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Abstract. Boundary element formulations for the static analysis of Euler-Bernoulli and Timo-
shenko beams are presented in this work. As the problems are stated in one dimension, the
boundary is constituted only by the extreme nodes of the beam. The four usual types of beams,
i.e. pinned-pinned, fixed-fixed, fixed-pinned and fixed-free are solved for a loading uniformly
distributed along the length of the beam. The potentialities of the proposed formulations are
assessed by comparing the numerical results with the analytical ones.
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1. INTRODUCTION

This article is concerned with the solution of problems related to the Euler-Bernoulli
and Timoshenko beams by the Boundary Element Method (BEM). It is important to mention
that the analysis of beams by the BEM is a subject in which the method presents some fea-
tures that have turned it one powerful tool for the solution of several problems in engineering
and sciences in general: easiness computational implementation and high level of accuracy in
the results.

Note that, as the problems are one-dimensional ones, the boundary is constituted only
by the two nodes at the extremities of the beams: one node at x =0 and the other node at
x =L, if the beam with length L is located on the x-axis with the left node at the origin. The
domain discretization is required in both formulations, as one can see along the text, and is
accomplished with the use of linear cells.

In the development presented here, initially the governing differential equations are
presented and discussed. In the sequence, the BEM integral equations, obtained after follow-
ing a weighting residual procedure, are presented.

The basic hypothesis of the Euler-Bernoulli beam theory, also called classical beam
theory, states that the plane cross-sections, initially perpendicular to the axis of the beam, re-
main plane and perpendicular to the neutral axis after bending. The problem is described by
only one differential equation. This matter is well discussed in several text books, for instance



Graff [6], Rao [7]. A BEM approach can be foundla classic book by Brebbia, Telles and
Wrobel [3]. Note that the problem presents two ratlboundary conditions, namely, the
bending moment and the shear force, and two easdigundary conditions, namely, the
transverse displacement and the rotation of thgsesection. In this way, each boundary node
presents four variables and, consequently, onlyiotegral equation is not enough for the
solution of the problem, an additional integral @gon being required for its numerical solu-
tion. Starting from the basic integral equationated to the transverse displacement, the re-
quired additional equation is obtained by taking tierivative of the former with respect to
the field point coordinate; consequently, the adddl equation is related to the rotation of
the cross-section. A set of two integral equatianghus obtained and the problem can be
solved appropriately. Note that each equation @ieq to the boundary nodes and, conse-
guently, the four equations, which are necessarthi®solution, of the problem are obtained.

In the Timoshenko beam theory, e.g. Graff [6], Rdp Timoshenko [8], the effect of
the shear deformation is taken into account, géngran improved theory that gives more
reliable results than the classical one in dynaamalyses, especially for higher frequencies.
The problem is described by a set of two diffeldrgguations. For this reason, the two BEM
integral equations, necessary to the solution efgioblem, are obtained quite naturally in
this formulation. For BEM static analysis, the reas referred to Antes [1].

The examples presented at the end of the artiele@rstituted by the four usual kinds
of beams, that is: pinned-pinned, fixed-fixed, fixgnned (fixed at x = 0 and pinned at x = L)
and fixed-free. A loading uniformly distributed atpthe length of the beam is considered in
all analyses. The numerical results are compar#u tve corresponding analytical solutions.
The good agreement observed between them showth&hBEM formulations are appropri-
ate tools for the solution of static problems metiato the Euler-Bernoulli and Timoshenko
beam theories.

2. THE EULER-BERNOULLI THEORY OF BEAMS

The basic hypothesis of the Euler-Bernoulli stéited the plane cross-sections, initial-
ly perpendicular to the axis of the beam, remaaneland perpendicular to the neutral axis
after bending, e.g. Graff [6], Rao [7].

For the system of coordinates described in Figurthd governing equation of the
problem is written as:
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d
El -a = A0 (1)

where u = u(x) is the transverse displacement,tkeasyoung’s modulus and | is the moment
of inertia of the cross-section of area A, admittedstant. The loading, q = q(x), is represent-
ed by a function of position. In the problems amaly here, the loading is a constant function,
uniformly distributed along the length of the beam.

The boundary conditions are:



1) essentials:

u(x) = ux): transverse displacement (2)
du — : .
d(x) = dx - ¢(x): rotation of the cross-section (3)
i) naturals:
2, -
- Elﬁ = M(X): bending moment 4)
du -
= ke Q(x): shear force (5)
a(x)
X
El
L |
uv

Figure 1. Beam under general loading.

