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Abstract. Taking the Bolle - Reissner theory as a starting point, we have derived a system of 

differential equations of a general character which are applicable to the calculation of plates 

regardless of their thickness, freeing us from the thin/thick plate dilemma. It has the added 

advantages of not presenting any numerical instability problems when the calculation is ap-

proached through finite differences and of being able to benefit from the range of solutions 

and methodology at present being developed for thin plates if the resolution is attempted ana-

lytically. 
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1. INTRODUCTION 

On analyzing the current trend in plate study, it can be observed how out of seven pa-

pers on theoretical aspects of the analysis included by Voyiadjis & Karamanllidis in "Advan-

ces in the Theory of Plates and Shells [8], four of them make a direct reference to thick plates, 

taking into account in them in one way or another the bases sustaining the theories originated 

by the contributions of  Reissner (1945) [5], Bolle (1947) [2], Mindlin (1951) and Vlasov 

(1957) among others. To enlarge upon this, without wishing to give it a character of exclusi-

veness and if only for the wide diffusion and length of the work, if we analyze the text of Zi-

enkiewicz and Taylor on "Finite Element Method" [9] it can be seen how, starting from what 

could be considered as the third edition (1980) up to the fourth (CIMME, 1994), the treatment 

of plate calculation has considerably changed, not only regarding the methodology and didac-

tics of thin plate stresses but also with respect to the connection between thick-thin formulati-

ons as well as the inclusion of the numerous recent experiments carried out in thick plates [9].  
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However, the methodology followed to solve the problems of plates differs according 

to whether a study of thin or thick plates is being made. As is well known, the flexure of thin 

plates is governed by the biharmonic equation [7]: 
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assuming the hypothesis of Kirchoff . In 1945 Reissner [5] proposed a correction to 

the previous equation obtained by variational calculation and valid for thick plates, which 

was:  
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and obviously coincided with the first equation when h (thickness) was small enough. 

Parallelly in 1947, Bolle [2] following a totally different theory, it was assumed that the nor-

mal to the middle surface of the plate at that point was separated from the displacement w in 

accordance with the coordinate axes at that point the following two equations were arrived at, 

also valid for thick plates:  
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x and y are the normal rotations mentioned previously. 

Although, if we follow a chronological order, the names of Mindlin & Vlasov, among 

others, should be mentioned, a recent proposal for the calculation of thick plates is owed to 

Rekach [6]. In this theory, the problem is resolved by means of the following system of diffe-

rential equations: 
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and the consequent contour conditions of the plate. 

Therefore, in this work we shall demonstrate: 1) our contribution to a more adequate 

theory; 2) that the second equation of Bolle (4) is unsuitable because that parameter is nil; 3) 

that the aforementioned system can be expressed more simply and that it can be transformed 

for its treatment by finite differences since it supplies erroneous; and 4) that the transformed 

equation system proposed is: 
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provides the correct solution both in the case of thin and thick plates and also, when 

the necessary corrections are made to it with the inclusion of nonlinear terms, it permits the 

study of plates with large flexures (nonlinear calculation).   

Finally, we should like to emphasize the usefulness of Von Karman´s equation (origi-

nally conceived for thin plates) for any type of plate being studied and that it would be valid 

to transfer the methodology followed to the study of shells this being the subject of a future 

article. 

2. THE BOLLE - REISSNER PLATE THEORY  

 In this theory, which is valid for thick plates, the displacements from one point of 

the plate are given by:
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Figure 1.Coodinate System and Sign Criteria. 

in which it should be pointed out that although in linear calculation uo and vo (displa-

cements according to two axes from points on the middle plane of the plate) are nil, we have 



 

 

an interest in including them in order to obtain general equations for nonlinear calculation 

inclusive. 

Similarly, according to the current state of opinion, that there is a parabolic distributi-

on, throughout the thickness, of the tangential stresses. 
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The strains are: 
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xo, yo, xyo being the deformations corresponding to the points on the middle plane; the stres-

ses are given by: 
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After integrating all along the thickness, we obtain: 
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Figure 2: Plate element. Thin plates  

3. EQUATIONS OF EQUILIBRIUM OF THE PLATE ELEMENT IN ITS DEFOR-

MED CONFIGURATION 

Although, traditionally, the establishment of equilibrium equations has been realized 

in the initial non-deformed configuration, we, however, needed to establish it in deformed 

geometry (bent plate) in order to obtain the relation which permitted us to simplify and gene-

ralize he Bolle equations, which is none than a way to proceed following the methodology 

used in [6]. 

 

Figure 3.Plate element in deformed configuration 
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Let Figures (2) and (3) represent a plate element, on one hand subjected to stresses in 

which we have omitted the operators on the sides not seen for a greater clarity of the figure 

(2), and on the other, the real geometric configuration in which is produced the equilibrium 

corresponding to that which the element adopts once the plate is bent.  

