
 
 

A REPRODUCING KERNEL FORMULATION FOR MODELING SHOCKS 

Jason Roth1, JS Chen2, Tom Slawson1, Kent Danielson1 

1 U.S. Army Engineer Research and Development Center, Vicksburg, MS 
(michael.j.roth@usace.army.mil) 

2 University of California, Los Angeles, Department of Civil and Environmental Engineering 
 
Abstract. A reproducing kernel particle method formulation for modeling shocks formed by non-
linear hyperbolic partial differential equations is developed using a flux-based velocity 
correction technique.  The technique is coupled with a spectral decomposition shock detection 
algorithm to isolate corrections to the jump location.  For this class of model problems, the 
technique is shown to accurately capture the physically correct solution and minimize oscillatory 
error due to Gibbs phenomenon.  The approach provides a basis for further investigation on the 
extension to the equation of motion and shock-forming solid dynamics problems. 
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1. INTRODUCTION 

Strong dynamic events such as projectile penetration and blast effects generate extreme 
loads in solids, which are typically accompanied by internal shock propagation, high strain rates, 
large deformations, and material fragmentation.    Meshfree methods are well suited to model 
these phenomena, where evolving contact surfaces, large deformation, and material separation 
can be accurately captured in the meshfree framework [2,8].  The reflection of strong internal 
shock waves at material interfaces plays a particularly important role in penetration and blast 
effects.  With certain changes in material impedance, initially compressive shock waves can 
generate strong tensile wave reflections that result in dynamic tensile failure.   Internal wave 
reflections in heterogeneous materials (such as concrete) lead to microcrack growth and 
reinforcement debonding, while free-surface reflections can generate dynamic spall.  Both cases 
contribute to the evolution of material damage at the macroscale and result in global failure of 
structural systems.  

To model strong shock effects, a numerical formulation must accurately capture the 
shock wave formation, propagation, and complex interactions.  This requires that the key shock 
physics be embedded in the formulation.  According to Leveque [1], the essential ingredients of 
a numerical method to model shocks are 
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1. Consistency and stability to guarantee solution convergence, 
2. Conservation of the conserved quantities, 
3. Satisfaction of the Rankine-Hugoniot jump condition, 
4. Satisfaction of the entropy condition at a shock,                                                
5. Maintenance of high-order accuracy in regions of smooth solution, and 
6. Sharp shock-front resolution without oscillation (Gibbs phenomenon) or excessive 

dissipation. 

 The first two requirements must be satisfied by a valid numerical method and they can be 
met by the Reproducing Kernel Particle Method (RKPM). The third and fourth requirements are 
addressed by inclusion of the appropriate shock physics, and the last two requirements are 
generally related to construction of the numerical approximation. 
 An RKPM-based formulation for satisfaction of the key physics associated with shock 
formation and propagation is discussed in this paper.  A method to maintain high-order accuracy 
in smooth regions and accurately capture the fine scale shock-front motion is presented.  A 
numerical example using the inviscid Burgers’ equation is given. 

2. REPRODUCING KERNEL PARTICLE METHOD 

The Reproducing Kernel Particle Method [2,3] is a Galerkin meshfree method that is 
typically formulated in a Lagrangian framework.  The solution of governing partial differential 
equations is approximated using a meshfree domain discretization, in which the nodes interact 
through nonconforming kernels of compact support.  The nonconforming characteristic of the 
approximation avoids problems with structured-mesh dependency, making the method ideal for 
large deformation problems, particularly in the presence of evolving contact surfaces and 
material fragmentation.  A reproducing kernel (RK) discretization is shown in Figure 1. 

