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Abstract. This work aims at the comparison between a classical regularization technique and 

a method within the Bayesian framework, as applied to the solution of an inverse heat con-

duction problem. The two solution approaches compared are Alifanov's iterative regulariza-
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this work deals with the estimation of a transient source term in a heat conduction problem. 

Keywords: Inverse Problem, Alifanov's iterative regularization technique, Conjugate Gradi-

ent Method with Adjoint Problem, Markov chain Monte Carlo method, Heat Conduction. 

1. INTRODUCTION 

Inverse heat transfer problems deal with the estimation of unknown quantities appear-

ing in the mathematical formulation of physical processes in thermal sciences, by using meas-

urements of temperature, heat flux, radiation intensities, etc. Originally, inverse heat transfer 

problems have been associated with the estimation of an unknown boundary heat flux, by 

using temperature measurements taken below the boundary surface of a heat conducting me-

dium [1][4][5][8][9][11][12][14][16]. Inverse problems are mathematically classified as ill-

posed, whereas standard direct (forward) heat transfer problems are well-posed.  The solution 

of a well-posed problem must satisfy the conditions of existence, uniqueness and stability 

with respect to the input data. The existence and uniqueness of a solution for an inverse heat 

transfer problem can be mathematically proved only for some special cases, and the inverse 

problem is very sensitive to random errors in the measured input data. Therefore, special 

techniques are required for the solution of inverse problems [1][4][5][8][9][11][12][14][16]. 

Classical regularization techniques have been developed and successfully applied to the solu-

tion of inverse problems, such as Tikhonov’s regularization technique [16], Alifanov’s itera-
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tive regularization technique [1] and Beck’s sequential function specification technique [5]. 

On the other hand, with the recent availability of fast and affordable computational resources, 

sampling methods have become more popular within the community dealing with the solution 

of inverse problems.  These methods are backed up by the statistical theory within the Bayesi-

an framework, being quite simple in terms of application and not restricted to any prior distri-

bution for the unknowns or models for the measurement errors [6][8][9][11][12]. This work 

aims at a comparison between a classical regularization technique and a method within the 

Bayesian framework, as applied to the solution of an inverse heat conduction problem. The 

two solution approaches compared are Alifanov's iterative regularization technique 

[1][2][3][10][11][12][14][15][17] and the Markov chain Monte Carlo (MCMC) method 

[6][8][9][11][12]. 

In Alifanov’s Iterative Regularization technique [1][2][3][10][11][12][14][15][17], the 

number of iterations is so chosen that reasonably stable solutions are obtained. Therefore, 

there is no need to modify the original objective function, as opposed to Tikhonov’s regulari-

zation approach. Another difference between Alifanov’s and Tikhonov’s regularization ap-

proaches is that, in the first, the unknown function is not required to be discretized a priori. 

On the other hand, with Alifanov’s approach all the required mathematical derivations are 

made in a space of functions. The discretization of the function, resulting from the fact that 

measurements are taken at discrete times and positions, is then only made a posteriori. Never-

theless, the iterative regularization approach is quite general and can also be applied to the 

estimation of functions parameterized a priori, as well as to linear and non-linear inverse 

problems. It is an extremely robust technique, which converges fast and is stable with respect 

to the measurement errors. Also, it can be systematically applied to different types of inverse 

problems, by following the same basic steps. 

Classical regularization methods are not based on the modeling of prior information 

and related uncertainty about the unknown parameters. On the other hand, in the statistical 

inversion approach, which is based on Bayesian statistics, the probability distribution models 

for the measurements and for the unknowns are constructed separately and explicitly 

[6][8][9][11][12]. The solution of the inverse problem within the Bayesian framework is re-

cast in the form of statistical inference from the posterior probability density, which is the 

model for the conditional probability distribution of the unknown parameters given the meas-

urements. The measurement model incorporating the related uncertainties is called the likeli-

hood, that is, the conditional probability of the measurements given the unknown parameters. 

