (x
4 − 2Lx3 + L2x2) (37) 

iii) fixed-pinned beam: 

 u(x) = 
q

48EI (2x4 − 5Lx3 + 3L2x2) (38) 

iv) fixed-free beam: 

 u(x) = 
q

24EI (x
4 − 4Lx3 + 6L2x2) (39) 

 
The next four figures present the results related, respectively, to the pinned-pinned, 

fixed-fixed, fixed-pinned and fixed-free beams. 
The agreement between the analytical and numerical results is noticeable. 
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Figure 2. Euler-Bernoulli theory: pinned-pinned beam. 
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Figure 3. Euler-Bernoulli theory: fixed-fixed beam. 
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Figure 4. Euler-Bernoulli theory: fixed-pinned beam. 
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Figure 5. Euler-Bernoulli theory: fixed-free beam. 

 

4.2. Timoshenko beams 

The analytical solution of the Timoshenko beams is constituted by two parcels: the 
first one, related to the bending effect, is equal to the analytical solution of the Euler-
Bernoulli beams; the second one is related to the shear effect. This form of the analytical solu-
tion appears quite naturally in the solution of the system of equations represented by Equa-
tions (15) and (16). The exception occurs for the fixed-pinned beam: here, some algebraic 
manipulations were carried out to represent its analytical solution as the sum of the Euler-
Bernoulli solution with two other parcels. The reader is referred to Fleischfresser [5] for addi-
tional details on this subject. The expressions of the analytical solutions are given below: 

 
i) pinned-pinned beam: 

 u(x) = 
q

24EI (x
4 − 2Lx3 + L3x) + 

q
2κGA

 (Lx − x2) (40) 

ii) fixed-fixed beam: 

 u(x) = 
q

24EI (x
4 − 2Lx3 + L2x2) + 

q
2κGA

 (Lx − x2) (41) 



 
 

iii) fixed-pinned beam: 

 u(x) = 
q

48EI (2x4 − 5Lx3 + 3L2x2) + 
qDfp

48EI (Lx3 − 3L2x2) − 

 
q

2κGA
 (x2 + 2CfpLx) (42) 

where 

 Cfp = − 
5κGAL2 + 12EI
8κGAL2 + 24EI

 (43) 

and 

 Dfp = 
3EI

κGAL2 + 3EI
 (44) 

iv) fixed-free beam: 

 u(x) = 
q

24EI (x
4 − 4Lx3 + 6L2x2) + 

q
2κGA

 (2Lx − x2) (45) 

 
Due to the domain integrals containing the variable ψ in Equation (25) and the varia-

ble u in Equation (34), a good refinement of the domain is required in order to obtain accurate 
results. For the pinned-pinned, fixed-fixed and fixed-pinned beams three analyses were car-
ried out by employing 16, 32 and 64 cells with the same length, whereas for the fixed-free 
beam the analyses were carried out by employing 8, 16 and 32 cells, as the length of the 
beam, in this case, is half the length of the others and it seemed reasonable to keep the ratio 
between the length of the cells and the length of the beam constant at each level of refine-
ment. The convergence of the BEM results to the analytical solutions can be observed in the 
next four figures. 

The shear coefficient, for the rectangular cross-section, adopted in all examples, is 
given by, see Borges [2]:  

 κ = 
5
6 (46) 

It is important to mention that the main concern of this work is to prove that both for-
mulations can produce reliable results. For this reason, the same beam, that is, a beam with 
same rectangular cross-section, was considered in all analysis. As can be observed from Fig-
ures 2 to 9, the difference between the results, for similar beams, is not so significant as could 
be expected. This happens because the ratio h/L = 0.15 (or h/L = 0.30 for the fixed-free beam) 
is small and enables the use of the classical theory of beams. Anyway, regarding the applica-
bility of the formulations, it is the authors’ opinion that the goal was achieved. 
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Figure 6. Timoshenko theory: pinned-pinned beam. 
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Figure 7. Timoshenko theory: fixed-fixed beam. 
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Figure 8. Timoshenko theory: fixed-pinned beam. 
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Figure 9. Timoshenko theory: fixed-free beam. 



 
 

5. CONCLUSIONS 

This work is concerned with the development of two BEM formulations for static 
analysis of beams. The first formulation is related to the Euler-Bernoulli, or classical, theory 
of beams. For the usual kinds of beams, the BEM results presented a good agreement with the 
analytical ones. The computation of the displacements at internal points is carried out only 
with the purpose to provide a good description of the behaviour of the displacements along 
the length of the beam. Note that if only the results at the boundary nodes were required, the 
domain could be discretized with only one cell. The second formulation is related to the Ti-
moshenko theory of beams. Here, diversely from the first formulation, the domain discretiza-
tion is required due to the presence, in the integral equations of the formulation, of domain 
integrals containing the displacement, u, and the rotation due to bending, ψ. Linear cells were 
employed for this purpose. Although the results converged to the analytical solution in all 
examples, it seems reasonable to suppose that the use of interpolation functions with degree 
higher than one could improve even more the convergence and, consequently, the accuracy of 
the results. Another kind of loading, that is, the concentrated loading, can be taken into ac-
count without difficulty. Dynamic analysis of Euler-Bernoulli and Timoshenko beams is a 
very interesting subject that also deserves attention.  
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