In the following, the general d-dimensional notation is used, where ݔఈ ൌ ଵݔ
ఈభ ڮ ௗݔ

ఈ and 
|ߙ| ൌ ∑ ߙ

ௗ
ୀଵ .  In the reproducing kernel approximation of degree n, the approximation of an 

unknown field variable, denoted by ࢛ሺ࢞ሻ , is  

ሻ࢞ሺ࢛ ൌ ∑ ;࢞ሺܥ ࢞ െ ࢞ሺߔூሻ࢞ െ ூࢊூሻ࢞

ூୀଵ ؠ ∑ ூூࢊ ሻ࢞ூሺߖ                           (1) 

where ߖூሺ࢞ሻ is the RK shape function, ߔሺ࢞ െ  ூሻ is a scalar-valued kernel function with࢞
compact support of size ܽ, ࢊூ is the RK approximation coefficients for displacement, and 
;࢞ሺܥ ࢞ െ  ூሻ is the correction function expressed as࢞

;࢞ሺܥ  ࢞ െ ூሻ࢞ ൌ ࢞ሺ்ࡴ െ  ሻ                                               (2)࢞ሺ࢈ ூሻ࢞

where ்ࡴሺ࢞ െ ூሻ࢞ ൌ ሼሺ࢞ െ  ூሻఈሽ|ఈ|ஸ is a vector of monomial basis functions of degree n, and࢞
ሻ࢞ሺ்࢈ ൌ ሼܾఈሺ࢞ሻሽ|ఈ|ஸ is a vector of unknown coefficients to be solved by using the reproducing 
conditions 



 
 

∑ ூ࢞ ሻ࢞ூሺߖ
ఈ ൌ ߙ    ఈ࢞  ݊

ூୀଵ  .                                                  (3) 

Imposing the reproducing conditions of (3) gives the discrete RK approximation 

ሻ࢞ሺ࢛ ൌ ∑ ࢞ሺࡴሻ࢞ଵሺିࡹሺሻ்ࡴ െ ࢞ሺߔூሻ࢞ െ ூூࢊூሻ࢞                              (4) 

where ࡹሺ࢞ሻ is a moment matrix defined as 

ሻ࢞ሺࡹ ൌ ∑ ࢞ሺࡴ െ ࢞ሺ்ࡴூሻ࢞ െ ࢞ሺߔூሻ࢞ െ ூሻூ࢞ .                                   (5) 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. RK discretization of Taylor bar impact. 

3. RANKINE-HUGONIOT JUMP CONDITION AND ENTROPY CONSTRAINT 

The Rankine-Hugoniot jump condition describes the relationship between the relative 
flux/solution jump across a shock and the shock-front velocity.  For a numerical method to 
accurately capture the shock velocity, it must satisfy the Rankine-Hugoniot jump condition.  
Consider the Cauchy problem 

,ݔሺݑ ሻ,௧ݐ ݂ሺݑሻ,௫ ൌ 0                                                         (6) 

,ݔሺݑ 0ሻ ൌ  ሻ                                                               (7)ݔሺߴ

where ݑ is the unknown field variable, ݑሺݔ,  ሻ is the fluxݑand ݂ሺ ,ݑ ሻ,௧ is the time derivative ofݐ
function.  Conservation equations in the form of (6) are used to describe inviscid flow, which can 



 
 

lead to shock formation even in the presence of initially smooth data.  The weak form of 
Equation (6) integrated over an arbitrary space-time domain, Ω, (reference Figure 2) is 

 ߮ሺݔ, ,ݔሺݑሻሾݐ ሻ,௧ݐ ݂ሺݑሻ,௫ ሿ ݀Ω ൌΩ   ߮ሺݔ, ,ݔሺݑሻሾݐ ሻ,௧ݐ ݂ሺݑሻ,௫ ሿ ݀ݔ݀ ݐ ൌ
ஶ

௫ୀିஶ
ஶ

௧ୀ 0.       (8) 

 

 

 

 

 

 

Figure 2.  Arbitrary space-time domain containing discontinuity. 

