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Abstract. Within the range of validity of the small strain theory, the strain is additively de-
composed in an elastic or reversible strain and an inelastic or irreversible strain. The inelas-
tic strain consists of a plastic component quickly developed under loading, and a viscous or
creep component that develops slowly under loading. Most frequently, both components are
assumed to develop simultaneously following a unique flow rule for the whole inelastic strain
according to the Bingham-Norton rheological model, which neglects creep recovery. Under
experimental evidence of considerable creep recovery, instantaneous plastic strain and slow
creep evolve according their own flow rules. Unlike the case Bingham-Norton models are
used, it is no longer possible to define a trial stress state from which it can be determined
whether the plastic strain has increased or not under a given load increment. We introduce
a new “non-plastic” trial state, which differs from the classical elastic trial state (Simo and
Hughes, Computational Inelasticity, Springer-Verlag, 1998) since creep increment is now al-
lowed. In order to explicit the “non-plastic” trial state, the creep flow rule, generally non-
linear, is solved. From the “non-plastic” trial state, two alternatives can be derived: (i) no
plastic increment has been produced (in such a case, the trial state is actually the solution);
(ii) there must be plastic increment, and therefore the stress cannot exceed the yield stress. In
the last case, the creep flow rule is supplemented by the plastic consistency condition, giving
rise to a system of non-linear scalar equations, to be solved for determining the actual plastic
and creep increment under the given load.
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1. INTRODUCTION

Most of combined creep and plasticity models are based on the Bingham-Norton rhe-
ological model [1]. This model embodies creep and plasticity strain in the so-called visco-
plastic strain, which constitutes the whole irreversible or inelastic part of the total strain. The
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Bingham-Norton models succeed to represent the behavior of most metals at high temper-
ature, and it was widely used in the author’s previous work [2, 3, 4, 5] for modeling steel
casting processes.

However, the Bingham-Norton models neglect creep recovery, and hence they do not
represent satisfactorily the behavior of certain materials, including those used in nuclear fuel
rods we are currently interested in. Then, in such cases, a model that distinguishes creep and
plasticity strains, each one having its own flow rule, must be used.

To this end, we develop a three-dimensional generalization of the one-dimensional
flow rules proposed by Soba and Denis [6] to characterize the behavior of the materials used
in fuel rods in nuclear power plants in Argentina. Finally, a specialized return-mapping algo-
rithm to deal with separated creep and plasticity is proposed.

2. CONSTITUTIVE MODELING

Assuming the validity of the small strain theory, the total strain tensor ε can be addi-
tively decomposed as

ε = εel + εin (1)

where εel is the elastic (reversible) strain tensor and εin is the inelastic (irreversible) strain
tensor.

Moreover, the inelastic strain is decomposed in the plastic (instantaneous) strain εpl

and the creep strain εcr, i.e.
εin = εpl + εcr (2)

Once the strain components are determined, the stress tensor σ can be computed using
the Hooke’s law:

σ = 2µ dev(εel − ε0) + κ tr(εel − ε0)I (3)

where µ is the material shear modulus, κ is the material bulk modulus, ε0 is the initial strain
tensor, I is the second-rank identity tensor, dev(∗) and tr(∗) denote the deviator and the trace
of tensor (∗). Let us note that the first term of the r.h.s. of equation (3) defines the deviatoric
stress s = dev(σ), while the second term defines the hydrostatic stress.

Regarding the initial strain ε0, it is composed of the thermally-induced strain εth

as usual but also of contributions that are specific to the materials being modeled, like the
swelling strain εsw and the densification strain εd in the the pellet and the irradiation-growth
strain εig in the cladding of nuclear fuel rods. Let us remark that ε0 is not generally isotropic:
while εth is usually assumed isotropic, Soba and Denis [6] assume that εsw and εd are also
isotropic but εig is not.

2.1. Evolution of plastic strain

As aforementioned, the plastic and creep components of strain evolve according their
own flow rules.

First, plastic strain is assumed to evolve whenever the Von-Mises yield criterion f = 0

is met, where
f = σeq − σY −R (4)



where σeq =
√
3/2∥s∥ is the Von-Mises equivalent stress, and σY + R is the instantaneous

yield stress, i.e., the initial yield stress σY plus R from isotropic hardening. We assume R =

R(εpl
eq), where εpl

eq is the plastic strain accumulated up to time t:

εpl
eq =

√
2/3

∫ t

0

∥ε̇pl∥dτ (5)

Then, the evolution of plastic strain is assumed to obey the normality rule:

ε̇pl = λn (6)

where n = s/∥s∥ and λ is the plastic consistency parameter that satisfies the Kuhn-Tucker
conditions:

λ ≥ 0, f ≤ 0, λḟ = 0 (7)

2.2. Evolution of creep

In general, creep flow is not longer deviatoric as defined by the normality rule since
it must account for the volume change induced by phenomena like densification in the pellet
[7]. Therefore, a general flow rule for the materials used in nuclear fuel rods could be written
as follows:

ε̇cr =
√

3/2 ε̇cr
eqn+

V̇

3
I (8)

where V̇ is the rate of volume change, and εcr
eq is defined as

εcr
eq =

√
2/3

∫ t

0

∥ dev(ε̇cr)∥dτ (9)

From now on, V̇ will be considered as a given parameter, which can be computed in
terms of the evolution of porosity as proposed by Soba and Denis [6].

