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Abstract. Explicit approaches are usually preferred for the simulation of thin walled struc-
tural problems, which are often highly nonlinear due to large deformations and possible ma-
terial inelasticity. Solid-shell elements can describe the correct thickness geometry and are
therefore more suitable than standard shell elements for the implementation of complex 3D
material models. However, they include a too simple kinematic formulation leading to ar-
tificial stiffening phenomena called locking. To overcome this problem computationally ex-
pensive corrections, e.g. introducing enhanced strains, are required which suggest the use
of reduced integration with hourglass stabilization. Furthermore, a high element maximum
eigenfrequency is implied by the small thickness, leading to overly small stable time-steps.
These two issues are addressed in this paper where a stabilized reduced integration solid-
shell element and a selective mass scaling technique for the reduction of the maximum eigen-
frequency are proposed.

Keywords: Solid-shell elements, Explicit dynamics, Hourglass stabilization, Selective mass-
scaling.

1. INTRODUCTION

The finite element simulation of shell or thin walled structures is of interest in many
industrial applications, such as naval and aerospace engineering, metal forming processes
and automotive industries. Due their morphology, this type of structures may often undergo
large inelastic deformations for which explicit simulation approaches become preferable, es-
pecially in the presence of other sources of nonlinearities (like e.g. contact, crack propagation,
delamination). In recent years, considerable effort has been devoted to the development of 3D
continuum-based elements for shell applications, the so called solid-shell elements (see, for
instance, [1], [2] and [3]). These elements have only translational degrees of freedom and are
characterized by a fully three-dimensional stress state which makes them more suitable for
the implementation of complex 3D material models. However, while the use of classical shell
elements in explicit dynamics simulations is well established, solid-shell elements have been
predominantly used in the framework of implicit formulations. In fact, the kinematic formula-
tions of compatible solid-shell elements is too simple and requires corrections e.g. introduced
via the enhanced or assumed natural strain method. However, these extended element formu-
lations may become computationally too expensive for explicit approaches where very small
time steps are required for stability reasons. A possible remedy consists in adopting a re-
duced integration which, in turn, requires an hourglass stabilization. As a further problem,
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the small thickness of solid-shell elements leads to a very small travel time for propagating
elastic stress waves, requiring, as a consequence, overly small stable time-steps in explicit
time-integrations, with prohibitive computational costs. This problem can be circumvented
making use of a selective mass scaling technique, whereby only masses related to some of
the degrees of freedom are increased, leaving the inertia connected with the element rigid
body modes unaltered. The goal of the present paper is to propose an explicit finite element
methodology for the simulation of the large inelastic deformation of shell structures. The
solid-shell finite element recently proposed in [2] in the framework of an implicit approach is
here reconsidered in an explicit context and a new selective mass scaling technique, specifi-
cally conceived for this type of elements is presented.

2. ELEMENT FORMULATION

Low-order continuum elements, from which solid-shell elements are usually derived,
exhibit several types of locking behavior. In the reduced integration solid-like shell element
Q1STs proposed in [2], transverse shear and curvature thickness locking are cured by means
of the assumed natural strain concept while the enhanced strain method is used to avoid vol-
umetric and Poisson thickness locking. The formulation of the element is briefly summa-
rized below using a total Lagrangian approach which does not require the definition of a
co-rotational coordinate system to maintain material objectivity.

2.1. Variational formulation

The explicit framework of solid-shell element Q1STs is derived from the dynamic
variational functional:

δΠ1(u,Ee) =

∫
Ω0

δuTρü +

∫
Ω0

δET
c : S(E)dΩ−

∫
Ω0

δuT f ext = 0 (1)

δΠ2(u,Ee) =

∫
Ω0

δET
e : S(E)dΩ = 0 (2)

where δ denotes a variation, ρ the material density, u the displacement field and S(E) is the
second Piola-Kirchhoff stress tensor. It is a function of the Green-Lagrange strain tensor E,
which is additively decomposed into the displacement-based part Ec and the enhanced strain
part Ee according to the EAS concept. Using the orthogonality between stress and enhanced
strain fields, the stress field can be eliminated from the variational functional (1), (2).

