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Abstract. In this paper, we expound a general theory valid for shallow shells, either thin or 

moderately thick, inspired as a generalization for plates according to the Bolle-Reissner 

theory, with necessary modifications to include the thinnest shells.  The immediate 

antecedent is constituted by the  elastic study of plates shown in the work "General Equations 

Transformed and Expanded for a General Study of Isotropic Plates Starting with the Bolle-

Reissner Theory as a starting point" (submitted also to this Congress). In short, although we 

esteem this to be an original proposal, it is inspired in a methodology partly known in plates 

which provides us with a system of differential equations easily tackled by finite differences. 

Also, as it is valid for moderately thick shells, it does not pose any problems of numerical 

instability when carrying out studies of thin shells and although it has been constrained to 

shallow shells, it can be applied to the resolution of a great variety of practical cases given 

the limitations which have to be imposed in order to consider them as shallow shells (which 

is usually common in constructive cases). 
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1. INTRODUCTION 

On the occasion of presenting a theoretical hypothesis, it seemed to us to be 

imperative to give a brief chronological background if we wished to demonstrate why we felt 

it necessary to put forward our proposal and show how it may be a step forward in the 

present state of this science. 

With respect to shell structures, the first proposals were based on that corresponding 

to plates and the first of these theories originated from the hypotheses of Kirchhoff (1876). 

This theory was established, although incorrectly, by Aron (1874) but it was Love 

(1888) who gave it its most adequate form which is still used in some manuals. The problem 

in its argument was that it conserved some terms of a high order and had eliminated other 

similar ones, giving it an inconsistency which successive authors resolved either by adding 

the missing terms or eliminating them. 

The basic problem, the expression of the relations between the forces and moments 

with displacements on the middle surface, had not yet been resolved in a simple way and in 

this line the following investigations were made, much later on: Galerkin, 1934; Lure 1937, 
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1940, 1950. The latter was the first researcher to derive a compact theory but he did not have 

a sufficient criterion to carry out any simplifications.  

These simplifications were established by Novozhilov, 1941 who also managed to 

ascertain the errors committed by the simplifications of Kirchhoff, 1943.  

The contributions of Goldenveizer (1939, 1940) permitted the introduction of the 

compatibility conditions of the deformations and demonstrated the possibility of fulfilling the 

conditions of equilibrium by means of four deformation functions analogously to what LURE 

had done. 

In the line of simplifying the expressions obtained, Mushtari, 1938, 1947; Feinberg, 

1939; Vlasov, 1944, 1949 can be cited. 

Parallelly to this school, which was based on the assumptions of Kirchhoff, another 

was developed following the approach of Cauchy and Poisson for plates which consisted of 

evolving the functions of stresses and displacements in series of z (the distance from any 

point in the plate on the middle plane). The first publication is that of Basset, 1890 which 

was developed by Kraus, 1929 and Kilchevskii, 1939. 

All the previous investigations belong, fundamentally, to Soviet mathematicians. 

With respect to  U.S. research with a totally different thesis, Reissner, 1952 [9] achieved the 

simplest formulation for shells by establishing two equations as functions of w (normal 

displacements of the shell) and F (stress function). 

Recent generalizations have improved all these theories. Koiter, 1960; Budiansky-

Sanders, 1963; Naghdi, 1963; Goldenveizer, 1967 and Koiter - Simmonds, 1972. 

Regarding non-linear theories, the first studies were produced for concrete, simple 

shapes (O´Donnell, 1933; Reissner, 1950 and Vlasov, 1958. The first publication dealing 

with the subject in a general way is owed to Novozhilov, 1953. Later on, Kraus (1967) 

derived the equations in terms of the main lines of the curvature. 

So as not to give an onerous list of names, the following are a few of those which 

figure in the main advances of non- linear theories (Sanders, 1963; Leonard, 1963; Naghdi, 

1963;Koiter, 1966 and Marlove, 1968). 

With respect to stability studies, those which stand out are by Koiter, 1967, 

Budiansky, 1968 and Simmons-Danielson, 1972. 

2. BASIC EXPRESSIONS 

Following the Bolle-Reissner hypothesis for plate study, we accept the definition of 

the components of a shear from any point in the shell 
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Figure 1. Coordinate System in a shell element 

in which uo, vo, wo are the displacements from the point  belonging to the middle 

surface of the shell and  and  are the rotations from the normal to the middle surface at 

that point. 

Thus, in accordance with the current state of opinion, a parabolic distribution, all 

through the thickness, of tangential stresses has been posited [10].  
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The linear and angular deformations relative to curvilinear orthogonal coordinates 

counted along the curvature lines have the expressions [2,4,10] 
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in which R1 and R2 are the curvature radii and o, o and o are the strains (membrane 

and shear) on the "middle surface"  
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 It can also be assumed that the  constant stresses in the thickness reach the same values of the stresses after 

integrating and imposing the condition of deformation equality energy per section. 
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Like wise, k , k , k  are the variations of the bending and  torsion curvatures and are 

expressed as 
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In the previous expressions, A and B are the coefficients of the first quadratic form of the 

surface 

                              ds E d F d d G d
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being E A
2

,  G = B
2

 which, in the present case, being F = O, as the coordinates coincide 

with the curvature lines, leaves  

                               ds E d G d
2 2 2

                                                       (16) 

From now on, operating in the usual manner, we obtain the strains 
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Figure 2.Stresses in shell element 

and after integrating in the thickness, we obtained the stresses 
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Finally, we had to establish the equilibrium of the "shell element" so that the following 

equations are arrived at 
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The equation corresponding to M
z

0  which, established in the non-deformed 

geometry of the element is proved identically, showed us if it is found in the bending geometry 

which has to be verified:  
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3. SHALLOW SHELLS AND THE FINITE DIFFERENCE METHOD 

If all the stresses Ni and Mi are substituted by their values (23-25) in the differential 

equation system (26-30), we obtain a system of five differential equations with five unknown 

values  ( , , , , )u v w  which, at least in theory, could be resolved if the contour conditions are 

taken into account globally. 

