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Abstract. A numerical investigation is carried out in this work in order to evaluate the com-
putational performance of a numerical model based on isogeometric analysis for applications 
on geometrically nonlinear elastodynamics. In the FEM (finite element method) practice, it is 
well known that the Newmark’s method is unconditionally stable for linear structural systems, 
but this characteristic is frequently lost when problems with nonlinear behavior are analyzed. 
Since numerical instability is induced owing to the lack of energy balance within every time 
step of the time integration process, numerical schemes with energy-conserving and control-
lable numerical dissipation properties are usually adopted to stabilize the time integration 
procedure. Therefore, the main objective of the present work is to determine if isogeometric 
analysis can handle dynamic problems more efficiently and more accurately than finite ele-
ment models, especially for applications where the nonlinear response presents some draw-
backs. In this sense, geometrically nonlinear dynamic problems are analyzed employing an 
isogeometric model based on NURBS (non-uniform rational B-splines), which is obtained 
considering the Bubnov-Galerkin weighted residual method. The kinematical description is 
performed using the corotational approach formulated in the context of isogeometric analysis 
and a transformation matrix given by the classical polar decomposition. The constitutive 
equation is written in terms of corotational variables according to the hypoelastic theory, 
where the small strain hypothesis is adopted. Large displacements and large rotations are 
also considered in the present scheme. Some numerical examples are analyzed to determine 
the behavior of the present formulation for nonlinear dynamic problems. 

Keywords: Isogeometric Analysis, NURBS, Elastodynamics, Corotational Formulation. 
 
 
1. INTRODUCTION 

Isogeometric analysis is dedicated to unifying numerical techniques adopted in geo-
metrical design and analysis, which is accomplished by using a single parameterization 
framework where the same basis functions are utilized in both procedures. Geometrical de-
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sign and analysis have been performed independently with pre-processing programs based on 
computer aided design (CAD) technologies and numerical solvers based on the finite element 
method (FEM). However, it is frequently observed that the finite element model obtained af-
ter mesh generation does not match the geometric shape of complex models reproduced with 
CAD tools, since insufficient approximations may be utilized depending on the basis func-
tions adopted in the finite element formulation. In order to eliminate this drawback, iso-
geometric analysis was proposed, where B-splines and NURBS, which are employed in CAD 
to build the geometric models, are also adopted to approximate the solution field. The basic 
concepts on isogeometric analysis were introduced by Hughes et al. [18] and many investiga-
tions have been performed in order to extend the applicability of the proposed formulation to 
different fields of computational applied mechanics (see, for instance, Bazilevs et al. [3]; Ben-
son et al. [5]; Kiendl et al. [20]). In the field of elastodynamics, the development of numerical 
algorithms to simulate the dynamic response of linear and nonlinear elastic bodies is a major 
topic. Traditional time-stepping schemes, which present excellent stability properties in the 
linear range, are frequently subjected to numerical instabilities when they are applied to 
nonlinear problems using numerical models based on the FEM. In this sense, investigations 
on elastodynamics using isogeometric analysis must be performed in order to study aspects 
related to numerical stability in the time integration process. 

Finite element analysis based on CAD formulation is referred to as isogeometric anal-
ysis, where finite element procedures are integrated with CAD numerical techniques such as 
B-splines and NURBS parameterizations. B-splines may be seen as a generalization of the 
Bézier formulation (Bézier [6], [7], [8]), with basis functions presenting minimal support with 
respect to degree, smoothness and domain partition. On the other hand, NURBS utilizes 
weighting of the control points to obtain rational geometries. Geometrical entities are then 
represented using rational polynomials, where conic sections such as circles and ellipses are 
exactly constructed taking into account projective transformations of piecewise quadratic 
curves. NURBS objects are also able to be refined by inserting knots into the knot vector, 
considering that a sequence of parametric values are specified in order to define the influence 
of the control points over the geometrical entity. Moreover, they possess Cp-k continuity for 
basis functions of degree p and knot multiplicity k, variation diminishing and convex hull 
properties. Another important aspect related to isogeometric analysis is the isoparametric con-
cept, since the solution space is represented with the same basis functions utilized to represent 
the geometry. Additional information about B-splines and NURBS parameterizations are ob-
tained in Piegl and Tiller [26] and a comprehensive work on isogeometric analysis may be 
found in Cotrell et al. [11]. 

The dynamic equilibrium equation can be discretized in the time domain using implicit 
or explicit algorithms. The main advantages of explicit methods are related to the economy of 
computational memory and short processing times observed in each time step of the numeri-
cal analysis, which are specially noticed in nonlinear problems. However, the time steps 
adopted by explicit methods are strongly limited owing to stability restrictions imposed by the 
speed of propagation of the elastic wave in solid media, which is much higher than that ob-
served in fluids, for example. On the other hand, implicit methods such as the Newmark 



 
 

method are unconditionally stable and the time steps are usually determined considering low-
er frequencies of the energy spectrum. 