The model for the unknowns that reflects all the uncertainty of the parameters without the 

information conveyed by the measurements, is called the prior model. The formal mechanism 

to combine the new information (measurements) with the previously available information 

(prior) is known as the Bayes’ theorem. Therefore, the term Bayesian is often used to describe 

the statistical inversion approach, which is based on the following principles [2]: 1. All varia-

bles included in the model are modeled as random variables; 2. The randomness describes the 

degree of information concerning their realizations; 3. The degree of information concerning 

these values is coded in probability distributions; and 4. The solution of the inverse problem is 

the posterior probability distribution, from which distribution point estimates and other statis-

tics are computed. 



 

 

The inverse problem examined in this work involves the estimation of the transient 

heat source term, located in a known region of a three-dimensional semi-infinite medium. 

Analytic solutions for the Direct, Sensitivity and Adjoint Problems were obtained with the 

Classical Integral Transform Technique (CITT) [13][15]. Simulated temperature measure-

ments non-intrusively taken at the top boundary of the region, as in a thermal tomographic 

approach, were used for the solution of the inverse problem. The measurement errors were 

assumed to be Gaussian, additive, with zero mean and known covariance matrix. A smooth 

prior was used for the transient heat source estimation with MCMC. The two solution ap-

proaches were compared as applied to the estimation of different functional forms for the heat 

source function, as described next. 

2. PHISICAL PROBLEM AND MATHEMATICAL FORMULATION 

The physical problem examined in this paper consists of a three-dimensional domain, 

infinite in the x and y directions and semi-infinite in the z direction, as illustrated in figure 1. 

Heat transfer is neglected at the upper surface of the domain. It is assumed that the whole 

region under study is initially at a temperature T0. For times t > 0, a transient heat source term 

g(x,y,z,t) generates energy in the medium. It is assumed that  heat transfer takes place only by 

conduction, and that the properties of the medium are constant. The source term is assumed to 

be limited to the region – x1 < x < x1, – y1 < y < y1 and h < z < (h+z1), so that it is zero outside 

this region (see figure 1). 

 

Figure 1. Physical problem . 

 

The mathematical formulation of this physical problem is given by:  
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Equations (1-3) are written in dimensionless form by defining the following dimension-

less variables: 
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where h is the depth of the heat source inside the medium (see figure 1). Equations (1-3) be-

come: 
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 1, 0, , , 0 .at in X Y Z          (7) 

3. DIRECT PROBLEM 

 When the geometry, physical properties, heat source term, initial and boundary condi-

tions are known, the formulation given by equations (5-7) provides a direct (forward) heat 

conduction problem, whose solution gives the temperature field in the time and space do-

mains. The solution of the direct problem in this work was obtained analytically, by using the 

Classical Integral Transform Technique (CITT) [13][15]. The solution of the direct problem 

given by equations (5-7) is given by: 
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4. INVERSE PROBLEM 

The inverse problem of interest in this paper is concerned with the estimation of the 

strength of the source term G(X,Y,Z,), known to be located inside the region – x1 < x < x1, 

– y1 < y < y1 and h < z < (h+z1) (see figure 1). For the solution of the inverse problem, transi-

ent temperature measurements taken at the surface z = 0 are considered available. Further-



 

 

more, all the quantities appearing in the mathematical formulation of the physical problem, 

except the source term, are considered as deterministically known. However, the temperature 

measurements contain experimental errors. 

This paper presents two different techniques for the solution of the inverse problem of 

estimating the source term, namely: 

(i) The Conjugate Gradient Method with Adjoint Problem for function estimation, 

which assumes that the unknown function belongs to the Hilbert space of  square integrable 

functions in the domain of interest [1][2][3][10][11][12][14][15][17]; and 

(ii) The Markov Chain Monte Carlo (MCMC) method within the Bayesian framework, 

implemented via the Metropolis-Hastings algorithm [6][8][9][11][12]. 

These two techniques, as applied to the present inverse problem, are described next. 