To obtain the necessary equations, it was only necessary to consider the equations of 

Statics in the element:  
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bearing in mind that we go from the QM edge to the PN varying according to the axis x (with 

y = cte) so that, for example: 
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and from the MN edge to the QP with x = cte, so that, for example:  



 

 

                                                  
d N t

N

y
dy t N

t

y
dy

xy x

xy

x xy

x
( )                                 (48) 

that  
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and the values of those derived from the unit vector quantities t
x

,  t
y

, we find that the vector 

equation  
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Proceeding in the same manner, the vector equation  
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gives us: 
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Now if, in the sixth equation, we substitute Mx, My and Mxy for their values shown in 

the previous section, we find it can be transformed in 
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but if we note that:  
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cannot be zero for all the points on the plate, we reach the conclusion that: 
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which demonstrates the unsuitability of Bole’s second equation mentioned in the first para-

graph. 

By substituting the bending moments, twisting moments and shearing forces values in 

the first five equations and omitting the subindex indicative that the displacements correspon-

ding to the points on the middle plane, we find the following differential equation system 

which could be denominated as “more general than that of Bolle - Reissner” and of which that 

already commented is a special case in point 1 (in Reference [6] only for linear calculation): 

    
u v u w w w w w w w w

x
xy

y
x

x
y xy y xy x

y
2 2 2 2

1

2

1

2

1

2

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ''
( ) ( )

         
(61) 

     

1

2

1

2

1

2
2 2 2 2

v u v w w w w w w w w
x

xy
y

y
y

x xy y
x

x xy

'' '' ' ' ' ' ' ' ' ' ' ' ' ' ' '
( ) ( )

        
(62) 

         

w
y x E h

q N
x

N
y

N
x y

x y

x

y

y

x

xy

x y12 1

5

( )
( )              (63) 

                        
y

x y

y
y x y h

w

x

1

2

5 1

2
( )

( )
( )                  (64) 

                      
x

x y

x
x x y h

w

y

1

2

5 1

2
( )

( )
( )                 (67) 

which does not take into account the important condition, given by (60), which is fundamental 

in thin plates. Indeed, in them, as  
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In short, after incorporating this condition, we are left with a first simplified system 

which, by recognizing the reality of the deformation conceptually moves away from the initial 

Bolle hypothesis: 
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4. RESOLUTION AND CONTRASTING OF RESULTS OBTAINED IN LINEAR 

CALCULATION BY THE FINITE DIFFERENCE METHOD 

In the supposition of proceeding to a linear analysis, the first two equations are auto-

matically satisfied with  
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and the other three leave us with: 
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As only first and second derivatives intervene, it was clear that this greatly facilitated 

their programming by the finite differences method. However, and in spite of having incorpo-

rated this important condition (60), it was immediately perceived that phenomena of numeric 

instability appeared for thin plates in which the thick plates are less or equal to a tenth of the 

side (l/10), with the obtaining of results totally removed from reality, whilst for thick plates 

these phenomena disappeared and completely satisfactory results were obtained.  

As a reference, we took a square plate 4 x 4m, 0,30 , E t m2 10
6 2

 

both built-in and supported on its four sides, and for checking results, those provided by the 

Ansys programme of E.F. in which we adopted as an element the 8-node parallelepiped with 

four elements in the thickness and subdivision of 16x16 inplane in order to obtain the behavi-



 

 

our of the plate as a tridimensional solid.  Therefore, for the built-in plate, with thicknesses 

comprised between  
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 the error in the maximum flexure varied between 10% and 1,1%, whilst with the thin plate 

theory errors of between 9% and 51% were found. Conversely, for thicknesses of  
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the thin plate theory error varied from 3 to 9% whereas with the previous equations and D.F. 

the variation range was between 80 and 10%. Analogous results would be observed in the 

case of supported plates and of various situations of loading.  

From then on we were faced with two possibilities: either we had to look for a contri-

vance in order, by taking these equations, to obtain correct solutions for thin plates or we had 

to transform the equations with the same objective in mind. When we followed the first option 

we found that, after the first step, we did resolve the system 
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entering as known values the previous ones in the second members of the equations, we ob-

tained correct values for the solution for all the loading states and thicknesses, thick and thin, 

which we have proven. However, this contrivance which at first seemed to us to be a hopeful 



 

 

solution, had to be rejected for its inefficacy in studies which took into consideration a geo-

metric non linearity. 