It is well known that the Newmark method is unconditionally stable only for linear 
systems. This unconditional stability is frequently lost when the method is applied to nonlin-
ear problems, since numerical oscillations may arise owing to the lack of energy conservation 
and dissipation properties of the numerical algorithm. Stabilization schemes based on numeri-
cal dissipation have been adopted since the work presented by Newmark [24], where some 
dissipation was introduced to control higher vibration modes in the linear range by employing 
a user parameter instead of the time step. Other algorithms based on numerical dissipation 
were proposed, such as the the Hilber-α method (Hilber et al. [16]) and the Bossak-α method 
(Wood et al. [30]), where unconditional stability, second order precision and numerical dissi-
pation of higher modes are observed. Chung and Hulbert [10] presented the generalized-α 
method in order to obtain a numerical model with second order accuracy where minimal dis-
sipation is observed for lower modes and maximal dissipation is verified for higher modes 
when linear applications are analyzed. Unfortunately, energy conservation properties of the 
dynamic system are not verified. 

One of the first authors to analyze numerical instabilities in time integration proce-
dures for nonlinear dynamics is due to Hughes et al. [17], where the trapezoidal rule intro-
duced by Newmark [24] is extended by using the Lagrange multiplier method to enforce en-
ergy conservation. Optimized parameters for the α methods were obtained by Khul and 
Ramm [22] to extend the formulation to nonlinear problems. The optimized parameters main-
tained an integration process with less numerical dissipation for lower frequencies and more 
dissipation on higher frequencies of the energy spectrum. In addition, the authors proposed an 
algorithmic combination of the internal forces evaluated at the beginning and the end of every 
time step of the time integration process. Khul and Crisfield [21] presented a general model 
where the concepts suggested by Simo and Tarnow [29] are introduced into the framework of 
the generalized-α method (energy conservation is verified algorithmically). Currently, a suffi-
cient condition for numerical stability of time integration schemes is given by energy conser-
vation or reduction during each time interval of the time integration process (see Belytschko 
and Schoeberle [4]; Khul and Crisfield [21]). 

In the present work, a numerical model based on isogeometric analysis is developed 
for applications on nonlinear elastodynamics, which is obtained by extending the formulation 
proposed by Espath et al. [15] for applications on nonlinear elastostatics. The kinematic de-
scription of the continuum is performed using the corotational approach in the context of iso-
geometric analysis. A hypoelastic constitutive model is adopted utilizing corotational stress 
and strain tensors, where the small strain hypothesis and large displacements and rotations are 
considered. The numerical model is obtained by applying the Bubnov-Galerkin weighted re-
sidual method over the Cauchy’s equation of motion and a Newton-Raphson scheme is adopt-
ed for linearization of the residual vector in the nonlinear range. Geometry and solution fields 
are approximated using NURBS basis functions according to the isoparametric concept. The 
generalized-α method is implemented into the isogeometric formulation in order to obtain a 
stable scheme for time integration. The influence of aspects related to the isogeometric discre-



 
 

tization is investigated for numerical applications where numerical instabilities are expected 
when standard finite element models are utilized. 

2. FUNDAMENTAL CONCEPTS ON ISOGEOMETRIC ANALYSIS 

2.1 B-splines and NURBS 

B-splines are piecewise polynomials which are built from a linear combination of ba-
sis functions with local support and controlled continuity. The coefficients of this linear com-
bination are associated with points in space, referred to as control points, and the basis func-
tions are associated with piecewise polynomials with the pieces being joined along the knot 
lines. Unlike finite elements, where each element presents its own parametric space, the pa-
rametric space for B-splines is related to the patch, which is characterized by knots spans de-
fined according to the knot vector. 

A knot vector is composed of a non-decreasing set of coordinates defined in the para-
metric space, which also defines the extension of the patch. The knots split the parameter 
space into knot spans or elements where the basis functions are smooth (C∞), observing that 
element boundaries are represented as points, lines or surfaces in the physical space depend-
ing on the geometric topology associated with the problem analyzed. After the knot coordi-
nates are established, the knot spans are then defined and the extent of control of the control 
points over the geometry is also determined. By changing the knot span lengths, more sample 
points can be used in regions where geometric nonlinearities are identified. If the level of re-
finement is insufficient, the basis may be also refined, considering that the refinement proce-
dure maintains both the geometry and the parameterization unchanged. 

Knots spans are always bounded by two consecutive knots, which constitute the basic 
entities for isogeometric analysis in the same manner as elements are basic entities for finite 
element analysis. When consecutive knots present the same value in the knot vector, knot 
spans of zero length are defined and knot multiplicity is obtained. Knot vectors with repeated 
values implicate reduction of continuity of the corresponding basis functions and knot multi-
plicity, which is limited by the degree of the basis function, when the basis function becomes 
interpolatory. The maximum level of continuity across an element boundary is determined by 
continuity of the basis across the corresponding knot span, since the basis functions are Cp-k 
continuous across these knots. In addition, it is also important to notice that the support of 
each basis function over the knot spans is given by p+1, where p is the polynomial degree. 