2.2.1 Creep in nuclear fuel rod materials

Let us consider the nuclear fuel rod studied by Soba and Denis [6], which is typically
used in nuclear plants in Argentina, consisting of a U2O pellet inside a Zircaloy-4 cladding.

The one-dimensional evolution of the creep strain εcr in U2O depends on the stress σ
and the (absolute) temperature T according to the law:

ε̇cr =

[
a1 + a2ḟ

(a3 +D)g2
exp

−Q1

RT
+ a7ḟ exp

Q3

RT

]
σ +

(
a1 + a8ḟ

a6 +D
exp

Q2

RT

)
σ4.5 (10)

where ai is a material constant, Qi is an activation anergy, R is the gas constant, ḟ is the
fission rate, g is the grain size and D is the percent of theoretical density.

On the other hand, the creep rate in Zircaloy-4 is assumed to depend not only on σ and
T but also on the instantaneous creep. This is described by the one-dimensional law:

ε̇cr =
1

εcr

{
2kϕ exp

−Q4

RT
[σ + b exp (cσ)]

}2

(11)



where k, b, c are constant, Q4 is an activation anergy and ϕ is the neutron flux.
Observing equations (10) and (11), the one-dimensional evolution law for creep in

both materials can be expressed generically as

ε̇cr = g(σ, εcr) (12)

being g a generally non-linear function of σ and εcr.
In order to generalize this law to three-dimensional applications, σ and εcr are assimi-

lated to σeq and εcr
eq, respectively.

3. RETURN MAPPING FOR SEPARATED PLASTICITY AND CREEP

Let us assume that we know εcr, εcr
eq, εpl and εpl

eq at time t0. At time t = t0 +∆t, once
the total strain ε is known, their components are updated using the implicit Backward-Euler
time stepping scheme:

εpl = εpl
0 + λn∆t (13)

εpl
eq = εpl

eq0
+
√
2/3λ∆t (14)

εcr = εcr
0 +

√
3/2g(σeq, ε

cr
eq)n∆t+

V̇

3
I∆t (15)

εcr
eq = εcr

eq0
+ g(σeq, ε

cr
eq)∆t (16)

where (∗)0 denotes the variable (∗) evaluated at time t0, while the lack of subindex implies
that the variable is evaluated at current time t.

As aforementioned, V̇ will be considered as a given parameter. Therefore, the stress
state at time t is completely determined by the deviatoric stress

s = 2µ dev(ε− εin − ε0) (17)

Now, let us define the “non-plastic” trial state by assuming no increment of the plas-
tic strain in the time step [t0, t], i.e., εpl = εpl

0 and εpl
eq = εpl

eq0
. Let εcr,np and εcr,np

eq be the
corresponding values of εcr and εcr

eq. The “non-plastic” trial state is then determined by the
deviatoric stress

snp = 2µ dev(ε− εpl
0 − εcr,np − ε0) = sel −

√
6µg(σnp

eq , ε
cr,np
eq )n∆t (18)

where σnp
eq =

√
3/2∥snp∥ (making above equation non-linear for snp), and

sel = 2µ dev(ε− εpl
0 − εcr

0 − ε0) (19)

defines the “elastic” trial state, that obtained assuming no inelastic (plastic and creep) incre-
ment during [t0, t], which coincides with the classical definition of Simo and Hughes [8] for
unified creep and plasticity. Since all the strains involved in equation (19) are known at this
stage, sel can be easily computed.

Let us remark that s, snp and sel are co-linear, i.e.:

s

∥s∥
=

snp

∥snp∥
=

sel

∥sel∥
= n (20)



Using this property, the tensor equation (18) reduces to the scalar equation

σnp
eq = σel

eq − 3µ(εcr,np
eq − εcr

eq0
) ≡ σnp

eq (ε
cr,np
eq ) (21)

with σel
eq =

√
3/2∥sel∥ (already known).