5. GENERAL TRANSFORMED EQUATIONS  

Following the path posited by Bolle [2], from the third equation we obtained:  

                             
w

x y E h
q

y x
12

1

5

( )
      (88) 

whilst from the 1st and 2nd we found 

                

x y h x

w

x y

w

y

h E h
q N

x
N

y
N

x

x

y x

y x

x

y

y

x

xy

5 1

5 1 12 1

5
2

2

2

2

2

2

2

( )
( )

( ) ( )
               (89) 

and substituting in the previous equation 
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so that the equation system for the linear case resulted as: 
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which constitutes a system of differential equations of general characteristics for the linear 

study of plates. 

For a case of geometric nonlinearity (large flexures), the expanded system to be consi-

dered is  
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6. ANALYTICAL RESOLUTION OF THE LINEAR CASE 

In view of the structure of the system (91,92,93) in which the biharmonic equation of 

thin plates is included, it is easily deduced that the whole range of solutions developed for the 

study of thin plates is easily transferable for its use in the present context and therefore for 

obtaining general valid solutions independently of the plate thickness values.We shall now 

obtain solutions for the case of supported and fitted rectangular plates. 

Indeed, consider a simply supported rectangular plate with a sinusoidal loading   
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Figure 4. Plate Dimensions 

It is confirmed that all the boundary conditions are fulfilled if the displacements w are 

expressed by 

                                          
w c

x

a

y

b
sen sen       (100) 

After deriving and substituting in (93) we find 
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where the second summing is of little relative importance compared to the first when it is a 

thin plate. Hence, it constitutes a correction to the solution obtained for this type of plate and 

it is clear that it acquires some relevance as thickness h increases. In the same way, if for x 

and y we adopt  

                                                
x

c
x

a

y

b
1

sen cos                (102) 



 

 

                                              
y

c
x

a

y

b
2

cos sen       (103) 

and substitute in (91) and (92) 
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we determine c1 and c2 and thus, after substitution in the general expressions, we obtain 
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which are merely corrections of the expressions found in the literature which have been deri-

ved for the particular case of thin plates. If the sinusoidal load is given by                  
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where m and n are integral numbers, we proceed as before and for the constant c we obtain 
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The case of any loads, for plates with these support conditions, is approached follo-

wing the methodology in the reference literature, merely assuming the load to be in the follo-

wing form 
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in which case the solution for each of the terms is that which we have just explained. For the 

particular case of the uniform load, the solution is given by 
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It is therefore clear that the resolution, by means of these general equations, of other 

cases of plates and boundary and load conditions, is simply an exercise in revising known 

methodologies, expressions and ways of proceeding which thus lead us to general valid ex-

pressions for every thickness. 



 

 

7. FINAL OBSERVATION 

Following the reasoning in the previous point, and since the biharmonic equation                                                                         

of thin plates is included in the general system (91,92,93), it would seem logical to assume 

that the numerical instability problems have been solved. Indeed, we can affirm with satisfac-

tion that for all the cases tested, with different types of dimensions, thicknesses and loading 

and contour conditions, the solutions found have been completely satisfactory, including the 

determination of buckling loads in plates and geometric nonlinearity studies (large flexures). 

The solution to which we refer as an example is that which appears in Graph 1 indicated by  

sings. 

With regard to geometric nonlinearity studies more can be said. Taking into account that 
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it could be thought that by including nonlinear terms, as has been proposed by some authors 

[6], solely the use of the three last equations we could solve the problem. i.e. we could main-

tain it in a nonlinear calculation u v x0 , y . The solution found in this case is that which is 

included in the graph and indicated y dotted lines. It is evident that when we entered the field 

of large displacements u 0  and v 0  it is logical to expect, and this will be next revealed 

when the solution proposed by the system (94-98) once again shows the helpfulness of the 

theory proposed. 

Characteristics: plate built-in on four sides 

     dimensions: 4 4 0,25m , E
T

m
2 10

6
2 , 0 , D 2604 17,  

 

Figure 5.Solution Brebia & Connor 1969 

Solution with 5 equations R-B D.F mesh 17 17 in a quarter of the plate. 

Solution with 3 equations R-B (u = v = 0) D.F. mesh 17 17 in a quarter of the plate.  



 

 

8. CONCLUSIONS 

 The most important conclusions, and those which have been revealed in the cour-

se of the work are: 

1) That the system directly derived from the Bolle - Reisner theory is only applicable 

to the calculation of thick plates and that one of the equations originally proposed by Bolle - 

Reisner is unsuitable. 

2) That on proposing the equilibrium of the plate element in its deformed geometry, 

we have found a simplified and transformed system of 5 nonlinear differential equations (for 

linear studies these reduce to 3) which was valid to obtain general solutions in plate study, 

meaning that from there on it was possible to dispense with the classification of thick or thin 

plates. 

3) The whole range of solutions being developed at present for thin plates is immedia-

tely transferable for use in the present context and, therefore, for obtaining general solutions 

in plate study. 
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