Knot vectors are classified as uniform if the knots are equally spaced in the parametric 
space. Otherwise, they are defined as non-uniform. A knot vector is also classified as open if 
the first and last knots appear p+1 times in the knot vector, when basis functions are interpola-
tory at the ends of the parametric space. At interior knots, the basis is not, in general, interpo-
latory, unless repeated knots are considered. The use of open vectors is very common in 
CAD, which also permits that patches can be assembled in isogeometric analysis in the same 
manner as that utilized in the FEM. A one-dimensional knot vector may be written as follows: 

 { }1 2 1, ,..., n pξ ξ ξ + +=ξ  (1) 



 
 

where p is the polynomial degree and n is the number of B-spline basis functions, which is 
also associated with the number of control points. 

The Cox-de Boor recursive formulation (Cox [12]; De Boor [13]) is usually adopted to 
evaluate B-spline basis functions, which are obtained considering a given knot vector ξ de-
fined over the parametric space, the number of control points and the polynomial degree. Ac-
cording to the Cox-de Boor formulation, the B-spline basis functions may be expressed as: 

 1
, , 1 1, 1

1 1
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where p is the polynomial degree, which is valid for p ≥ 1, and i is the knot index. The recur-
sion is performed over the polynomial degree until p = 0 is obtained, when the following 
equation is utilized: 
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Derivatives of the B-spline basis functions with respect to the parametric directions are 
usually required by numerical models based on isogeometric analysis, which are represented 
in terms of B-spline lower order bases owing to the recursive definition of the basis functions 
(see Espath et al. [15]). Algorithms for numerical evaluation of derivatives of B-spline basis 
functions may be found in Piegl and Tiller [26]. 

The most important properties related to B-splines may be summarized as follows: 

1) In the absence of repeated knots or control points, continuous derivatives of order p-1 
are maintained. 

2) The basis functions are non-negative over the entire parametric domain. 

3) The basis functions constitute a partition of unity for open vectors, that is: 

,
1

( ) 1
n
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i

N ξ ξ
=

= ∀∑  

4) The number of continuous derivatives is decreased by k when a knot or a control point 
is repeated k times. 

5) The affine covariance property guarantees that any transformation on a B-spline curve 
is obtained applying the transformation directly to the control points. 

2.2 Representation of geometric entities 

Given a set of n basis functions Ni,p of degree p and the corresponding vector of con-
trol points Pi, a B-spline curve may be obtained as: 
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where the knot vector is specified according to Eq. (1). 



 
 

B-spline surfaces are obtained considering a tensor product of univariate B-spline ba-
sis functions and a two-dimensional net of control points Pi,j, with i ∈ [1,n] and j ∈ [1,m], that 
is: 

 , , ,
1 1

( , ) ( ) ( )
n m

i p j q i j
i j

N Mξ η ξ η
= =

=∑∑S P  (5) 

where Ni,p and Mj,q are B-spline basis functions of degree p and q, respectively, and the corre-
sponding knot vectors are defined by ξ = {ξ1, ξ2,…, ξn+p+1} and η = {η1, η2,…, ηm+q+1}. 

B-spline solids are obtained analogously to B-spline surfaces. Given a three-
dimensional net of control points Pi,j,k, with i ∈ [1,n], j ∈ [1,m] and k ∈ [1,l] and knot vectors 
defined by ξ = {ξ1, ξ2,…, ξn+p+1}, η = {η1, η2,…, ηm+q+1} and ζ = {ζ1, ζ2,…, ζl+r+1}, a B-
spline solid may be expressed by: 
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where p, q and r denote the degree of the basis functions Ni,p, Mj,q and Lk,r, respectively, while 
n, m and l determine the number of control points of the corresponding basis functions. Fol-
lowing the terminology adopted in the finite element practice, the polynomial degrees 0, 1 and 
2, for instance, refer to constant, linear and quadratic polynomial functions. 

Geometrical entities can be also represented using rational polynomials, where conic 
sections such as circles and ellipses are exactly constructed taking into account projective 
transformations of piecewise quadratic curves (see Roberts [28]; Riesenfeld [27]; Patterson 
[25]). A rational function is defined as any function that can be written as the ratio of two 
polynomial functions. Homogeneous coordinates may be utilized to represent rational poly-
nomials in n-dimensional space by using polynomials in n+1-dimensional homogeneous 
space. When the rational concept is applied to non-uniform B-splines, non-uniform rational 
B-splines (NURBS) are obtained, which represent a significant improvement over standard B-
splines, since complex objects cannot be exactly represented using simple polynomials. 

A NURBS curve of degree p may be defined with the following expression: 
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where the control points Pi are obtained through the point mapping w →P P , that is: 
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The rational basis functions for NURBS curves are given by: 
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NURBS surfaces and solids are analogously defined considering that: 
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with the rational basis functions given by: 
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where subscripts have the same meaning as those previously defined. If the weights are speci-
fied with unit values, then p

iR  = Ni,p. Derivatives of NURBS basis functions are evaluated 
here considering the formulation presented by Espath et al. [15], which is based on the nu-
merical algorithms proposed by Piegl and Tiller [26]. 