As it was obvious that the analytic procedures had to be ruled out both because of the 

complexity of the system and also  the necessity of using the methodology for any type of surface 

being studied, and type of loading, we opted for the finite differences method although it was 

necessary to overcome the difficulty relative to the fact that the coordinates figuring in the 

equations are counted according to the lines of curvature.  

The traits common to the previous hypotheses, which for us have revealed serious 

deficiencies, are: the equations are derived in terms of the main lines of curvature and assume the 

hypothesis of Kirchoff on the deformation and rotation of the normal surface to the shell surface. 

Except for the few cases of surfaces with simple equations in which the differential equation 

system can be solved analytically, the first trait makes the possibility of studying more general 

shapes be rejected as the use of finite difference numerical methods becomes invalidated for the 

resolution of shells with more complicated equations. The second trait signifies that the study is 

necessarily constrained to thin shells. With the theoretical thesis presented by us, both deficiencies 

are rectified although we have been obliged to constrain it to shells with a slight curve. Since the 

finite differences are expressed in relation to a global Cartesian reference system for all shells, it is 

necessary for the lines of curvature to coincide with the co-ordinates which only occurred when 

the coefficients F and F‟ of the quadratic forms of the surface were zero: 
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Although it is very well known that this condition is only fulfilled in a reduced number of 

cases, we have been able to do so, at least to an approximate degree, by limiting the problem to the 

study of "slightly curved" shells. 

Let us say that a shell is a shallow shell [10] when it fulfills the following two conditions, 

simultaneously, at any point 
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where Rmin is the lesser of the radii of curvature, e the thickness of the shell, a the 

smallest dimension of the shape and h the difference of the maximum height between points of the 

shell.   

Under these conditions, the Gauss curvature will be small  
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and the Gauss equation  
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So that if the problem is analyzed in Cartesian coordinates 

               ds dx dy
2 2 2 , A 1 , B 1                                                (37) 

Although additional hypotheses can still be made about the variations of the bending and 

torsion curvatures and in the equations, we have limited ourselves to the adoption of this first 

geometrical derivation. 

Thus, we are able to affirm that for shallow shells: 

         - at least approximately for all points:  
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        - lines coordinates  lines of curvature 

With these simplifications, the resultant equations (26-30) are 
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and the strains: 
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where we have added the terms 2 k12, Nxy and 2 k12 w to include the cases in which the 

axes x, y do not coincide with the projections of the lines of curvature on the plane x or y.  

After substituting the strains in the expressions of the stresses and these, in turn, in the 

equations of equilibrium (39-44) taking into account the last of these (44) and linearizing, the 

following system of differential equations is obtained 
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After observing the foregoing system, it is easy to understand that as only the first and 

second derivatives intervened, its programming by the finite difference method possesses a great 

facility and, in principle, the procedure was seen to be a promising one. Soon, however, the same 

phenomena of numerical instability as were found in the study of plates[8] appeared, with the 

further difficulty that whereas, in plates, at least satisfactory results in the case of thick plates were 

found, in this typology which by definition is thin, this was not the case. Thus, it has been 



necessary to transform these equations, following the same methodology shown in our 

aforementioned work [8], with the aim of avoiding the cited inestability phenomena. 

4. TRANSFORMED EQUATIONS 

If the Laplace operator is applied to [51] it is obtained: 
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although from between the [52] and [53] it can be established 
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which, once substituted in the previous equation, gives 
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5. CONCLUSIONS AND EXAMPLES 

From an analysis of the aforementioned system, its facility for programming by finite 

differences on a rectangular shape can be deduced, as well as if in this analysis k1 = k2 = k12 = 0 

the general linear equations for the calculation of thin, or moderately thick, plates [8] can be 

found. With regard to the accuracy of the results obtained, some comparative graphs are herewith 

included among those provided by the type element (Steef) 45 of the well known Ansys program 

with a subdivision of 16x16x4, which tackles the calculation by considering the structure as a 

tridimensional solid body, and those obtained with the previous equations by means of finite 

differences and a 17x17 mesh (we have obviously verified that a more refined weaving of the 

mesh did not increase the accuracy significantly), for the following structural shapes: cylindrical 

shell, elliptic paraboloid and  paraboloid velaroidal shell. The results were satisfactory in all cases 

and it only remains for us to point out the most pronounced "prediction" of the collapse of a 

paraboloid velaroidal shell in the "kidney" area. 
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Elliptical paraboloid, fixed in the 4 edges 
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Elliptical paraboloid, fixed in the 4 edges 
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Paraboloid velaroidal fixed in the 4 edges 
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Paraboloid velaroidal fixed in the 4 edges 
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Figure 3. Cilindrical shell 
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