Using integration by parts and properties of the compact test function, ߮ሺ∞, ሻݐ ൌ ߮ሺݔ, ∞ሻ ൌ 0 
and ߮ሺݔ, 0ሻ ൌ 0, Equation 8 is transformed to 

  ሾ߮ሺݔ, ሻ,௧ݐ ,ݔሺݑ ሻݐ  ߮ሺݔ, ሻ,௫ݐ ݂ሺݑሻሿ݀ݔ݀ ݐ ൌ െ  ߮ሺݔ, 0ሻ ߴሺݔሻ݀ݔ
ஶ

௫ୀିஶ ൌ
ஶ

௫ୀିஶ
ஶ

௧ୀ 0.        (9) 

In the presence of a shock, a discontinuity forms in Ω along the boundary Γୱ such that the 
discontinuity divides the space-time domain into two smooth space-time sub-domains, Ωି and 
Ωା.  Normal to the discontinuity is , and the solutions to the left and right of the discontinuities 
are ିݑ and ݑା, respectively.  Considering the presence of the discontinuity, Equation (9) 
becomes  

 ሾ߮,௧ ݑ  ߮,௫ ݂ሺݑሻሿ ݀Ω   ሾ߮,௧ ݑ  ߮,௫ ݂ሺݑሻሿ ݀Ω ൌ 0ΩశΩష .                        (10) 

Using integration by parts and the divergence theorem in conjunction with the weak form 
expression of Equation (8) applied to the smooth sub-domains, Equation (10) becomes 

 ߮ሾିݑ ݊௧
ି  ݂ሺିݑሻ݊௫

ିሿ ݀Γ ൌ െ  ߮ሾݑା ݊௧
ା  ݂ሺݑାሻ݊௫

ାሿ ݀Γ౩౩
.                    (11) 

Due to arbitrariness of the test function, ߮, and considering that ି ൌ െା, Equation (11) 
implies 

௧݊ିݑ  ݂ሺିݑሻ݊௫ ൌ ା݊௧ݑ  ݂ሺݑାሻ݊௫ .                                     (12) 

The inverse of the slope of  Γୱ defines the shock velocity, ݒ௦, and is related to  by 
௦ݒ ൌ ݔ݀  ݐ݀ ൌ െ݊௧ ݊௫⁄⁄ .  Therefore, Equation (12) gives 



 
 

௦ݒ ൌ
݂ሺିݑሻ െ ݂ሺݑାሻ

ିݑ െ ାݑ                                                                ሺ13ሻ 

which is the Rankine-Hugoniot jump equation.  This shows that the essential physics described 
by the Rankine-Hugoniot equation is embedded in the weak formulation. 

The change in entropy, ܵ, is also a key component of the shock-front physics.  According 
to the second law of thermodynamics, for irreversible and adiabatic processes (such as a shock), 
entropy must increase across the shock front.  It has been shown that this constraint is satisfied 
only when compressive discontinuities are present, e.g., [4].  Accordingly, this entropy constraint 
dictates the nature of the physically correct solution at a jump: compressive discontinuities 
propagate as a shock, and expansion discontinuities immediately degenerate into a rarefaction.   

Unlike the case of the Rankine-Hugoniot jump condition, the weak formulation does not 
inherently guarantee satisfaction of the entropy constraint.  Therefore, numerical methods for 
shocks are often enriched so that the entropy production criterion is satisfied.   A so-called 
entropy condition, such as the Lax [5] shock condition 

ሻିݑሺߣ  ௦ݒ   ାሻ                                                       (14)ݑሺߣ

ሻݑሺߣ ൌ ݂ᇱሺݑሻ ൌ  (15)                                       ݀݁݁ݏ ܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܿ

or an entropy inequality [1], 

ሻ௧ݑሺߟ  Ψሺݑሻ୶  0                                                      (16) 

ሻݑሺߟ ൌ ,݊݅ݐܿ݊ݑ݂ ݕݎݐ݊݁ Ψሺݑሻ ൌ  (17)                              ݔݑ݈݂ ݕݎݐ݊݁

can be introduced to enforce the entropy-based, physically correct solution.  Another approach to 
guarantee entropy satisfaction is use of an approximate Riemann solver (such as in the Godunov 
method), which solves a local Riemann problem to compute wave propagation.  The 
approximate Riemann solver provides the additional advantage of limiting solution oscillation 
due to Gibbs phenomenon.  In this work the approximate Riemann solver is used to enrich the 
RKPM formulation.   As will be discussed in Section 5, the RKPM solution is locally corrected 
at the shock front using the flux jump computed from a local Riemann problem.  This technique 
introduces the analytical shock solution at the jump so that the entropy production constraint is 
inherently enforced.  