3. THE COROTATIONAL APPROACH FOR NONLINEAR ISOGEOMETRIC 
ANALYSIS 

Corotational formulations adopted in finite element models are usually defined con-
sidering local coordinate systems positioned at the quadrature points of the elements constitut-
ing the finite element mesh. The same procedure is employed in isogeometric analysis, taking 
into account that the motion at element level is now described in terms of displacements de-
fined at the control points. Assuming that all kinematical variables at the previous configura-
tion tn of the body are known, the displacement field at the end of the current load step can be 
obtained from integration of the strain rate tensor over the time interval defining the present 
load increment [tn, tn+1]. In addition, this integration to obtain the strain increment must be 
performed in the corotational coordinate system, where only the deformational part of the 
incremental displacement field is considered. The strain rate tensor in the corotational system 
is defined as: 
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where defv̂  represents the velocity field associated with the deformation part of the motion in 
the corotational system x̂ . In order to obtain strain increments, some methodology must be 
adopted to integrate the strain tensor over the time interval [tn, tn+1]. According to the mid-
point integration (see Hughes and Winget [19]), the strain increment may be obtained from: 
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where defˆ∆u  is the deformation part of the displacement increment in the corotational system 
and 1 2ˆ n+x  is the intermediate configuration of the body defined in the corotational system, 
which can be determined according to the following expression: 

 ( )1 2 1 2 1 2 1 2 1
1ˆ
2n n n n n n+ + + + += =x R x R x + x  (16) 

where Rn+1/2 is the orthogonal transformation matrix performing rotation from the global sys-
tem to the corotational system defined locally at the intermediate configuration tn+1/2. 

The displacement increment referring to the present time interval [tn, tn+1] can be de-
composed as follows: 

 def rot∆ = ∆ + ∆u u u  (17) 

where ∆udef and ∆urot are, respectively, the deformation and rotation parts of the displacement 
increment defined in the global coordinate system. It is important to notice that the decompo-
sition described in Eq. (17) is locally performed at element level. The deformation displace-
ment increment in the corotational system can be obtained from the following expression: 

 def def
1 2 1ˆ ˆ ˆn n n+ +∆ = ∆ = −u R u x x  (18) 

where the transformation matrix is evaluated at the intermediate configuration tn+1/2 of the 
current time interval [tn, tn+1], since the strain rate tensor must be referred to the body configu-
ration at tn+1/2. Coordinates corresponding to the previous and current configurations of the 
body in the corotational system are obtained with following transformations: 

 1 1 1ˆ ˆ;           n n n n n n+ + += =x R x x R x  (19) 

where Rn and Rn+1 are orthogonal transformation matrices performing rotations from the 
global system to the corotational system defined locally at tn and tn+1, respectively. 

A hypoelastic constitutive formulation is very effective for corotational descriptions, 
since the nonlinear problem can be posed in rate form by considering the small strain hy-
pothesis and an objective rate of the Cauchy stress tensor. Consequently, after determining the 
strain increment in the corotational system, strain and stress updates can be performed with 
the following equations: 
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where n and n+1 denote the previous and current configurations in the corotational system, 
respectively. In order to obtain an incrementally objective constitutive formulation, the 
Truesdell rate tensor is adopted in this work, which may be described as follows: 

 Tˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
TR

tr∇ = − − +L Lσ σ σ σ σ ε  (21) 



 
 

where ˆ ˆ ˆ= +L ε ω  is the spatial velocity gradient tensor defined in the corotational system. The 
corotational spin tensor ω̂  must be also integrated over the time interval [tn, tn+1] considering 
the same mid-point rule adopted in Eq. (15). 

In the present work, a classical polar decomposition is utilized to obtain the orthogonal 
transformation matrix R, where spectral decomposition of the right Cauchy-Green deforma-
tion tensor C is adopted to obtain the right stretch tensor U. The right Cauchy-Green deforma-
tion tensor is defined as function of the deformation gradient tensor F as follows: 

 T=C F .F  (22) 

where the polar decomposition theorem F = Q.U is invoked in order to obtain the relation 
between C and U, that is: 

 T T 2= =C U .Q .Q.U U  (23) 

By using spectral decomposition of C, the following expression is obtained: 

 2 2
i i iλ= ⊗ =C N N U  (24) 

where λi and Ni are, respectively, the eigenvalues and the eigenvectors of C. Consequently, 
the rotation tensor Q can be evaluated from: 

 ( )1 1
i i iλ− −= = ⊗Q F.U F. N N  (25) 

The transformation matrix utilized in the corotational formulation is obtained consid-
ering that R = QT. 

4. THE NUMERICAL MODEL 

Problems on elastodynamics may be formulated considering the Cauchy’s equation of 
motion, where mass and energy conservation must be also enforced over the volume enclos-
ing the body (see Malvern [23]). Considering a classical Lagrangian kinematical description 
in the Cartesian coordinate system and in the absence of temperature changes, the conserva-
tion equations are reduced to the following expressions: 
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where X and x are vectors containing components of the material (Xi) and spatial (xi) coordi-
nates in the Cartesian coordinate system, respectively, t represents time, ρ is the specific 
mass, ∇ is the differential operator, b is the body force vector, σ contains components of the 
Cauchy stress tensor and v is the velocity vector. The Cauchy’s equation of motion is derived 
considering the current deformed configuration of the body (Ω). 