2.1. BEM Formulation to the Euler-Ber noulli Beam

Applying a residual statement to Equation (1), imak the weighting function is the
fundamental solution that satisfies Equation (6plwe

-
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one obtains the basic BEM equation, written as:
u(€) = [u*(&,X) Q)b = [u™ (&€,X) QU)o =
[$™ (€.X) M()] e + [97 (&%) MO)] | +
[M* (€,X) d ()] e = M (€,X) 9 )] o =
[Q*(€,X) u(X)]hr + [Q" (&,X) u(X)]ho +

| urex e ox ™)
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Equation (7) already took into account that M(¢ EI% and Q(x) = El dduX; !

see Equations (4) and (5). The following functians defined:

(g = 28X ®)
M* (£,%) = — Elm‘;x%x2 ©)
Qe =- 1 PG (10)
The fundamental solution is given by:
e = 2oE T v

and, as usual in the BEM nomenclature, x is tHd f@int andk is the source point.

As the boundary is constituted only by the extremodes of the beam, the two equa-
tions represented by Equation (7), written &or O and for¢ = L, are not sufficient for the
complete solution of the problem. Consequently, additional equations are required. These
equations can be those corresponding to the rotafithe cross-section at the two boundary
nodes and are obtained by taking the derivativiecpfation (7) with respect & In this way,
one has:

¢(€) = [Uz (€.X) QU)lv = [z (&%) Q(X)]heo =
[05(&.%) MO + [05(8.%) MOX)] o +
[ME(E.X) 9001 he = [ME (&%) O ()] o =
[Qz (&%) uC)Ther + [QE (&%) U(X)]heo +

|, urex o ox (12

The index& in Equation (12) refers to the derivative withpest to the source point
coordinate.

After writing Equations (7) and (12) f&= 0 and = L, the problem can be solved.
Note that the BEM formulation presents a domaiegrdl, related to the loading, which turns
the domain discretization necessary. Linear celiseanployed with this purpose and the re-
sulting integrals are evaluated analytically.



In order to obtain a good picture of the transvelisplacements along the beam, the
displacements at internal points are computed begewith the boundary variables. The re-
sulting system of equation is thus written as felo

Hbb _pbb 7 Gbb | bb b
_ _ _ b
0 be 0 ¢b - be Lbb {lc\g/l b} + ?b (13)
_ Hdb _ de I ud Gdb Ldb

fd

In Equation (13), the superscriptmeans boundary means domain (internal points)
and the double superscript is interpreted as faldhe first is associated with the position of
the source point and the second, with the postiaihe field point. The vectdris related to
the external loading andis the identity matrix.

After the imposition of the boundary conditionse thystem of equations is solved by
employing standard procedures. Together with thenbary variables, the solution also con-
tains the displacements at the internal points.

3. THE TIMOSHENKO THEORY OF BEAMS

In the Timoshenko theory of beams, e.g. Graff fgdp [7], Timoshenko [8], the effect
of the shear deformation is taken into account,egaing an improved theory. The plane
cross-sections remain plane but not necessarifyepelicular to the neutral axis after bending.

According to this theory, the rotation of the crsgstion is made up of two contribu-
tions: one, denoted hy, measures the rotation of the cross-section dleemaling whereas
the additional contributioryy, is due to the shearing effects. One can write:

du
ax- Yty (14)

For the system of coordinates described in Figuthéd governing equations of the
problem are written as:

KGA (dzu QLEJ: ~q(0) (15)

dx2 ~ dx

d P
KGA (d—)‘: - q;) 4 Elatg: 0 (16)

In Equations (15) and (1&) is an adjusting coefficient, or corrective factdesignat-
ed as shear coefficient, that depends on the shfajhe cross-section, see Borges [2], or, ac-
cording to the approach, on the Poisson coefficeag Cowper [4]. The coefficiektcorrects
the error introduced when the shear stresses awnasl to be functions only of the variable
X, that is, when not taking into account their &tidn in the cross-section. Additionally, G is



the shear modulus. The other constants that appdaguations (15) and (16) are the same
that have already appeared in Equation (1).
The boundary conditions are:

u(x) = ux): transverse displacement a7

P(x) = P(x): rotation due to bending (18)
- El %)% = I\_/I(x): bending moment (29)
KGA G—)L: - ij = (_Q(x): shear force (20)

3.1. BEM Formulation to the Timoshenko Beam

In order to develop a BEM formulation for the Tirhesko beam theory, Equa-
tions (15) and (16) are considered separatelyfan@ach one, a corresponding integral equa-
tion is written. In this formulation the presendedomain integrals, other than that related to
the loading, turns the domain discretization impeeaand, consequently, the final system of
equations contains the variables at the internialtpo

Applying a residual statement to Equation (15\which the weighting function is the
fundamental solution that satisfies Equation (Zlpt:

62 *
-z =X —8) (21)

one obtains:

u@) = [%f—xl u(x)}|x=L - [%f—xz “(X)}Lzo -

oY) e )

L, dy(x)
jo u™(&,x) dx dx -

x=0

1 L,
R UEX a0 ox (22)
Integrating by parts the first domain integral, draes:

jOL u* (€,X) %ﬁ dx =[u*(€,x) W(X)] e ™ [u* (&%) W(x)] beo ~
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Substituting Equation (23) into Equation (22), thiter is rewritten as:

@) =| WEEX o | IEEX) )

o (B w(xﬂL + [u* €0 (B2~ yeo |, -

KG%\JOL U (€) G(x) dx (24)

Bearing in mind the expression for the shear foEcpjation (20), one finally has:

@) =| WEEX o) | IEEX )

[U* (&) %ﬂm + [u* () %ﬂxzo -

[ £ 28N ) -
0

oA wrex a0 ax 29

The fundamental solution is given by:

u" (€.x )—|X el (26)
Before applying a residual statement to Equati@), (it is initially rewritten as fol-
lows:
$Y_pyrplL @)
where:
P="Er @)

The fundamental solution, by this time, is the soluof the equation:



2™ (€,x)

52 BW(EX)=0 (29)
and is given by:
X = Si”'“f/'—g = (30)

After applying a residual statement to Equation),(2hd taking into account Equa-
tion (29), one has:

ey =| 2B 0| [ EEX |

["’* (&) %&}I * [‘“* (&) %ﬁ} -

B wr e T ax (31)

The domain integral is integrated by parts, giving:

[ 460 29 = (6.0 el - [ €0 ud-

jOL @%XE—X) u(x) dx (32)

Substituting Equation (32) into Equation (31) comes

wie) = 2EEH g | (BN |

ek e .-

[ W (&)

|><:0

BLw* @x)u()] lew + B [W* EX) ux)] oo +
o~ (€,
B jOL 6xE 2 4(x) dx (33)

The final integral equation, written after takingta account the expression for the
bending moment, given by Equation (19), is writtehow:

wie) =| 2B | [ OEEX )



[l“* (&%) Me(ﬂ - [l“* (&%) Me(ﬂ -
B [W*(&.x) u(x) | + B [W* (&%) u(x] ho +
B JOL @‘I‘%XE—X) u(x) dx (34)

In this formulation, the presence of two domairegrals beside the loading domain
integral, see Equations (25) and (34) turns thealordiscretization imperative. Consequent-
ly, in the final system of equation the valuesth# tlisplacement and of the rotatigrat the
internal points appear as unknowns together withotbundary unknowns.

The system of equations is written below:

_ _ _ u -
—pbb Hbb _pbd g b 0 G |[gp 0
db  pdb ad | Jud [ | | ab {M b} * td (35)
-He® p P | L% o
| _pdb _[{db _pdd | _ v Lo g 0

The superscriptb andd in Equation (35) have the same interpretatiorhat in Equa-
tion (13). The termsi® andy® appear due to the domain integrals in Equatiofy 42d (34).
The vectoff is related to the external loading.

4. NUMERICAL EXAMPLES

The numerical examples deal with a concrete beaimlemgth L = 4.0 m for the cases
of pinned-pinned, fixed-fixed and fixed-pinned bearfRor the case of fixed-free beam, ones
has L = 2.0 m. The material is the concrete with 80 GPa; the Poisson ratiovs= 0.2. The
cross-section is a rectangular one, with heightoh6® m and width b = 0.20 m. Consequent-
ly, 1 =0.0036 nf and A = 0.12 rh The loading, uniformly distributed along the lémgf the
beam, is given by q(x) = g = 100 kN/m.

4.1. Euler-Bernoulli beams

Initially, the results concerned with the Euler-Beulli theory are presented. As men-
tioned earlier, the discretization is due to theding and the number of internal points can be
chosen only to provide a good picture of the betavof the transversal displacements along
the length of the beam. For this reason, in allymes 15 internal points equally spaced were
selected, which means that the domain was diserktizy employing 16 cells of the same
length.

The analytical solutions are presented below, $siedhfresser [5]:



1) pinned-pinned beam:

U(X) =55 (¢ - 20¢ + 1%%) (36)
ii) fixed-fixed beam:
LX) =55 (¢ - 20C + 13 37)
iii) fixed-pinned beam:
u(x) =73g (2x* - 5L + 3L%2) (38)
iv) fixed-free beam:
u(X) =34 (x* = 4L + 6% (39)

The next four figures present the results relatedpectively, to the pinned-pinned,
fixed-fixed, fixed-pinned and fixed-free beams.
The agreement between the analytical and numeasalts is noticeable.
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Figure 2. Euler-Bernoulli theory: pinned-pinned ilmea
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Figure 3. Euler-Bernoulli theory: fixed-fixed beam.
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Figure 4. Euler-Bernoulli theory: fixed-pinned beam
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Figure 5. Euler-Bernoulli theory: fixed-free beam.