4. SHOCK DETECTION BY SPECTRAL DECOMPOSITION 

The RK approximation possesses a unique spectral decomposition feature analogous to 
frequency filtering in wavelet filter analysis [6,7].  A wavelet filter is constructed from the 
convolution of an input signal, ݃ሺݔሻ, and filter, ݂ሺݔሻ, as 



 
 

ሻݔሺכ݃ ൌ ݃ሺݔሻ כ ݂ሺݔሻ ൌ  ݃ሺ߬ሻ݂ሺݔ െ ߬ሻ݀߬
ஶ

ିஶ                                    (18) 

where ݃כሺݔሻ is the low-pass filtered  output, and " כ " is a convolution operator.  The essential 
ingredient of the wavelet filter is the filter function, which is the basis of a nested subspace, ܸ, 
where the subspaces, ܸି ஶ, ڮ , ܸିଵ, ܸ, ܸାଵ, ڮ , ஶܸ ൌ  ଶሺԹሻ, define a complete spectralܮ
decomposition of ܮଶሺԹሻ. Properties of the basis, Θሺݔሻ, are defined by  a window function, 
  ሻ, such thatݔሺߠ

݂ሺݔሻ ൌ Θሺݔሻ ൌ 2ି/ଶߠ ቀ
ݔ

2 െ ݊ቁ                                          ሺ19ሻ 

where ݉ and ݊ define the window dilation and translation, respectively.  The RK approximation 
is also a convolution [6], where the approximation, ݑሺݔሻ, is 

ሻݔሺݑ ൌ ሻݔሺݑ כ ߔ
ሺݔሻ                                                  (20) 

where ߔ
ሺݔሻ is a so-called approximation kernel with basis order ݊ and compact support of size 

ܽ. 
The kernel function in Equation (20) behaves as a low-pass filter for which the filter 

limits are defined by the basis order and support size.  The filter limit contracts with a decrease 
in basis order or an increase in support size.  The RK approximation is the low-pass filtered 
output.  You, Chen, and Lu (2003) defined another filter of the RK approximation as 

ሻݔሺݑ ൌ ሻݔሺݑ כ ߔ
ሺݔሻ                                                  (21) 

where ߔ
ሺݔሻ is a so-called filter kernel with basis order ݉ (not necessarily equal to ݊) and 

support size ܾ (not necessarily equal to ܽ).  In Equation (21), ݑሺݔሻ is the low-pass component 
of the initial RK approximation.  In discrete form, the filtered RK approximation is 

ሻݔሺݑ ൌ ௪ݑ
 ሺݔሻ ൌ ∑ ൣ∑ ூߖ

,൫ݔ൯ߖ
,ሺݔሻ ൧ݑூூ .                                (22) 

The high-pass component of the RK approximation is trivially 

ݑ
 ሺݔሻ ൌ ሻݔሺݑ െ ௪ݑ

 ሺݔሻ.                                             (23) 

Numerical experiments using Equations (22) and (23) have been employed to study the 
basis and the support of the RK filter kernel to determine filter limits that accurately isolate the 
high-frequency signal in discontinuous approximations.  Investigations with one- and two-
dimensional functions have shown that a single-order reduction in the filter kernel basis, 
݉ ൌ ݊ െ 1, and filter support 2 to 3 times larger than the approximation kernel support, ܾ ൌ
2ሺܽሻ or ܾ ൌ 3ሺܽሻ, typically provide sharp isolation of the discontinuity-induced high-frequency 
signal.  An example is shown in Figure 3, where the RK approximation to a two-dimensional 
arc-shaped discontinuity was decomposed into high- and low-frequency components by using 



 
 

filter limits defined by ݉ ൌ ݊ െ 1 and ܾ ൌ 3ܽ.  The high frequency signal is cleanly isolated to 
the discontinuity location. 