In the present model, geometrically nonlinear problems are analyzed taking into ac-
count the corotational formulation presented in the previous section, where stress and strain 
are described according to a coordinate system locally attached to every element of the physi-



 
 

cal mesh. A linear constitutive model restricted to small strains is adopted in order to relate 
strain and stress measures, which may be written as: 

 ( )ˆ ˆ ˆˆ 2trλ µ= +C Iσ ε = ε ε  (27) 

where σ̂  and ε̂  are the Cauchy stress tensor and the small strain tensor, both defined in the 
corotational system, C is the fourth-order elastic tensor, which may be described in terms of 
the Lamé constants λ and µ. When infinitesimal displacements and rotations are observed, the 
geometrical linear approach can be utilized, where the undeformed configuration of the body 
(Ω0) is taken as reference throughout the analysis. 

Applying the Bubnov-Galerkin weighted residual method in conjunction with the 
Green-Gauss theorem over the equation of motion given in Eq. (26), the following expression 
is obtained: 

 t T T Td ( ) d d dδ ρ δ δ δ
Ω Ω Ω Γ

Ω+ ∇ Ω = Ω+ Γ∫ ∫ ∫ ∫u u u u b u tσ  (28) 

where t is the traction vector and Ω and Γ are, respectively, volume and boundary surface 
referring to the physical space where the problem takes place. In order to define the element 
concept in the context of isogeometric analysis, geometry, velocities, displacements and dis-
placement variations are represented with the following expressions: 
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where Ra is the NURBS basis function related to control point a, which is defined as function 
of the parametric coordinates (ξ,η,ζ), and ncp is the number of global control points. Knot 
vectors corresponding to the different directions in the parametric space must be specified 
defining the non-zero knot spans where elements are then identified. Consequently, the equa-
tion of motion given by Eq. (28) can be rewritten as: 
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where Ωe and Γe are, respectively, volume and boundary surface corresponding to element e 
in the physical mesh. Considering n, m and l as the number of basis functions related to the 
parametric directions ξ, η and ζ, respectively, and their respective polynomial degrees de-
noted by p, q and r, element e is defined by determining the indices at which the correspond-
ing non-zero knot span begins in the index space, that is: 

 [ ] [ ]1 1 1, , ,i i j j k ke ξ ξ η η ζ ζ+ + +⎡ ⎤∈ × ×⎣ ⎦  (31) 

where p+1 ≤ i ≤ n, q+1 ≤ j ≤ m and r+1 ≤ k ≤ l. The total number of elements in which the 
spatial field is discretized in the parametric domain is defined as: 

 ( )( )( )eln n p m q l r= − − −  (32) 



 
 

By substituting the NURBS approximation related to the displacement field (see Eq. 
29) into the constitutive equation (see Eq. 27), an element level approximation of the stress-
strain relation is obtained, where the strain components in the corotational system are given 
by: 

 ˆˆ ˆ= Buε  (33) 

where B̂  and û  are the gradient matrix and the displacements field, which are evaluated re-
ferring to the current configuration of the body in the corotational coordinate system. When 
infinitesimal displacements and rotations are observed, Eq. (33) is described in terms of the 
undeformed configuration of the body (Ω0). 

Introducing the expansions of velocity and displacements components and their corre-
sponding variations (see Eq. 29) and the relationship given by Eq. (33) into Eq. (30), a matrix 
equation representing a system of algebraic equations is obtained for the equation of motion, 
which may be expressed as: 

 
1 1 1

el el eln n n

e e e= = =

+ =∑ ∑ ∑e e eM u K u f  (34) 

where Me and Ke are the element mass and element stiffness matrices, respectively, and fe is 
the force vector at element level. The matrix and vector dimensions associated to Me and Ke, 
and fe, are specified as (neq.neq.neq) and (neq), respectively, where neq = nen.ndf, with ndf denot-
ing the number of degrees of freedom at the control point level. The summation symbol indi-
cates the assembling procedure to evaluate the global system of equations, considering the 
element contributions given according to connectivity relations established among the control 
points. The global stiffness matrix is always sparse because the support of each basis function 
is highly localized. 

 In the geometrically nonlinear regime, the system of equations represented by Eq. 34 
must be iteratively satisfied using the incremental approach (see Bathe [1]), since internal 
forces are given now as functions of the current configuration of the body. The nonlinear 
equation of motion is obtained employing a linearization procedure given by the Newton-
Raphson method, where the residual vector is submitted to a Taylor series expansion within 
the increment interval [tn, tn+1]. Consequently, Eq. (34) must be rewritten as follows: 

 ( ) ( )
1 1 1 1

nel nel nel nel

e e e e= = = =

+ ∆ = −∑ ∑ ∑ ∑e e e e e e
tan intM u K u u f f u  (35) 

where Ktan is the tangent stiffness matrix. At each iterative step, the tangent stiffness matrix 
and the internal force vector are initially evaluated in the corotational coordinate system with 
the following expressions: 

 T T

ˆ ˆ

ˆˆ ˆ ˆ ˆ( ) d ;      d
e e

e e
Ω Ω

= + Ω = Ω∫ ∫e e
tan intK B C D B f B σ  (36) 

where ˆ
eΩ  is referred to the current configuration of element e in the corotational coordinate 

system, D̂  and σ are stress tensors related to the Truesdell rate tensor and the corotational 
Cauchy stress tensor, respectively, with both evaluated in the corotational coordinate system. 
See Duarte Filho and Awruch [14] and Braun and Awruch [9] for further details. 