4.2. Timoshenko beams

The analytical solution of the Timoshenko beamsasstituted by two parcels: the
first one, related to the bending effect, is eqtmlthe analytical solution of the Euler-
Bernoulli beams; the second one is related tohiearseffect. This form of the analytical solu-
tion appears quite naturally in the solution of Hystem of equations represented by Equa-
tions (15) and (16). The exception occurs for tixed-pinned beam: here, some algebraic
manipulations were carried out to represent itdydical solution as the sum of the Euler-
Bernoulli solution with two other parcels. The read referred to Fleischfresser [5] for addi-
tional details on this subject. The expressionthefanalytical solutions are given below:

1) pinned-pinned beam:

u(x) =—q—2 26 ¢ - 20C + LX) +—q—2KG A (Lx = x) (40)
ii) fixed-fixed beam:
u(X) =34 (x* = 2L + LAP) +2—ch];? (Lx — X° (41)



iii) fixed-pinned beam:

9 4 53 oo , A0 3 L2000
u(x)—48E|(2x 5Lx +3Lx)+48E|(Lx 3LX)

9 ,»

KGA (x* + 2GyLx) (42)
where

5KGAL? + 12E|

P~ 8kGAL? + 24E]| (43)

and
3EI

Di =X GALZ + 3E| (44)

iv) fixed-free beam:
U(X) =5 (= 4LC + 6L3¢) + = (2Lx - 3) (45)

24El 2kGA

Due to the domain integrals containing the variapl@ Equation (25) and the varia-
ble u in Equation (34), a good refinement of thendm is required in order to obtain accurate
results. For the pinned-pinned, fixed-fixed anceflxpinned beams three analyses were car-
ried out by employing 16, 32 and 64 cells with g#zene length, whereas for the fixed-free
beam the analyses were carried out by employing68and 32 cells, as the length of the
beam, in this case, is half the length of the atleerd it seemed reasonable to keep the ratio
between the length of the cells and the lengthheflieam constant at each level of refine-
ment. The convergence of the BEM results to théyioal solutions can be observed in the
next four figures.

The shear coefficient, for the rectangular crossise, adopted in all examples, is
given by, see Borges [2]:

S
1
oo

(46)

It is important to mention that the main concerriha$ work is to prove that both for-
mulations can produce reliable results. For thesoa, the same beam, that is, a beam with
same rectangular cross-section, was considereltl amalysis. As can be observed from Fig-
ures 2 to 9, the difference between the resultssifoilar beams, is not so significant as could
be expected. This happens because the ratio h/L5=(6r h/L = 0.30 for the fixed-free beam)
is small and enables the use of the classical yhafobeams. Anyway, regarding the applica-
bility of the formulations, it is the authors’ ofpam that the goal was achieved.
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Figure 6. Timoshenko theory: pinned-pinned beam.
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Figure 7. Timoshenko theory: fixed-fixed beam.



u
0.0009
0.0006
0.0003
Timoshenko theory
- —HE- - BEM: 16 cells
- - Hl- - BEM: 32cells
d O BEM: 64 cells
0.0000 ¢ ‘ ‘ |

0.0 1.0 2.0 3.0 40 X
Figure 8. Timoshenko theory: fixed-pinned beam.
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Figure 9. Timoshenko theory: fixed-free beam.



5. CONCLUSIONS

This work is concerned with the development of tB&M formulations for static
analysis of beams. The first formulation is relatedhe Euler-Bernoulli, or classical, theory
of beams. For the usual kinds of beams, the BEMItepresented a good agreement with the
analytical ones. The computation of the displacdaman internal points is carried out only
with the purpose to provide a good descriptionhaf behaviour of the displacements along
the length of the beam. Note that if only the rssat the boundary nodes were required, the
domain could be discretized with only one cell. Beeond formulation is related to the Ti-
moshenko theory of beams. Here, diversely fronfitseformulation, the domain discretiza-
tion is required due to the presence, in the imtegguations of the formulation, of domain
integrals containing the displacement, u, and ¢i&tion due to bending). Linear cells were
employed for this purpose. Although the resultsvenged to the analytical solution in all
examples, it seems reasonable to suppose thaséhefunterpolation functions with degree
higher than one could improve even more the corererg and, consequently, the accuracy of
the results. Another kind of loading, that is, ttencentrated loading, can be taken into ac-
count without difficulty. Dynamic analysis of EwBernoulli and Timoshenko beams is a
very interesting subject that also deserves attenti
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