If we replace σnp
eq as defined by equation (21) into the discrete creep flow rule given

by equation (16), the following non-linear scalar equation with εcr,np
eq as unique unknown is

obtained:
F1(ε

cr,np
eq ) = εcr,np

eq − εcr
eq0

− g
(
σnp

eq (ε
cr,np
eq ), εcr,np

eq

)
∆t = 0 (22)

In general, this equation has not a closed analytical solution. We solve it using the secant or
regula-falsi method [9], which has proved to be efficient.

Once εcr,np
eq is determined, and so is σnp

eq , we evaluate the yield function for the “non-
plastic” trial state:

f np ≡ f(σnp
eq , ε

pl
eq0

) = σnp
eq − σY −R(εpl

eq0
) (23)

If we assume R to be a non-decreasing function of εpl
eq (i.e., material softening is not

allowed), it can be easily derived that
f ≤ f np (24)

Then, regarding the sign of f np, two different situations can be inferred:

1. If f np < 0, then f < 0 and hence no plastic increment takes place during the step [t0, t].
In such a case, the “non-plastic” trial state is actually the real state.

2. If f np ≥ 0, then f = 0 and
σeq = σY +R(εpl

eq) (25)

Now, the equation (17) defining the stress deviator can be rewritten as follows:

s = sel − 2µλn∆t−
√
6g(σnp

eq , ε
cr,np
eq )n∆t (26)

Since s, sel and n are co-linear, the above tensor equation reduces to the scalar equation:

σeq = σel
eq − 3µ(εpl

eq − εpl
eq0

)− 3µ(εcr
eq − εcr

eq0
) (27)

Equating equations (25) and (27), we obtain

εcr
eq =

1

3µ

[
σel

eq − σY −R(εpl
eq)
]
− εpl

eq + εcr
eq0

+ εpl
eq0

≡ εcr
eq(ε

pl
eq) (28)

If we replace this relationship between εcr
eq and εpl

eq into the discrete creep flow rule given
by equation (16), the following non-linear scalar equation with εpl

eq as unique unknown
is obtained:

F2(ε
pl
eq) = εcr

eq(ε
pl
eq)− εcr

eq0
− g

(
σY +R(εpl

eq), ε
cr
eq(ε

pl
eq)
)
∆t = 0 (29)

As before, this equation can be solved using a secant method.



3.1. Consistent tangent moduli

The tangent moduli is defined as

∂σij

∂εkl
=

∂sij
∂εkl

+ κδijδkl (30)

Contributions from V̇ , if any, are not considered here. Then, it remains to compute

∂sij
∂εkl

= ∥s∥∂nij

∂εkl
+

∂∥s∥
∂εkl

nij (31)

Considering n = sel/∥sel∥, we have

∂nij

∂εkl
=

1

∥sel∥
∂sel

ij

∂εkl
− nij

∥sel∥
∂∥sel∥
∂εkl

(32)

With sel defined by equation (19), its derivative is

∂sel
ij

∂εkl
= 2µ

[
1

2
(δikδjl + δilδjk)−

1

3
δijδkl

]
≡ 2µIdev

ijkl (33)

and then
∂∥sel∥
∂εkl

= nij

∂sel
ij

∂εkl
= 2µnkl (34)

Finally, equation (32) becomes explicitely

∂nij

∂εkl
=

2µ

∥sel∥
(
Idev
ijkl − nijnkl

)
(35)

On the other hand, when differentiating ∥s∥, distinction must be made based on the
yield criterion, as detailed below.

1. For f < 0, we have ∥s∥ ≡ ∥snp∥ and then, taking derivatives in equation (21), we have

∂∥s∥
∂εkl

=
∂∥sel∥
∂εkl

−
√
6µ

∂εcr
eq

∂εkl
(36)

Invoking the discrete creep flow rule, equation (16), we have

∂εcr
eq

∂εkl
=
√

3/2
∂g

∂σeq

∂∥s∥
∂εkl

∆t+
∂g

∂εcr
eq

∂εcr
eq

∂εkl
∆t (37)

By replacing equation (36) into equation (37), we obtain

∂εcr
eq

∂εkl
=

1−Θcr

√
6µ

∂∥sel∥
∂εkl

=
√
2/3(1−Θcr)nkl (38)

with

Θcr = 1− ∂g

∂σeq

(
∂g

∂σeq
− 1

3µ

∂g

∂εcr
eq
+

1

3µ∆t

)−1

(39)

Finally, the derivative of ∥s∥ can be computed as

∂∥s∥
∂εkl

= 2µΘcrnkl (40)



2. If f = 0, then σeq ≡ σY +R, so that

∂∥s∥
∂εkl

=
√
2/3R′∂ε

pl
eq

∂εkl
(41)

where R′ = dR/dεpl
eq.