4.1. Conjugate Gradient Method with Adjoint Problem for function estimation. 

For the solution of the inverse problem with the Conjugate Gradient Method with 

Adjoint Problem, no assumption is made a priori about the functional form of the unknown 

source term, except for the functional space that it belongs to. Despite the fact that the test 

cases examined in this paper involve the estimation of the transient strength of a heat source 

with known location, for the sake of generality, the conjugate gradient method with adjoint 

problem is derived below as applied for the estimation of a function that varies spatially as 

well as in time. The function estimation is performed by minimizing an objective functional, 

which is defined in terms of the difference between the experimental and estimated tempera-

tures. It is assumed that the experimental errors are additive, uncorrelated and have a Gaussi-

an distribution with  zero mean and constant standard deviation [4][9]. For simplicity in the 

mathematical analysis, it is also assumed that the temperature measurements are continuous in 

the time domain. With such assumptions, the objective functional is defined by: 
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where ( )mD   is the measured temperature and [ , , , ; ( , , , )]X Y Z G X Y Z    is the estimated 

value of the temperature at the position of each of the M sensors, ,m m mX Y and Z  , m = 1,…,M. 

The values of the estimated temperatures are obtained through the solution of the direct prob-

lem, given by equation (8), by using estimates for the source term ( , , , )G X Y Z  . In equation 

(9), f is the duration of the experiment, and (.)  is the Dirac delta function. 

The Conjugate Gradient Method with Adjoint Problem for function estimation is used 

to minimize the objective functional given by equation (9). This iterative minimization meth-

od requires the solution of two auxiliary problems, known as Sensitivity Problem and Adjoint 

Problem [1][2][3][10][11][12][14][15][17]. 

The Sensitivity Problem is obtained by assuming that when the source term 

( , , , )G X Y Z   is perturbed by an amount ( , , , )G X Y Z  , the temperature ( , , , )X Y Z   is 

perturbed by an amount ( , , , )X Y Z  . Thus, by replacing the temperature and the source 



 

 

term with their perturbed quantities in equations (5-7) that define the direct problem, and then 

subtracting from the resulting equations the original direct problem, we obtain the sensitivity 

problem defined by: 
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The solution of the Sensitivity Problem is also obtained with the CITT, as: 

 

2 2
1 1 1

1 1

( ') ( ')1

4( ') 4( ')

1/2 1/2

' 0 ' ' ' 1

1 1
( , , , ) [

(4 ( ')) (4 ( '))

X X Y YX Y Z

X X Y Y Z

X Y Z e e



   



 
     

 
 

 

   

 
      

 

2 2( ') ( ')

4( ') 4( ')

1/2

1
( ) ( ', ', ', ')]

(4 ( '))

Z Z Z Z

e e G X Y Z    
  

 
 

  


 (13) 

 ' ' ' '.dZ dY dX d  

For minimizing the objective functional given by equation (9), the estimated tempera-

tures [ , , , ; ( , , , )]X Y Z G X Y Z    must satisfy a constraint that is the solution of the Direct 

Problem, defined by equations (5-7), whose solution is given by equation (8). Therefore, in 

order to transform the constrained minimization problem into an unconstrained minimization 

problem, a Lagrange multiplier ( , , , )X Y Z   is introduced in the formulation. The Lagrange 

multiplier is obtained with the solution of a problem adjoint to the sensitivity problem given 

by equations (10) to (12). 

The derivation of the Adjoint Problem for *( , , , )X Y Z  in the present inverse problem 

is presented in detail in [15]. It is given by: 
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where: 
* *,f and           . 

The solution of the Adjoint Problem is also obtained by using the CITT in the form: 
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The Gradient Equation is obtained from the Adjoint Problem solution. By assuming that 

the unknown function belongs to the Hilbert space of square integrable functions in the space 

and time domains, the Gradient Equation is given by: 

 [ ( , , , )] ( , , , ).S G X Y Z X Y Z     (18) 

As shown in [14], the mathematical development presented for the inverse problem re-

sults in three distinct problems called Direct Problem, Sensitivity Problem and Adjoint Prob-

lem defined by equations (5) to (7), (10) to (12) and (14) to (16) , respectively. With the solu-

tion of these problems, we obtain the functions ( , , , )X Y Z  , ( , , , )X Y Z   and 

( , , , )X Y Z  , respectively. The unknown function ( , , , )G X Y Z   is estimated by minimizing 

the objective functional [ ( , , , )]S G X Y Z  , given by equation (9). Thus, the estimation of the 

source term function is performed with an iterative procedure, by properly selecting the 

search direction and the search step size in each iteration. The iterative procedure of the Con-

jugate Gradient Method with Adjoint Problem is given by [1][2][3][10][11][12][14][15][17]: 

 1( , , , ) ( , , , ) ( , , , ).k k k kG X Y Z G X Y Z d X Y Z       (19) 

where k  is the search step size and ( , , , )kd X Y Z   is the direction of descent, defined by: 

 1( , , , ) [ ( , , , )] ( , , , ).k k k kd X Y Z S G X Y Z d X Y Z      (20) 

where k  is the conjugation coefficient. 