 
 

 In order to solve the system of nonlinear equations, the tangent stiffness matrix and 
the internal force vector must be obtained in the global coordinate system through an objec-
tive transformation from the corotational system, that is: 

 ˆˆ ;      e T e e T e
tan tan int intK = R K R f = R f  (37) 

where R is the transformation matrix defined in the previous section. 
When a numerical model based on isogeometric analysis is formulated with the 

Galerkin method and NURBS basis functions, homogeneous boundary conditions are exactly 
enforced by setting the corresponding control variables as zero. A trivial procedure for impo-
sition of essential boundary conditions is then obtained, which is similar to that utilized by 
finite element models. In the present model, the Kroenecker delta property of the NURBS 
basis functions can be applied on the displacement field as follows: 

 
1

( ) ( ) 0            with            ( )
ncp

B A A A B AB
A

R RΒ δ
=

= = =∑u x u xξ  (38) 

where vector xB specifies Cartesian coordinates of control points with parametric coordinates 
defined by ξB, which are located at boundary knots with essential boundary conditions. 

In the field of elastodynamics, the Newmark method is usually adopted for the solu-
tion of the equation of motion in the time domain. The Newmark scheme is an extension of 
the linear acceleration method in which a linear variation of acceleration is assumed in the 
time interval [tn, tn+1]. Although this scheme is unconditionally stable for linear problems, it 
may be unstable for nonlinear problems. In the generalized-α method, the equilibrium of the 
equation of motion is verified at a general mid-point instead of the end-point used by the clas-
sical Newmark scheme. The modified equation of motion, including damping effects, is pre-
sented in the following form (see, for instance, Khul and Ramm [22]): 
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with subscripts denoting time positions within the time interval [tn, tn+1] as functions of the 
time integration parameters αm and αf, where n and n+1 correspond to initial and end points 
of the time interval ∆t, respectively. Introducing Newmark approximations for n+1u  and n+1u  
(see, for instance, Bathe [1]) into the expressions given by Eq. (40), the number of unknowns 
of the modified equation of motion is reduced to the displacements vector n+1u , as it is dem-
onstrated below: 
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Substituting Eqs. (41) and (42) into the modified equation of motion (Eq. 39), the ef-
fective dynamic equation can be obtained in the following form: 
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 (43) 

where: 

 
f

tang tang k
n+1- f n 1(1- ) ( )αα +=K K u  (44) 

The time integration parameters α, δ, αm and αf are defined as functions of the spectral 
radius r∝ ( 0 r 1∞≤ ≤ ) according to: 

 ( )2
m f m f m f

2r 1 r1 11 ; ; ;
4 2 r 1 r 1

α α α δ α α α α∞ ∞

∞ ∞

−
= − + = − + = =

+ +
 (45) 

An algorithm referring to the numerical model proposed in this work is presented in 
Table 1, where TOL is identified as a tolerance criterion and a0, a1, a2, a3, a4 and a5 are con-
stants of the generalized-α method, which are obtained from the time integration parameters 
α, δ, αm and αf. 

Table 1. Numerical algorithm for the model proposed in this work. 

1. Specify the spectral radius r∝ ( 0 r 1∞≤ ≤ ) and the time increment ∆t. 

2. Compute the time integration parameters α, δ, αm and αf 
3. Compute the time integration constants a0, a1, a2, a3, a4 and a5: 

m f m
0 1 22

m f f
3 4 5

1 1a ; a ; a

1 2a ; a ; a
2 2

t t t

t

α α δ α
α α α

α α α δ α δ α α
α α α

− (1− ) −
= = =

∆ ∆ ∆
− − (1− ) − ( − 2 )(1− )

= = = ∆
 

4.   Solve:  
t1 t+∆t−⎡ ⎤∆ ⎣ ⎦u = fΚ  

with:                                 t t
0 1a a= +K K M + D  

and:        
tt+∆t ext, t+∆t t t

2 3 4 5( ) a a a a⎡ ⎤= − + +⎣ ⎦
intf f Mu + Du + f u M( u + u) D( u + u)

5. Update the displacement, velocity and acceleration vectors using Newmark ap-
proximations (see, for instance, Bathe [1]). 