By differentiating the discrete creep flow rule given as a function of εpl
eq by given equa-

tion (28), we obtain

∂εcr
eq

∂εkl
=

1√
6µ

∂∥sel∥
∂εkl

−
(
1 +

R′

3µ

)
∂εpl

eq

∂εkl
(42)

Alternatively, this derivative can be computed by differentiating the discrete creep flow
rule as given by equation (16):

∂εcr
eq

∂εkl
=

∂g

∂εcr
eq

∂εcr
eq

∂εkl
∆t+

∂g

∂σeq
R′∂ε

pl
eq

∂εkl
(43)

After equating equations (42) and (43), we obtain

∂εpl
eq

∂εkl
=
√

3/2
1

R′Θ
pl+cr∂∥sel∥

∂εkl
=

√
6
µ

R′Θ
pl+crnkl (44)

with

Θpl+cr =
R′

3µ

[
1 +

R′

3µ
+

∂g

∂σeq
R′
(

1

∆t
− ∂g

∂εcr
eq

)−1
]−1

(45)

Finally, the derivative of ∥s∥ can be computed as

∂∥s∥
∂εkl

= 2µΘpl+crnkl (46)

3.1.1 General expression of the tangent moduli

Introducing the derivative of n given by equation (35) together with the derivative of
∥s∥ given either by equation (40) for f < 0 or equation (46) for f = 0 into equation (31), and
this one into equation (47), the tangent moduli can be expressed as

∂σij

∂εkl
= 2µ

∥s∥
∥sel∥

Idev
ijkl − 2µΘnijnkl + κδijδkl (47)

where

Θ =

{
Θcr (equation (39)) if f < 0
Θpl+cr (equation (45)) if f = 0

(48)



Table 1. Mechanical parameters of Zircaloy-4.
Material constants k = 5.12× 10−29

b = 725.2
c = 4.967× 10−8

Activation energy Q4 = 10000 J/mol
Neutron flux ϕ = 5× 1015 neutrons/(m2s)
Shear modulus µ = 8.840× 104(1− 1.0915× 10−4T )

(µ in MPa, T in K)
Bulk modulus κ = 2.161× 105(1− 1.0915× 10−4T )

(κ in MPa, T in K)
Initial yield stress σY = 200 MPa

4. APPLICATION

Let us consider a bar of Zircaloy-4 with length L = 1 m, which suffers a total extension
d = 0.05L that is applied using different extension rates. Any other source of deformation is
neglected, i.e. ε0 = 0 and V̇ = 0.

Material properties, listed in Table 1, are those used by FRAPCON-3 [7], a widely
used code for the thermo-mechanical analysis of nuclear fuel rods.

Four decreasing strain rates are considered, such that the extension of the bar is fully
developed in one hour (ε̇ = 2.78 × 10−4/s), one day (ε̇ = 1.16 × 10−5/s), one week (ε̇ =

1.65× 10−6/s) or one month (ε̇ = 3.86× 10−7/s). These strain rates are representative of the
whole range of strain rates expected along the life cycle of a nuclear fuel rod.

Figure 1 on the left depicts the creep vs. total strain at ambient temperature (300 K),
where it is apparent that the maximum creep –corresponding to the minimum strain rate– is
one-order smaller than the total strain. As a consequence, as shown on the right of Figure 1,
the influence of creep on the stress at ambient temperature will be negligible all along the life
cycle of Zircaloy-4 when it is used to make the cladding of a nuclear fuel rod .
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Figure 1. Creep strain and stress vs. total strain in an extended bar of Zircaloy-4 at ambient
temperature (300K), for different extension rates.

On the contrary, at high temperature (1000K), creep strain constitutes an important
fraction of the total strain, increasing for decreasing strain rates up to about 100% for the



smaller rate (1/month), as shown on the left of Figure 2, with important consequences on the
stress, as shown on the right of Figure 2.
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Figure 2. Creep strain and stress vs. total strain in an extended bar of Zircaloy-4 at high
temperature (1000K), for different extension rates.

5. CONCLUSIONS

We developed a return mapping algorithm addressed to integrate the evolution of creep
and plasticity when they evolve separately. The algorithm is especially devoted to represent
the behavior of materials used in nuclear fuel rods.

An application to Zircaloy-4 –used for the cladding of the rods– is discussed, with the
aim of determining the influence of creep on the material behavior under temperatures and
strain rates that are considered representative of those encountered during the life cycle of a
nuclear fuel rod.

The model predicts –in agreement with experimental evidence– that creep has a neg-
ligible influence at ambient temperature, independently of the strain rate. The effect of creep
increases as the temperature increases and the strain rate decreases. At a temperature of
1000K, a considerable influence of creep is predicted after a relatively short period of time.
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