There are different versions of the Conjugate Gradient Method available, depending on 

the form of calculation of the direction of descent, given by equation (20) [1][2][3][10][11] 

[12][14][15][17]. For linear inverse problems as the present one, in which the sensitivity 

problem does not depend on the unknown function, the different versions of the Conjugate 

Gradient Method are theoretically identical. Thus, it is used in this paper the expression of 

Fletcher-Reeves for calculating the conjugation coefficient, given by 

[1][2][3][10][11][12][14][15][17]: 
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for k = 1, 2, 3, …, and 0 = 0, for k = 0. 



 

 

 The search step size k  is determined by minimizing the objective functional 
1[ ( , , , )]kS G X Y Z  , given by equation (9) with respect to k . The following expression re-

sults: 
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The iterative procedure defined by equations (19) to (22) is applied until the stopping 

criterion based on the discrepancy principle is satisfied. The Conjugate Gradient Method can 

provide stable solutions for the inverse problem, if the discrepancy principle is used for stop-

ping the iterative procedure, thus avoiding that the high frequency oscillations be incorporated 

into the estimated functions. In the discrepancy principle, the iterative procedure is stopped 

when the following criterion is satisfied: 

  , , , .S G X Y Z       (23) 

where the value for the tolerance   is set to obtain stable solutions. In this case, we stop the 

iterative procedure when the residuals between measured,  mD  , and estimated, 

 , , ,X Y Z  , temperatures are of the same order of magnitude of the random errors in the 

temperature measurements, that is: 

    , , , .m i m m m i iD X Y Z      (24) 

for m= 1, 2, …, M, where i  is the standard deviation of the measurement error at time i . 

For constant standard deviations, i.e., i  constant, we obtain the following value for the 

tolerance , by substituting equation (24) into the objective functional given by equation (9): 
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where M is the total number of sensors in the region. When the measurements do not contain 

experimental errors, the value for the tolerance   may be chosen as a sufficiently small num-

ber, since the minimum value expected for the objective functional is zero. 

The estimation of the unknown function  , , ,G X Y Z   with the Conjugate Gradient 

Method with Adjoint Problem, may be carried out by using the following basic steps: 

 

Step 1 – Suppose an initial guess  0 , , ,G X Y Z   is available for the function to be esti-

mated. Set k = 0. 

Step 2 – Solve the Direct Problem (5) to (7) to calculate the estimated temperatures 

 , , ,X Y Z  , based on  , , ,kG X Y Z  . 

Step 3 – Check the stopping criterion given by equation (23). Continue if not satisfied. 

Step 4 – Knowing the temperatures calculated in step 2,  , , ,X Y Z  , and the meas-

ured temperatures ( )mD  , solve the Ajoint Problem, given by equations (14) to (16) and 

compute the Lagrange multiplier  , , ,X Y Z  . 



 

 

Step 5 – Knowing the Lagrange multiplier  , , ,X Y Z  , compute the gradient 

 , , ,kS G X Y Z      from equation (18); 

Step 6 – Knowing the gradient  , , ,kS G X Y Z     , compute k  from equation (21) 

and the direction of descent kd  from equation (20). 

Step 7 – Set    , , , , , ,k kG X Y Z d X Y Z    and solve the Sensitivity Problem given 

by equations (10) to (12), to obtain  , , , ; k

m m mX Y Z d  . 

Step 8 – Knowing  , , , ; k

m m mX Y Z d  , compute the search step size k  from equa-

tion (22). 