 
 

6. Compute the residual load vector: 
t+∆tt+∆t ext, t+∆t ( )⎡ ⎤= − ⎣ ⎦

intQ f Mu + Du + f u  

7. Check convergence: if t+∆t ext, t+∆t TOL≤Q f  go to the next time step (4), 
else go to (8). 

8. Compute: 
t t+∆t−1⎡ ⎤δ ⎣ ⎦u = QΚ  

9. Update the displacement, velocity and acceleration vectors using: 
k+1 k
t t t t 0
k+1 k
t t t t 1
k+1 k
t t t t

a

a
+∆ +∆

+∆ +∆

+∆ +∆
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u u + u

u u + u

u u + u

 

10. Compute the residual load vector (step 6) with the new state of motion. 

11. Check convergence: if t+∆t ext, t+∆t TOL≤Q f  go to the next time step (step 
4), else go to step 8. 

5. NUMERICAL APPLICATIONS 

5.1 Cantilever beam 

A two-dimensional cantilever beam subject to pressure loading and undergoing large 
displacements is analyzed in this example, where plane strain state is also considered. Geo-
metrical and load description for the present simulation are shown in Fig. 1 and material 
properties of the structure as well as the time step adopted in the time integration procedure 
are found in Table 2. Information on computational parameters utilized in the numerical anal-
yses carried out here, which are referring to the isogeometric formulation and the generalized-
α method, are summarized in Table 3. 

 
L = 0.4 m; h = 0.001 m 

Figure 1. Geometrical and load characteristics for the cantilever beam analysis. 

 

 



 
 

Table 2. Material properties and time step utilized in the cantilever beam analysis. 

Young modulus – E [N/m2] 7x1010 
Poisson coefficient – ν 0.33 

Specific mass – ρ [Kg/m3] 2.7x103 
Damping coefficient – φ 0.0 

Time step – ∆t [s] 4.0x10-3 

 
Table 3. Computational parameters employed in the cantilever beam analysis. 

Control mesh (L, h, z) Continuity class Spectral radius - r∞ Polinomial degrees (p, q, r)
66x3x2 C1 0,90; 0,95; 1,00 5, 2, 1 
66x3x2 C2 0,90; 0,95; 1,00 5, 2, 1 
66x3x2 C3 0,90; 0,95; 1,00 5, 2, 1 
66x3x2 C4 0,90; 0,95; 1,00 5, 2, 1 

 
Predictions obtained with the numerical model proposed in this work are shown in Fig. 

2, where the structural response of the beam is presented taking into account displacements 
evaluated at its tip. The response presented here is related to a specific simulation performed 
considering basis functions with C4 continuity and a time integration process characterized by 
a spectral radius r∞ = 0.95. One can verify that the present results reproduced important as-
pects of the motion related to the beam investigated in this example. The displacement ampli-
tude is not decreasing with time, which is frequently observed when excessive numerical dis-
sipation is employed, and the period of vibration is maintained. It is important to notice that a 
stable solution with the same characteristics was also observed when a spectral radius r∞ = 
0.90 was adopted. However, numerical instabilities were identified when the spectral radius 
was greater than r∞ = 0.95, which is probably associated with the lack of sufficient dissipation 
to maintain numerical stability in this case. Studies performed with respect to the continuity 
class of the basis functions demonstrated that this aspect is not significant for the dynamic 
response of the cantilever beam analyzed here. When compared to numerical predictions pre-
sented by Braun and Awruch [9], where a finite element formulation with eight-node hexahe-
dral elements and one-point quadrature was utilized, the results shown here were obtained 
with less amount of numerical dissipation and a smaller time step. In addition, the range of 
stable spectral radii obtained with the isogeometric model was significantly wider than that 
presented by the finite element model. The structural response presented in Fig. 2 is very sim-
ilar to that presented by Bathe and Baig [2]. 

 
Figure 2. Displacement response for the cantilever beam analysis using r∞ = 0.95 and C4. 



 
 

Time histories of the energy variables utilized in this work are plotted in Fig. 3, which 
also correspond to a specific simulation performed considering a spectral radius r∞ = 0.95 and 
C4 continuity. A similar response is obtained for r∞ = 0.90 and the different continuity classes 
investigated. Therefore, stable solutions can be obtained with the generalized-α method when 
adequate numerical damping is employed. By comparing the present model with other dissi-
pation-based algorithms (see, for instance, Braun and Awruch [9]), the scheme presented in 
this work is not disturbed by excessive numerical damping, which leads to excessive decrease 
of the energy and motion variables (total energy, displacement, velocity and acceleration). 
Other important aspect related to isogeometric analysis is the mathematical characteristic of 
the NURBS basis functions, which lead to much better approximations for the modes of vi-
bration when compared with finite element formulations with linear interpolation functions. 

 
Figure 3. Energy response for the cantilever beam analysis using r∞ = 0.95 and C4. 

The motion of the cantilever beam during the period of oscillation [0.07s, 0.15s] can 
be visualized in Fig. 4, where the high nonlinear behavior is evidenced. 

 
∆t = 0.01s 

t = 0.07s 
 
 
 
 
 
 
 
 
t = 0.15s 

Figure 4. Deformed configurations of the beam during the time interval [0.07s, 0.15s]. 

The energy variables are evaluated here utilizing the following expressions: 
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where Epot, Ekin and Etot are the strain, kinetic and total energy, respectively, Wext is the work 
done by external forces, Jx is angular momentum around x axis, Jy is angular momentum 
around y axis and Jz is angular momentum around z axis. The symbols (:), (.) and (⊗ ) denote 
tensor, scalar and vector products, respectively. The vectors x and x  are the position vector in 



 
 

global coordinates and its respective time derivative, nel is the total number of elements, Ωe is 
the element volume and σ and ε are stress and strain energetically conjugated tensors. 