The Q1STs element has eight nodes, one in-plane integration point and the ability to
accommodate several integration points along the thickness direction of the element. Fig. 1
shows the element topology with the node numbering order (related to the isoparametric co-
ordinate system of the element, defined by the convective natural coordinates ξi, i = 1, 2, 3).
The covariant base vectors in the undeformed configuration are written as

Ji =
∂X

∂ξi
=
∂Xj

∂ξi
ej (3)

where X(ξ) = [X1, X2, X3]T denotes the position vector in the reference configuration and
Ji represent the columns of the Jacobian matrix J = [J1,J2,J3]. The covariant base vectors



Figure 1. Node numbers and Gauss points for the solid-shell element.

in the deformed configuration are given by

J̃i =
∂x

∂ξi
=
∂xj
∂ξi

ej = Ji + Di (4)

where x denotes the position vector in the current configuration, J̃i are the columns of the
Jacobian matrix with respect to the current configuration and D = ∂u/∂ξ represents the
displacement gradient with respect to the vector of natural coordinates ξ. Accordingly, the
contravariant base vectors in the reference and current configurations are defined as

Hi =
∂ξi
∂Xj

ej = jijej, H̃i =
∂ξi
∂xj

ej = j̃ijej (5)

where jij = (J−1)ij and j̃ij = (J̃−1)ij denote the coefficients of the inverse Jacobian matrix.
Starting from the definition, the deformation gradient F has the following form:

F =
∂x

∂X
=

∂xi
∂Xj

ei ⊗ ej =
∂xi
∂ξl

ei ⊗
∂ξl
∂Xj

ej = J̃l ⊗Hl (6)

2.2. Strain tensor

The Green-Lagrange strain tensor E is used as a suitable strain measure in large de-
formation problems. We consider an additively decomposition of the total Green-Lagrange
strain tensor E into the compatible part Ec and the enhanced strain part Ee.

2.2.1 Compatible strain

The compatible Green-Lagrange strain tensor has the following form:

Ec =
1

2
(FTF− I) =

1

2
[(Hi ⊗ J̃i)(J̃j ⊗Hj)− I] = EijHi ⊗Hj (7)

where I is the second order identity tensor. Applying (4), the covariant components Eij can
be derived from

Eij =
1

2
(Ji ·Dj + Jj ·Di + Di ·Dj) (8)



where Ji · Dj and Di · Dj represent the linear and nonlinear part of the strain. From the
finite element point of view, the strain tensor is often represented in Voigt notation, storing the
coefficients Eij into the 6× 1 vector

Ēc = {Ecξξ, Ecηη, Ecζζ ,Γcξη,Γcηξ,Γcξζ}T (9)

with Γcξiξj := 2Ecξiξj .

2.2.2 ANS concept

The transverse shear locking occurs in bending situations when the element thickness
tends to zero. One of the most efficient approaches to cure this pathology is the assumed
natural strain (ANS) method. This concept can be used also to cure the curvature thickness
locking which occurs only in initially curved shell structures. The idea of the ANS method

Figure 2. Sampling points for the application of the ANS concept.

is to define a strain field interpolated independently of the displacement field, in terms of
strains computed at locking free sampling points. In order to avoid the curvature thickness
locking, the covariant compatible transverse normal strain Ecζζ is evaluated at the corners of
the element midplane (sampling points K = A,B,C,D) and interpolated by means of bi-
linear ansatz functions. On the other hand, to cure the shear locking the shear terms Γcηζ and
Γcξζ are evaluated respectively at sampling points K = E,F,G,H and K = J,K, L,M (see
Fig. 2) as suggested in [3]. The compatible covariant strain terms assume the following form:

EANS
cζζ =

D∑
K=A

N̄KE
K
cζζ , with N̄K = 1/4(1 + ξKξ)(1 + ηKη) (10)

ΓANScηζ =
H∑

K=E

N̄KΓKcηζ , with N̄K = 1/4(1 + ξKξ)(1 + ζKζ) (11)

ΓANScξζ =
M∑
K=J

N̄KΓKcξζ , with N̄K = 1/4(1 + ηKη)(1 + ζKζ). (12)



2.2.3 Hourglass stabilization

One key point of Q1STs element is the treatment of the hourglass modes. In fact, the
use of a reduced integration scheme within the shell plane leads to the necessity of a stabi-
lization procedure to avoid spurious singular modes. In the considered reduced integration
scheme, all integration points are located along the normal through the center of the element
defined by ξz = (0, 0, ζ)T , so that the compatible Green-Lagrange strain can be split into