Step 9 – Knowing the search step size k  and the direction of descent kd , compute the 

new estimate  1 , , ,kG X Y Z   from equation (19), and return to step 2. 

4.2. Markov Chain Monte Carlo (MCMC) method  

Numerical sampling methods might be required when the posterior probability density 

function is not analytical [6][8][9][11][12]. The numerical method mostly used to explore the 

state space of the posterior is the Monte Carlo simulation that approaches the expected local 

values of a function (vector of parameters P) by the sample mean. The Monte Carlo simula-

tion is based on a large sample of the probability density function, in this case the posterior 

probability density function, ( | ) P D , where D is the vector of measurements. Several sam-

pling strategies were proposed, including the method of Markov Chain Monte Carlo (MCMC) 

that is the most powerful. The basic idea is to simulate a random walk in the space of P that 

converges to a stationary distribution, which is the distribution of interest. 

The MCMC method is an iterative version of the traditional Monte Carlo methods. The 

idea is to obtain a sample of the posterior distribution and calculate sample estimates of char-

acteristics of this distribution using iterative simulation techniques based on Markov chains. 

A Markov chain is a stochastic process {P0, P1, P2, ...} such that the distribution of Pi given 

all the previous values P0, ...,Pi-1 depends only on Pi-1, that is: 

 0 1 1( | ,..., ) ( | ).i i i iA A    P P P P P  (26) 

for any subset A. 

 MCMC Methods require, in order to obtain a single distribution of equilibrium, that the 

chain be:  

- Homogeneous, that is, the possibility of transition from one state to another is invar-

iant; 

- Irreducible, that is, each state can be reached from any other in a finite number of it-

erations; and 

- Aperiodic, that is, there are no absorbent states. 

Thus, a sufficient condition to obtain a single stationary distribution is that the process 

meets the following balance equation: 

 Prob( ) ( | ) Prob( ) ( | ).i ji j j i   P D P D  (27) 



 

 

where ( | )and ( | )i j P D P D  are distinct states of the distribution of interest. 

An important practical issue is how the initial values influence the behaviour of the 

chain. Thus, as the number of iterations increases, the chain gradually forgets the initial val-

ues and eventually converges to an equilibrium distribution. Thus, it is common that the early 

iterations are discarded. The most commonly used MCMC algorithms are the Metropolis-

Hastings and Gibbs sampling [6][8][9][11][12]. The Metropolis-Hastings algorithm is used in 

this work. 

For the cases examined below, the transient variation of a source term with known spa-

tial distribution is estimated, so that the vector of parameters of interest is written as 

 1 2, ,...,T

IG G GP , where ( )i iG G t . The probability density function of P given D can be 

written according to the Bayes formula [6][8][9][11][12] as: 
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where πposterior (P) is the posterior probability density, that is, the conditional probability of the 

parameters P given the measurements D; ( ) D| P  is the likelihood function, which expresses 

the likelihood of different measurements outcomes D with P given; πprior (P) is the prior den-

sity distribution of the parameters, that is, the coded information about the parameters prior to 

the measurements; and ( ) D is the marginal probability density of the measurements, which 

plays the role of a normalizing constant. In general, the probability ( ) D  is not explicit and is 

difficult to calculate. However, the knowledge of ( ) D  can be disregarded if the space of 

states of the posterior can be explored without knowing the normalization constant. Thus, the 

probability density function of the posterior can be written as: 

 ( ) ( ) ( ) ( ).posterior prior    P P | D D| P P  (29) 

 By assuming that the measurement errors are Gaussian random variables, with zero 

means and known covariance matrix W and that the measurement errors are additive and in-

dependent of the parameters P, the likelihood function can be expressed as [6][8][9][11][12]: 

    /2 1/2 11
( ) (2 ) | | exp .
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D | P W D-θ(P) W D-θ(P)  (30) 

where N (=IM) is the total number of measurements and (P) is the vector of estimated tem-

peratures, obtained from the solution of the direct problem at the specific times and sensor 

locations, with an estimate for the parameters P, and calculated with equation (8). 