 
 
 
 
 
 
 
 
 
 
 

                                    (a)                                                                            (b) 

Figure 3.  RK spectral decomposition of discontinuous function, (a) low-pass component and (b) 
high-pass component (using cubic B-spline kernel function). 

It is well known that shocks exhibit a strong high-frequency signature at the jump 
location, as in Figure 3(b).  Therefore, using the RK spectral decomposition feature, a detection 
algorithm can be constructed to detect and track transient shocks.  With the shock location 
captured, techniques to enforce entropy satisfaction and control Gibbs phenomenon can be 
applied directly to the jump region. 

In this work, a detection algorithm was developed by considering the high-frequency 
signature as a high-pass error.  The relative density of the high-pass error can be used as an 
automatic shock indicator.  The error measure is defined using the L2 norm, so that the global 
high-pass error is 

݁ ൌ ฮݑሺݔሻ െ ௪ݑ
 ሺݔሻฮ ൌ ቄ ሻݔሺݑൣ െ ௪ݑ

 ሺݔሻ൧
ଶ

 ݀ΩΩ ቅ
ଵ ଶ⁄

                   (24) 

where Ω is the problem domain, as shown in Figure 4.  The global error density is 

ҧ݁ ൌ ݁

 ఆߗ݀

                                                                 ሺ25ሻ 

The error and error density over a local subdomain, ߗ (Figure 4), are similarly defined.  Using 
the global and local error densities, the relative error density is  

݁ ൌ
ҧ݁

ҧ݁
                                                                   ሺ26ሻ 

where ݁ is a measure of the relative local error.  To avoid false detection in smooth solutions, 
limiting criteria for the relative local error must be defined.  From numerical experiments for 
one-dimensional problems, ݁ of 75~125 has been used as an indicator for strong shocks.   

࢛࢝
ࢎ ሺ࢞ሻ  ࢎࢍࢎ࢛

ࢎ ሺ࢞ሻ



 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  High-pass error analysis, global (Ω) and local (ΩL) domains. 

5. RKPM SHOCK MODELING TECHNIQUE 

The weak formulation does not necessarily guarantee satisfaction of the entropy 
production constraint.  Further, higher-order methods are subject to oscillatory error at the shock 
front due to Gibbs phenomenon.  Therefore, shock modeling techniques are required to enrich 
higher-order methods so that the key physics are satisfied and oscillatory error is minimized. 

In this work, a flux-corrected velocity technique was developed for non-linear hyperbolic 
problems.  The technique behaves as a local correction of the RKPM-computed velocity near 
shock-induced discontinuities.  In the shock-front region, a local Riemann problem is constructed 
to compute the flux jump across the discontinuity.  The corrected local velocities are computed 
in accordance with Godunov’s scheme and are used in the temporal evolution equation to 
compute the corrected RKPM shock solution.  A key feature of this technique is construction of 
the local Riemann problem in the shock region.  The Riemann problem essentially introduces the 
analytical shock solution following characteristic projections at the jump.  As a result, the 
physically correct solution (shock or rarefaction) is naturally captured, and the entropy constraint 
is inherently enforced.  The other key feature of this technique is the introduction of the local 
Godunov solution to the RKPM formulation.  The Godunov solution is first-order accurate and 
therefore behaves as a dissipative oscillation limiter at the jump.  To maintain higher-order 
accuracy in smooth regions, the spectral decomposition shock detection algorithm is used to limit 
corrections to the jump location.    

To construct the local Riemann problem (see Figure 5), the RKPM nodal solution near 
the discontinuity is projected in position-time space (x-t space) following characteristic lines, and 
the jump is determined to be shock forming if ݑ

  ାଵݑ
  or rarefaction forming if ݑ

 ൏ ାଵݑ
 .  