5.2 Toss rule 

A numerical investigation of the plane movement of a toss rule is performed in this 
example, where a geometrically nonlinear dynamic analysis is carried out. Geometry and load 
information for the present application are described in Fig. 5 and material properties of the 
structure as well as the time step adopted in the time integration procedure are presented in 
Table 4. It is important to notice that distributed loads are applied to the structure to produce 
the plane motion of the rule, which is free to fly in the absence of displacement restrictions 
and gravity action. Computational parameters regarding the numerical analyses performed 
here are presented in Table 5. 

 
h = 0.002 m; l = 0.3 m; b = 0.06 m 

Figure 5. Geometrical and load characteristics for the toss rule analysis. 

Table 4. Material properties and time step adopted in the toss rule analysis. 

Young modulus – E [N/m2] 2.06x1011 
Poisson coefficient – ν 0.3 

Specific mass – ρ [Kg/m3] 7.8x103 
Damping coefficient – φ 0.0 

Time step – ∆t [s] 1.0x10-4 

Table 5. Computational parameters employed in the toss rule analysis. 

Control mesh (L, h, z) Continuity class Spectral radius - r∞ Polinomial degrees (p, q, r)
66x3x2 C1 0,50; 0,90; 0,95; 1,00 5, 2, 2 
66x3x2 C2 0,50; 0,90; 0,95; 1,00 5, 2, 2 
66x3x2 C3 0,50; 0,90; 0,95; 1,00 5, 2, 2 
66x3x2 C4 0,50; 0,90; 0,95; 1,00 5, 2, 2 

 In Fig. 6 the evolution of the different energy variables associated with the vibration 
time history of the toss rule is presented taking into account the time interval covered by the 
numerical analysis. The results shown in Fig. 6 refer to only one of many cases investigated 
here, which was carried out considering basis functions with C4 continuity and spectral radius 
r∝ = 0.95. It was observed that the generalized-α method with r∝ = 1.0 led to numerical failure 



 
 

in the time integration procedure, since that value corresponds to the case of no algorithmic 
damping. On the other hand, a stable solution was obtained even with small numerical dissi-
pation, i.e. r∝ = 0.99, where the total energy is perfectly maintained during the time interval of 
the numerical analysis. The same behavior was observed for the components of the angular 
and linear momenta, which demonstrates that the formulation proposed in this work presents 
excellent performance with respect to numerical stability associated with the time integration 
process. Studies were also performed considering the continuity class of the basis functions, 
where an improvement can be identified when C4 continuity is adopted instead of lower val-
ues. Results with C1, C2 and C3 continuity show no difference. Unlike the numerical predic-
tions obtained by Braun and Awruch [9], where a finite element formulation with linear ele-
ments was utilized, the present results show no fluctuations in the time history of the total 
energy. In addition, the range of stable spectral radii obtained with the isogeometric model is 
slightly wider that that presented by the finite element model. The range of energy values ob-
tained with the present algorithm is in agreement with those obtained by Kuhl and Ramm 
[21]. 

 
Figure 6. Energy response for the motion analysis of the toss rule using r∞ = 0.95 and C4. 

 The motion referring to the toss rule can be visualized in Fig. 7, where a sequence of 
deformed configurations obtained with the algorithm proposed in this paper is shown. One 
can observe that the inertial motion is developed after the initial load is removed and struc-
tural displacements take place on the plane x-z in accordance with the initial load configura-
tion. 

 
Figure 7. Deformed configurations of the rule during numerical analysis. 

6. CONCLUSIONS 

In the present work, a numerical model based on isogeometric analysis was proposed 
for investigations on geometrically nonlinear elastodynamics. In order to stabilize the time 
integration procedure in the nonlinear range, the generalized-α method was adopted in con-
junction with an algorithmic combination of the internal forces at the beginning and the end 
of each time step. The simulations performed with the generalized-α method obtained stable 
solutions when appropriate numerical dissipation was employed. Conservation of energy and 
angular momentum were shown through the examples. The algorithm keeps also the great 
advantage of the dissipation-based models, which refers to the low computational costs de-



 
 

manded by one-step schemes (similar to the classical Newmark’s scheme). Results demon-
strated that isogeometric analysis can provide numerical predictions accurately with much 
less numerical dissipation than that required by a finite element model previously developed 
by the present authors. Moreover, the range of stable spectral radii is wider when isogeomet-
ric analysis is carried out. Other important aspect related to isogeometric analysis is the 
mathematical characteristic of the NURBS basis functions, which leads to better approxima-
tions for the modes of vibration observed in dynamic analyses. A significant improvement for 
the numerical model proposed here, which refers to a more extended applicability of the pre-
sent formulation, refers to the treatment of general material models. Therefore, the present 
scheme will be reformulated in future works in order to take into account hyperelastic and 
elastoplastic constitutive models. 
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