The prior distribution is the codified knowledge about the parameters before D is meas-

ured. For this study, a non-informative smoothness prior is used for the estimation of the tran-

sient strengths of the source term  1 2, ,...,T

IG G GP . The smoothness prior is given in the 

form [9]: 
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where  is a scalar and:  
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 Equations (31) resemble first-order Tikhonov's regularization. However, there is a fun-

damental difference between the classical Tikhonov's regularization and the Bayesian ap-

proaches. Tikhonov regularization focuses in obtaining a stabilized form of the original min-

imum norm problem and is not designed to yield error estimates that would have a statistical 

interpretation. In contrast, Bayesian inference presumes that the uncertainties in the likelihood 

and prior models reflect the actual uncertainties.   

The parameter α appearing in the smoothness prior is treated in this work as a 

hyperparameter, that is, it is estimated as part of the inference problem in a hierarchical model 

[2]. The hyperprior density for this parameter is taken in the form of a Rayleigh distribution, 

given by [9]: 
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where 0  is the center point of the Rayleigh distribution. 

Therefore, the posterior distribution is given by: 
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In order to implement the Markov Chain, a proposal distribution q(P*,P
(n-1)

) is required, 

which gives the probability of moving from the current state in the chain P
(n-1)

 to a new state 

P*. In this work, the proposal distribution q(P*,P
(n-1)

) is taken as Gaussian, uncorrelated and 

with a standard deviation of 2x10
-2

 P
(n-1)

, that is: 

 * ( 1) 2 ( 1) 2, (2x10 ) .n nN     P P P  (34) 

The new value P
*
 is then tested and accepted with probability given by the ratio of Has-

tings (RH), that is: 
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P ,P
P | D P | P

 (35) 

It is interesting to note that we need to known ( , )  P | D  just up to a constant, since we are 

working with ratios between densities and such normalization constant is cancelled out in 

equation (35).  

 We present next the steps for the Metropolis-Hastings algorithm [6][8][9][11][12]: 

 Step 1 – Set the iteration counter n = 0 and specify an initial value for the parameters to 

be estimated 
0P ; 

 Step 2 – Generate a candidate value 
*P  from the auxiliary distribution function 

( )q *
P | P ; 

 Step 3 – Calculate the acceptance probability given by equation (35); 

 Step 4 – Generate an auxiliary random sample from an uniform distribution u ~U[0,1]; 



 

 

 Step 5 – If u ≤ ( 1) *RH( )n
P ,P , accept the candidate value and set ( 1) *n P P . Other-

wise, reject the candidate value and set ( 1)n n P P ; 

 Step 6 – Set the iteration counter n equal to n+1 and return to step 2. 

5. RESULTS AND DISCUSSIONS 

 For all the cases examined below, the solution of the inverse problem was obtained by 

using simulated measurements with random errors. Temperature measurements were obtained 

from a known source term through the solution of the Direct Problem, given by equation (8), 

with added simulated noise, which was uncorrelated, Gaussian, with zero mean and known 

constant standard-deviation. Two values were examined for the standard deviation of the 

measurement  errors: σ=0.016 that  corresponds to 0.5 
o
C and σ=0.032  that  corresponds  to  

1 
o
C. 

It was assumed that the source term was inserted in a medium made of aluminum with 

the following thermophysical properties: ρ = 2787 kg/m
3
; cp = 867 J/kg K; and k = 164  

W/mK. A uniform time-varying heat source was applied in a cubic region of side 2 mm, cen-

tered with respect to the x and y axes, and at a depth h = 2 mm below the surface.  Hence, in 

dimensionless terms the heat source was applied in the region -0.5 ≤ X ≤ 0.5; -0.5 ≤ Y ≤ 0.5 

and 1 ≤ Z ≤ 2, as illustrated by figure 2. For the cases examined involving a constant strength 

of the heat source, its magnitude was assumed as 18.75 x 10
8
 W/m

3
, which corresponds to a 

dimensionless value of 1.43. Functional forms involving discontinuities (step function) and 

discontinuities in the first derivative (triangular function) were also examined. For such cases, 

the functions were supposed to vary from 18.75 x 10
8
 W/m

3
 to 37.5 x 10

8
 W/m

3
 (2.86 in di-

mensionless form). 

 

Figure 2. Investigated region with the source term. 