 
 

The solution at the jump interface, ݔାଵ ଶ⁄ , is analytically determined from the Riemann problem 
by defining a local coordinate origin, ݔାଵ ଶ⁄ ൌ 0, and evaluating for the shock condition 

ାଵݑ ଶ⁄ ൌ ൜
ߦ        ݑ   0
ߦ     ାଵݑ ൏ 0                                                        (27) 

or for the rarefaction condition 

ାଵݑ ଶ⁄ ൌ  ቐ

ݑ                  0  ൏ 0 ൏             ାଵݑ
ߦ        ݑ   ାଵݑ ݀݊ܽ 0  ݑ  0
ߦ     ାଵݑ ൏ ݑ ݀݊ܽ 0 ൏ ାଵݑ ൏ 0

                                          (28) 

 
where ߦ is the analytical shock velocity defined for the governing equation.  Given the projected 
solution at the jump interface, the interface flux, ݂ሺݑାଵ ଶ⁄

 ሻ, is determined. 

The evolution equation for Godunov’s scheme is  

ݑ
ାଵ ൌ ݑ

 െ Δݐ ቆ ݂ାଵ ଶ⁄
 െ ݂ିଵ ଶ⁄



ݔ߂
ቇ ؠ ݑ

 െ Δݐሺ࣠ሻ                                ሺ29ሻ 

where ࣠ is the flux-based velocity that projects the solution forward in time.  For the RKPM 
temporal integration scheme, consider the simple generalized trapezoidal rule  

ݑ
ାଵ ൌ ݑ

  ሺ1 ݐ∆ െ ሶݑ ሻߙ
  ሶݑ ݐ∆ ߙ 

ାଵ                                     (30) 

where ߙ controls solution accuracy.  Re-writing Equation (30) in a form similar to (29) gives 

ݑ
ାଵ ൌ ݑ

  ሺ1ൣݐ∆ െ ሶݑ ሻߙ
  ሶݑ  ߙ 

ାଵ൧ ൌ ݑ 
   ሺॲሻ .                         (31)ݐ∆

Therefore, to introduce the Godunov scheme to the RKPM formulation, the temporal 
integration scheme in the shock region is modified so that the solution is projected in time with 
the flux-based velocity (i.e., ॲ ൌ െ࣠).  Because the solution of the Riemann problem is 
embedded in the flux-based velocity, the resulting RKPM scheme is entropy satisfying and 
oscillation limited. 

 
 
 
 
 
 
 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
                                                                                                                 (a) 
 
 
 
 
 
 
 
 
 
                                                                                                                 (b) 

Figure 5.  RKPM near-discontinuous solution at time tn and local Riemann problem, (a) shock 
forming, ݑ  ݑ ,ାଵ, or (b)  rarefaction formingݑ ൏  .ାଵݑ

 
The computational procedure for this flux-corrected velocity technique is 

1. Compute the higher-order accurate RKPM solution over the full computational domain at 
time ݐାଵ; 

2. Using the shock detection algorithm, detect a shock formation near ݔ and define a thin 
region near the shock that encompasses ݔିఊ, ڮ , ,ݔ ڮ ,  ;ାఊݔ

3. In the shock region,  
a. compute the local Riemann solution using Equations (27) and (28), 
b. compute the flux-corrected velocity, ࣠, and 
c. compute the corrected solution using ॲ ൌ െ࣠ in Equation (31);  

4. Replace the initial RKPM solution in the shock region with the flux-corrected solution 
and advance to the next time step. 

Using this technique, the higher-order-accurate RKPM solution is maintained over the 
smooth solution regions, and the first-order accurate flux-corrected solution is applied only in a 
thin region at the shock. 

 

 



 
 

6. NUMERICAL EXAMPLE 

The solution of the inviscid Burgers equation was solved to show the accuracy provided 
by the flux-corrected velocity RKPM formulation.  Burgers equation is a non-linear hyperbolic 
partial differential equation (PDE) commonly used as a model problem for shocks.  Smooth 
initial conditions defined on a domain ݔ א ሾ0,4ሿ were prescribed by a cubic B-spline function.  
The solution of this PDE forms a shock at approximately t=0.45.  A rarefaction also forms 
behind the shock, so that the model problem investigates performance for both shock and 
rarefaction conditions.  The RKPM solution was computed using a linear basis and normalized 
support (ܽ/݄ where ܽ is compact support size and ݄ is nodal spacing) equal to 1.  The spatial 
domain was discretized with a uniform nodal spacing of 0.0125.  Central difference time 
integration was used with the time step defined by ∆ݐ ݔ∆ ൌ 0.25.⁄   This formulation is second-
order accurate (in the L2 error norm) in space and time.  For the shock detection algorithm, 125 
was used for the relative error density indicator, ݁; and the filter kernel basis and normalized 
support were ݉ ൌ 0 and ܾ ൌ 2ܽ, respectively.   