Ēc = Ēz
c + Ēhg

c (13)

where Ēz
c = Ēc(ζz) is the part related to the integration points while Ēhg

c = Ēc − Ēz
c denotes

the hourglass strain. The part Ēz
c enters the constitutive law for the stress computation while

the hourglass strain Ēhg
c intervenes in the hourglass stabilization. Since this term does not

have a direct physical meaning, it is desirable that it is computed as efficiently as possible.
One possibility consists of analytically integrating the hourglass stabilization over the element
domain. This could be easily achieved if the integrands were polynomials. For this purpose,
a Taylor expansion of the compatible Green-Lagrange strain tensor is carried out with respect
to the center of the element

Ēc ≈ Ēc|ξ=0 +
3∑
i=1

Ēc,ξi |ξ=0ξi + 1/2
3∑
i=1

3∑
i 6=j=1

Ēc,ξiξ,j|ξ=0ξiξj (14)

:= Ē0
c + ζĒζ

c︸ ︷︷ ︸
Ēz

c

+ ξĒξ
c + ηĒη

c + ξηĒξη
c + ηζĒηζ

c + ξζĒξζ
c︸ ︷︷ ︸

Ēhg
c

(15)

We can single out two contributions: one related to the integration points (Ēz
c), constant within

the shell plane, and another one bi-linear within the shell plane (Ēhg
c ), which is used as a basis

for the construction of the hourglass stabilization. To correctly study problems involving thick
shells, an expansion of Ēz

c to a quadratic function is required.

Ēz
c = Ē0

c + ζĒζ
c + ζ2Ēζζ

c (16)

2.2.4 Enhanced strain

Bending of a shell-like structure leads to a non-constant distribution of the transverse
normal strain along the thickness. Consequently, in order to avoid the Poisson thickness
locking in the element formulation, the transverse normal strain component has to be modeled
at least linearly. Since EANS

cζζ is modeled as being independent of ζ , its polynomial order
is not high enough. Furthermore, volumetric locking occurs when the material approaches
incompressibility. To overcome this problem, the strain terms Eξξ, Eηη and Eζζ must be
represented by polynomials of the same order. Again the term Eζζ has to be linear. It has been
shown that the introduction of only enhanced-degree-of-freedom We is sufficient to avoid
these types of locking. The resulting covariant enhanced strain field Ee, defined by the relation

Ēe = BeWe, with Be = [0, 0, ζ, 0, 0, 0]T (17)

is constant within the shell plane and contributes only to the covariant strain field evaluated at
the normal through the element center.



2.3. Transformation tensor

The strain components can be expressed in the global reference frame, starting from
the covariant components, as

Eg
ij = (ei ·Ha)(ej ·Hb)Eab (18)

where Ha are the contravariant base vectors and ei represent the base vectors of a Cartesian
coordinate system. Adopting Voigt notation for the representation of strain tensor, Eq. (18)
can be written in matrix form as

Ēg = TĒ (19)

where T represents the transformation matrix.

2.4. 2nd Piola Kirchhoff stress tensor

As done for the Green-Lagrange strain tensor, it is possible to carry out a Taylor
expansion of the stress field with respect to the normal through the center of the element
(ξz = (0, 0, ζ)T ) in order to define a convenient hourglass stress S̄ghg which does not influ-
ence the physical element response and can be efficiently computed.

S̄g = S̄g|ξ=ξz +
∂S̄g

∂ξ

∣∣∣∣
ξ=ξz

ξ +
∂S̄g

∂η

∣∣∣∣
ξ=ξz

η (20)

= S̄g(Ēgz) +
∂S̄g(Ēg)

∂(Ēg)

∣∣∣∣
ξ=ξz

(
∂(Ēg)

∂ξ

∣∣∣∣
ξ=ξz

ξ +
∂(Ēg)

∂η

∣∣∣∣
ξ=ξz

η

)
(21)

= S̄gz + C(ξĒgξ
c + ηĒgη

c + ηζĒgηζ
c + ξζĒgξζ

c )︸ ︷︷ ︸
S̄ghg

(22)

The hourglass stress S̄ghg is a function of the tangent C and of the cartesian compatible hour-
glass strains. To improve the efficiency of the hourglass stress, the non-linear tangent C can
be replaced by the linear-elastic material tangent Chg, which is modified to yield a deviatoric
hourglass stress. The latter assumption is necessary to overcome volumetric locking. The
computation of stabilization forces at each time-step is computationally expensive and may
be not necessary for the overall analysis stability [4]. Criteria for the definition of the updating
frequency of the stabilization force are currently under study.