 

For the solution of the inverse problem, the unknown transient strength of the heat 

source was supposed constant in order to initialize the iterative procedure of the conjugate 

gradient method or the Markov chains. The effects of such constant values on the final solu-



 

 

tions were examined, by assuming initially the source term as 12.5 x 10
8
 W/m

3 
or 75 x 10

8
 

W/m
3
, corresponding in dimensionless terms to 0.96 and 5.72, respectively.  

The duration of the experiment was taken as 60 seconds, equivalent to a dimensionless 

final time of τ = 1018. The temperature measurements were supposedly taken at the surface Z 

= 0, in a grid formed by only 9 pixels, uniformly distributed in the region -1.5 < X < 1.5 and  

-1.5 < Y < 1.5. The measurements were supposed available with a frequency of 1 Hz, so that 

60 transient measurements were available for each pixel.  

In the inverse analysis, the numbers of states used in the Markov chains were 20,000 for 

all functional form cases examined, with 2,000 burn-in states. Such numbers of states were 

selected based on numerical experiments.  

To examine the accuracy of the two estimation approaches under analysis in this paper, 

three different functional forms for the source term were used, namely: 

- Functional form with constant intensity: 

 ( , , , ) 1.43.G X Y Z    (36) 

- Functional form with step variation: 
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- Functional form with triangular variation: 
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 (38) 

For all cases using the MCMC method the value adopted for the center point of the 

Rayleigh distribution, 0 , was 10. This value was selected based on numerical experiments. 

The computational times for each of the test cases examined are presented in the table 1. 

We note in this table that the computational cost is much larger when the MCMC method was 

used, as compared to the conjugate gradient method. CPU times were obtained using the 

FORTRAN platform, on a desktop computer with an AMD Athlon (tm) II X2 250 CPU and 

2GB of RAM. Table 1 also presents the acceptance ratio of the Metropolis-Hastings algorithm 

of each test case examined for a constant standard-deviation σ=0.016. We can notice that the 

acceptance ratios for all cases were very low, although the acceptance ratio was of the order 

of 50% during the burn-in period. 

The Root-mean-square (RMS) error, defined by:  
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where ( )est iG   is the value estimated, while ( )exa iG   is the exact value of the source term 

function  at  time i , are  presented  in tables 2 and 3 for = 0.016 and  in  tables 4 and 5 for 

 = 0.032. Tables 2 and 4 correspond to an initial guess of 0.96, while tables 3 and 5 corre-

spond to an initial guess of 5.72. For the cases of an initial guesses equal to 0.96, the accuracy 

of the solutions obtained with the conjugate gradient method are more accurate than those 

obtained with MCMC method. This behavior becomes also clear from the analysis of figures 

3.a to 8.a which present the exact and estimated functions for constant, step and triangular 

variations, respectively, for initial guesses equal to 0.96 and for = 0.016 and for  = 0.032. 

On the other hand, for an initial guess equal to 5.72, the solutions obtained with the MCMC 

method are more accurate than those obtained with the conjugate gradient method, as present-

ed in table 3 and 5 and illustrated by figures 3.b to 8.b. Figures 3.b-8.b correspond to the same 

cases examined in figures 3.a-8.a, but with an initial guess of 5.72. The larger RMS errors of 

the solutions obtained with the conjugate gradient method, for an initial guess of 5.72, are 

probably due to the effects of the null gradient at the final time (see equations 16 and 18). As 

a result, the initial guess at the final time is not modified and oscillations in the solution ap-

pear as the final time is approached. This fact is clear from the analysis of figures 3.b-8.b. 

   

Table 1. Test cases examined for constant standard-deviation σ=0.016. 

Source term Method 
CPU Time (s) Acceptance ratio % 

G0=0.96 G0=5.72 G0=0.96 G0=5.72 

Constant 

MCMC 15500 4.83 3.32 

Conjugate 

Gradient 
3 113 - - 

Step 

MCMC 18000 3.48 3.49 

Conjugate 

Gradient 
20 175 - - 

Triangular 

MCMC 18000 4.23 3.42 

Conjugate 

Gradient 
6 177 - - 

 

 

Table 2. Values of RMS errors obtained initial guesses equal to 0.96 and constant standard-

deviation σ=0.016. 