In Figure 6, the RKPM solution is compared to the analytical before the shock forms and 
a fine-scale Lax-Friedrichs (LF) solution (∆ݔ ൌ 0.002) after the shock forms.  Solutions are 
compared at t=0.375, t=1.25, and t=5.5 in Figures 6(a), 6(b), and 6(c), respectively.  At t=0.375 
the shock has not fully formed.  Accordingly, the RKPM solution was not corrected, and second-
order accuracy was maintained over the full domain.  At t=1.25 and t=5.5, the detection 
algorithm automatically identified a thin region containing the shock.  The flux-corrected 
velocity was applied in this region, and therefore accuracy was reduced to first order at the front.  
However, since the detection algorithm isolated the correction to the front, higher-order accuracy 
was maintained elsewhere.  Although the solution in the shock region was reduced to first order, 
the RKPM solution did not exhibit the same dissipative error as the first-order accurate Lax-
Friedrichs solution.  The RKPM and Lax-Friedrichs shock velocities were in very close 
agreement as a result of the Rankine-Hugoniot condition’s embedment in the weak formulation.  
The slight difference in shock velocities was the result of integration error in the weak form.  In 
Figure 6(d), the solution at t=1.25 without the flux-corrected velocity is shown for comparison 
with Figure 6(b) using flux-corrected RKPM.  The solution exhibited large oscillatory error at 
the discontinuity due to Gibbs phenomenon.  
 
 
 
 
 
 
 
 
 



 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
                                    (a)                                                                         (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    (c)                                                                         (d) 

Figure 6.  Solution to the inviscid Burgers equation, (a) RKPM and analytical solution prior to 
shock, t=0.375, (b) RKPM and LF solution, t=1.25, (c) RKPM and LF solution, t=5.5, and (d) 

oscillatory solution without flux correction. 

7. SUMMARY AND CONCLUSIONS 

To accurately model shock effects, numerical methods must contain the appropriate 
shock physics and minimize oscillatory error generated by Gibbs phenomenon at the jump.  
RKPM is derived from the weak formulation and naturally satisfies the Rankine-Hugoniot jump 
condition. However, satisfaction of entropy production in accordance with the second law of 
thermodynamics is not guaranteed.  Enrichment of the RKPM formulation has been developed 
using a flux-based velocity correction at the shock front.  The correction is derived from the 
Riemann solution to a locally defined Cauchy problem and therefore enforces the physically 
correct solution in accordance with the entropy constraint.  Since the correction is built into the 
formulation following a Godunov-type scheme, the correction also behaves as an oscillation 
limiter to control Gibbs phenomenon effects.  The spectral decomposition property inherent to 
RKPM is used to construct a detection algorithm so that the correction is applied only in a thin 



 
 

region at the front.  The correction only reduces solution accuracy to first order locally, and 
higher order accuracy remains away from the short front.  In this way, the technique is similar to 
other oscillator-limiting schemes.   The solution of the inviscid Burgers equation was computed 
to show the technique’s effectiveness.  Using a second-order accurate space/time formulation, 
the flux-uncorrected RKPM solution is shown to be highly oscillatory (as would be the case with 
other methods, such as the finite element method).  The RKPM with flux correction eliminated 
oscillation and reduced the dissipative error as compared to a fine-scale Lax-Friedrichs solution.  
This technique has been investigated in the one-dimensional case.  Further investigation is 
required for the extension to higher dimensions and application to the equation of motion for 
solid dynamics. 
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