3. SELECTIVE MASS SCALING

Explicit time integration is stable only if the used time-step is smaller than a critical
threshold, which can be shown to depend on the smallest geometrical dimension of the finite
elements in the mesh. This aspect is particularly critical when solid-shell elements are used
for the analysis of thin walled structures, since the small thickness can lead to unacceptably
small time-steps. To overcome this problem, we adopt a selective mass scaling technique,
based on a linear transformation of the element degrees of freedom to increase the size of
the critical time-step without affecting the dynamical response. It is well-known that the
structural response in inertia dominated dynamic problems depends predominantly on inertia



properties related to rigid body modes of individual finite elements. Consequently, in this kind
of problems, better results can be obtained by selectively scaling element masses, in such a
way that masses associated to element rigid body modes are not modified. The solid-shell dofs
are linearly transformed to segregate middle plane displacement dofs controlling translational
rigid body motions. Masses pertinent to relative dofs, controlling higher order modes, are
selectively scaled. It is important to underline that the scaled mass matrix remains diagonal
for effective use in explicit methods while the scale factor is estimated so as to obtain a critical
time-step size of the same order of magnitude of the in-plane “traversal time”. Introducing

Figure 3. Definition of lower and upper surfaces.

the definition of upper and lower surfaces as depicted in Fig. 3, we introduce the following
variable transformation:

ũMiddle =
uupper + ulower

2
, ũDiff =

uupper − ulower

2
(23)

where uupper and ulower indicate respectively the dofs of nodes belonging to the upper and
lower surfaces. On the other hand ũMiddle and ũDiff represent the dofs of nodes on the
element middle plane. In matrix notation:[

uupper

ulower

]
=

[
I I
I −I

] [
ũMiddle

ũDiff

]
→ u = Tũ (24)

The lumped mass matrix associated to the middle surfaces dofs is given by

M̃ = [TTMlumpT]lump (25)

It should be noted that TTMlumpT is not diagonal even when the original mass matrix is so.
A further lumping procedure is therefore necessary to make M̃ diagonal. For a parallepiped
it takes the form

M̃ =
ρV

4

[
I 0
0 αI

]
(26)

where V is the element volume and α is the nondimensional mass scaling factor. A conceptu-
ally almost identical scaling procedure was presented in [5] where, rather than to the masses,
the scaling was applied directly to nodal accelerations. For solid-shell elements, where the
thickness dimension is significantly smaller than the in-plane ones, the highest element eigen-
frequency always turns out to be given by the square root of the eigenfrequency ω2 corre-
sponding to the thickness vibration mode. In the case of a regular parallelepiped, in [6] it has



been shown that the critical time step resulting from this eigenfrequency can be analytically
computed as

∆t =
2

ω2
= 24

√
abρ(1 + ν)

ηE
(27)

a and b being the element in-plane semi-dimensions, ν the Poisson coefficient, ρ the material
density and E the Young modulus. The parameter η is computed starting from the cubic
equation:

αγ2λ2(1− 2ν)η3 − 144γλ[1 + α(γ2 + λ2)](1− ν)η2

+1442(λ2 + γ2 + αγ2λ2)η − 1443γλ(1 + ν) = 0. (28)

resulting from the element eigenvalue problem. The coefficient γ and λ are defined as γ =

c/a, λ = b/a while c represents the half-thickness. After suitable variable transformations
and simplifications, the following solution of Eq. (28) is found:

η = 2

√
−p

3
cos
(ϕ

3

)
− 1

3

C2

C3

(29)

ϕ = arccos

− q

2
√
−
(
p
3

)3

 (30)

C0 = −1443γλ(1 + ν) (31)

C1 = 1442(λ2 + γ2 + αγ2λ2) (32)

C2 = −144γλ[1 + α(γ2 + λ2)](1− ν) (33)

C3 = αγ2λ2(1− 2ν) (34)

p =
C1

C3

− 1

3

(
C2

C3

)2

(35)

q =
C0

C3

+
2

27

(
C2

C3

)3

− 1

3

C1C2

C2
3

(36)

The scaling parameter α, appearing in the coefficients C1, C2 and C3, has to be optimized
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Figure 4. Trend of ∆t for varying value of α.



so as to maximize the time-step size without significant accuracy losses. The variation of the
critical time step ∆t with respect to the scaling parameter exhibits an asymptotic behavior
(see Fig. 4). Since selective mass scaling has the effect to decrease the eigenfrequency corre-
sponding to the thickness vibration mode, there is a critical value of α above which the critical
time-step size becomes determined by the in-plane traversal time. As a consequence, values
of α above this limit would be useless since they would not bring an increase of the critical
time step, while leading to inaccurate solutions. A possible strategy for the determination of
the optimal value of α consists first in the determination of the asymptotic value ∆tasy of the
critical time step, which can be derived letting α → ∞ in (28). In this way, the following
quadratic equation is obtained:

γ2λ2(1− 2ν)η3 − 144γλ(γ2 + λ2)(1− ν)η2 + 1442γ2λ2η = 0. (37)

The roots of (37) are given by

η̄1/2 =
72
[
(γ2 + λ2)(1− ν)±

√
∆
]

γλ(1− 2ν)
(38)

with ∆ = (1− ν)2(γ4 + λ4) + 2(ν2 + 2ν − 1)γ2λ2. The corresponding asymptotic value of
the critical time step ∆tasy is then given by

∆tasy = 24

√
abρ(1 + ν)

Eηasy
ηasy = max(η̄1, η̄2) (39)

As a trade-off between accuracy and computational efficiency, the optimal value αopt of the
scaling parameter is chosen as the one which produces an estimate of the critical time step
equal to 0.9∆tasy, since values of α higher than this limit do not produce significant increase
of the time step. The value of α to be used for mass scaling is then obtained by iteratively
solving Eq. (27) for α, having set ∆t = 0.9∆tasy. The above discussed procedure provides
a viable and effective strategy for an optimized and fully automatic scaling procedure for
solid-shell elements.

4. NUMERICAL RESULTS

A cantilever beam subject to a uniform pressure load is used to test the accuracy prop-
erties of the selective mass scaling procedure and the geometrically nonlinear response of the
Q1STs solid-shell element. The cantilever is clamped on one side and subject to a uniform
pressure load applied instantly and kept constant throughout the rest of the simulation. Geo-
metrical and material data are referred to the example described in [7]. The plate material is
assumed to be linear elastic with Young’s modulusE = 12000 psi (82.7 MPa), Poisson coeffi-
cient ν = 0.2 and material density ρ = 0.1224× 10−5 lb s2/in4. The beam, depicted in Fig. 5,
is 10 in long, 1 in wide. A convergence study has been conducted varying the thickness of
the plate (0.1 and 0.05 in) and the number of solid-shell elements (5, 10, 20 and 40 elements)
along the plate length. For each simulation, the optimal value of α is computed according to
the above described strategy. Table 1 summarizes the computed scaling parameter values and



Figure 5. Cantilever beam geometry.

Table 1. Optimal α values.
Thickness t=0.1 in (2.54 mm)

Elements number α ∆t
5 103 7.81× 10−6

10 92 7.05× 10−6

20 26 3.90× 10−6

40 6 1.97× 10−6

Standard (40 elements) 5.84× 10−7 (Gershgorin)
Thickness t=0.05 in (1.27 mm)

Elements number α ∆t
5 414 7.81× 10−6

10 370 7.05× 10−6

20 103 3.90× 10−6

40 26 1.97× 10−6

Standard (40 elements) 3.01× 10−7 (Gershgorin)

the corresponding critical time step size. The time step value for the standard case (without
mass scaling), computed by means of Gershgorin estimation, is also reported. Fig. 6 shows
the time histories of the tip displacement for different meshes in the case of thickness t = 0.1

in and t = 0.05 in. It can be observed that also in the case of the coarsest mesh, requiring
a high scaling parameter α, the dynamic response is not corrupted and the results are quite
good.

The present mass scaling procedure is based on the hypothesis that inertia properties
related to deformation modes defined by the “difference” dofs have negligible effects on the
structural response. In order to validate this assumption, Fig. 7 shows the trend of the kinetic
energy associated to middle plane and difference dofs. As expected, the latter contribution
results to be significantly smaller than the one due to middle plane dofs confirming that mod-
ifications of this contribution will have only minor effects on the overall dynamic behavior.

5. CONCLUSIONS

Solid-shell elements have attractive features for the simulation of thin-walled struc-
tures with complex material models. In view of applications in highly nonlinear problems,
there is strong interest in their usage in the context of explicit approaches. The present paper
considers the implementation in an explicit code of a recently proposed reduced integration
solid-shell element, originally formulated in an implicit framework. An inexpensive selective
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Figure 6. Time history of tip displacements: a) thickness t=0.1 in; b) t=0.05 in.

mass scaling procedure is proposed to overcome the problem of the excessively small criti-
cal time-step size resulting as a consequence of the element small thickness. An automatic
procedure for the optimal definition of the scaling parameter is also discussed.
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