Method RMS Error 

Functional form variation 

Constant Step Triangular 

Conjugate Gradient Method with Adjoint Problem 0.117 0.244 0.165 

MCMC using Metropolis-Hastings 0.409 0.551 0.520 

 



 

 

Table 3. Values of RMS errors obtained initial guesses equal to 5.72 and constant standard-

deviation σ=0.016. 

Method RMS Error 

Functional form variation 

Constant Step Triangular 

Conjugate Gradient Method with Adjoint Problem 0.723 0.778 0.746 

MCMC using Metropolis-Hastings 0.511 0.441 0.422 

 

 

Table 4. Values of RMS errors obtained initial guesses equal to 0.96 and constant standard-

deviation σ=0.032. 

Method RMS Error 

Functional form variation 

Constant Step Triangular 

Conjugate Gradient Method with Adjoint Problem 0.145 0.291 0.250 

MCMC using Metropolis-Hastings 0.403 0.517 0.456 

 

Table 5. Values of RMS errors obtained initial guesses equal to 5.72 and constant standard-

deviation σ=0.032. 

Method RMS Error 

Functional form variation 

Constant Step Triangular 

Conjugate Gradient Method with Adjoint Problem 1.057 1.071 1.051 

MCMC using Metropolis-Hastings 0.486 0.346 0.359 

 

 

  

a. Initial guess G
0
 = 0.96. b. Initial guess G

0
 = 5.72. 

Figure 3 – Estimation of the source term with a constant functional form and constant  

standard-deviation σ=0.016.  
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a. Initial guess G
0
 = 0.96. b. Initial guess G

0
 = 5.72. 

Figure 4 – Estimation of the source term with a step variation and constant  

standard-deviation σ=0.016. 

 

 

 

a. Initial guess G
0
 = 0.96. b. Initial guess G

0
 = 5.72. 

Figure 5 – Estimation of the source term with a triangular variation and constant 

standard-deviation σ=0.016. 
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a. Initial guess G
0
 = 0.96. b. Initial guess G

0
 = 5.72. 

Figure 6 – Estimation of the source term with a constant functional form and constant  

standard-deviation σ=0.032. 

 

  

a. Initial guess G
0
 = 0.96. b. Initial guess G

0
 = 5.72. 

Figure 7 – Estimation of the source term with a step variation and constant  

standard-deviation σ=0.032. 
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a. Initial guess G
0
 = 0.96. b. Initial guess G

0
 = 5.72. 

Figure 8 – Estimation of the source term with a triangular variation and constant 

standard-deviation σ=0.032. 

 

Acknowledgements 

This work was supported by the following agencies of the Brazilian and Rio de Janeiro state 

governments: CNPq, CAPES and FAPERJ, as well as by the Brazilian Navy. 

6. CONCLUSIONS 

 In this paper, two different approaches were examined for the solution of an inverse 

heat conduction problem that involves the estimation of the transient heat source term, located 

inside a known region in a three-dimensional semi-infinite medium, namely: The Conjugate 

Gradient method with Adjoint Problem and the Markov Chain Monte Carlo (MCMC) method 

within the Bayesian framework, by using the Metropolis-Hastings algorithm. These two 

methods were compared for constant and transient source terms with functional forms 

containing sharp corners and discontinuities. Simulated temperature measurements were used 

in the inverse analysis. 

 The Conjugate Gradient method with Adjoint Problem was capable of providing accu-

rate and stable estimates for the imposed source term, with quite low computational costs, for 

all cases examined. On the other hand, the computational costs associated with the MCMC 

method were substantially larger than those for the conjugate gradient method. Although the 

accuracy of the conjugate gradient method was substantially affected for initial guesses far 

from the exact values of the sought function, the accuracy of the MCMC method was not af-

fected by the initial guess.  Indeed, the accuracy of the solutions obtained with the MCMC 

method were equivalent for all cases examined, independent of the initial guess and the simu-
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lated noise. Anyhow, both techniques resulted in stable solutions, being quite robust in terms 

of coping with the ill-posed character of the inverse problem under analysis in this paper. 
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