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Abstract. Nowadays, looking to reduce global warming and improve sustainability energy,
wind turbine generators are a real alternative for clean power generation. To withstand wind
forces, aerogenerators should be analyzed properly to ensure a good operation in the system
lifetime. Several approaches can be established to perform analysis and design of this kind
of structures. In this paper, an engineering solution considering fluid structure interaction is
presented. Wind action is modelled thru a stabilized fluid flow formulation, while the struc-
ture (wind turbine) is solved with geometrically nonlinear shell elements with only translation
degrees of freedom. In both cases, the finite element method is used to found a solution. Inter-
action between both formulations are capable to reproduce spin of turbine blades, including
self weight forces and time history analysis to obtain stresses and acting forces for several
operational conditions.

Keywords: wind turbine generator, fluid-structure interaction.

1. INTRODUCTION

The implementation of a coupled problem can be done using two different global strategies,
which are themonolithicmethods and thpartitioned methods. In monolithic methods, the
discretized fluid-structure system is solved together with the mesh movement system in a
single iteration loop, leading to a very large system of nonlinear equations to be solved si-
multaneously. Some advantages of this method are that it ensures stability and convergence
of the whole coupled problem. On the contrary, in simultaneous solution procedures the time
step has to be equal for all subsystems, which may be inefficient if different time scales are
presented for the problem. An important disadvantage is the considerably high computing
time effort required to solve each algebraic system and sometimes the necessity to develop
new software and solution methods for the coupling method. A monolithic approach to FSI is
presented by Hbner et al. [18].

In partitioned methods, the application of existing appropriate and sophisticated solvers
for either structural or fluid subsystems will continue to be used. These methods enjoy great
popularity due to the simplified coupling procedure in many cases. Partitioned methods are di-
vided intoweakor loosecoupling algorithms andtrongor implicit coupling schemes. Weak

1



algorithms are also known a&saggeredor explicit schemes. The major drawbacks of parti-
tioned methods are lack of accuracy and stability problemisch sometimes may diverge
from the solution.

Partitioned methods were introduced by Park and Felippl [2& key idea for these
methods is described in Felippa et al. [13]. An interesting asimple example showing a
complete description for partitioned methods can be foun®aldés [37]. Partitioned so-
lutions with staggered coupling algorithms are developgdrérhat et al. [12] to be used
in aeroelastic wing problems. Strong coupling of partiédralgorithms are applied to large
displacements 2D structural problems coupled to viscocsnpressible fluids by Wall and
Ramm [40] and Wall [38]. They also applied the same method forupled fluid structure
environment with an initially flat three-dimensional shalbdel as given in Wall and Ramm
[41]. Other large displacements structural problems aatng with incompressible fluids are
detailed in Mok [26], Mok and Wall [25] and Tallec and Mour@®]3 FSI with large displace-
ments applied to wind problems is developed by Rossi [30jchivier and Bletzinger [43],
Badia [2] and Wichner [42].

More sophisticated developments on strong partitionedhoast for FSI problems can
be found in Steindorf [31], Matthies and Steindorf [22], [424] and Tezduyar et al. [34]. A
study on strong coupling partitioned methods for FSI ajppieehemodynamic problems can
be found in Nobile [27], Causin et al. [4], and Famiez and Moubachir [14]. Strong coupling
of fluid-structure interaction including free surfacestisdsed in Dettmer [9] and Wall et al.
[39]. Recently, a new approach based on Robin transmissiorditmms for fluid-structure
interaction problems is given in Badia et al. [1].

2. FORMULATION

The governing equations for the couple incompressible-ftridcture problem consist of the
momentum equations together with the continuity equatitowever the fluid and the struc-
tural parts of the domain must be treated differently. ThHengroblem is split into the fluid
test functions over the fluid domain and the solid test fumctperating over the structural
part.

For convenience, the boundary of the coupled problem islédinto the Dirichlet
boundary for the fluid’? and the Dirichlet boundary for the soll¢f’, the Neumann bound-
ary for the fluidT’’¥ and the Neumann boundary for the saliff, and a common interface
boundaryl'! between the fluid and the solid. Then the boundary of the eoppiblem is
[ =TPuryur!, wherel’? =1TPur? andr’¥ =) uTY.

Also the coupled problem domain is divided into a solid gattand a fluid parf',
whereQ) = QU Q'. In particular, solid displacements are given as a function of the solid
motionx® as

us(X,t) = x> —X (1)

whereX € 1§ with Q0§ being the reference solid domain. The fluid mesh motion isddfas
an extension inside the fluid doméir of the solid displacements® located at the interface
boundaryl™. In other words, fluid displacements are found by

0 =u" = Ext(us.) (2)

where different forms to make this extension are i.e. theld@apan method or the pseudo-
elastic structural technique, among others. Fluid megblatiements yield a fluid mesh ve-



locity, V(uf) = Vmesh that has to be integrated into the fluid formulation. Siteeltagrangian
solid displacements move the eulerian fluid domain then aid formulation has to be mod-
ified to include this movement. In this work we take into aauoilne fluid movement using
the Arbitrary Lagrangian Eulerian (ALE) formulation, asen in [3],[10].

Before writing the continuous formulation of the couple fhsiducture interaction
problem, the subspace test functions for the fluid, with a dtgeneous Dirichlet boundary
condition, are defined by

5wi € W(], W() = {5w1 € Hl(Qf), (5wZ =0 on FfD U FI, (5wz =0 on QS} (3)

and the subspace test functions for the structure are esques

dw; € Wy, Wy = {6w; € H'(°), dw; =0 on 'Y, dw; = Ext(dw,r) on '} (4)

Note that the test functions for the fluid vanish at the irstegfand inside the solid subdomain,
while the solid test functions are nonzero on the interfaatextend inside the fluid subdo-
main. In this way, th&inematiccontinuity for the displacement and velocity field is impose
as Dirichlet boundary conditions on the fluid by the inteefagndkinetic continuity for the
traction is given as Neumann boundary conditions on thettre at the interface.

The structural problem is obtained by considering the spétge solid test functions
on the momentum equations, yielding

J

o

/ 5wif?dfo+/ 5wm§‘a§jdf
Y

I

6Eijsideo = / 5w1p0blng—|—

S S
0 QO

(5)

which shows the interface traction obtained directly frév@ momentum conservation equa-
tion and not considered as an additional independent enuafl detailed mathematical ex-
planation can be found in [37],[32].

The fluid problem is obtained by substituting into the mormenequation the corre-
sponding test functions, which vanish in the solid partldjirey after integrating by parts

0v; 0v; 0ow; 0v; 0dw;
ow; | p— — ) dQ — LdQ ! LdQ) = ow; pb;dS) (6
/Qf wi <p or P axj) oo T /Qf’“‘axj oz, /Q wipbidS2(6)

In this equation, mesh movement is taking into account withaonvective terna; which

is given by the difference; — vmesn This equation must be complemented by adequate
boundary conditions dictated by the fluid space test funsti®ince fluid test functions vanish
at the interface, then displacement and velocity fields cdy loe governed by imposing the
kinematic compatibility given by the Dirichlet conditions

UfF| - USFI (7)

Vfl—q - VSFI (8)
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The continuity equation for the fluid part remains the sanag tbr the eulerian fluid
problem. Besides for the fluid formulation, a stabilizatieshnique has to be added, which
in this work is taken with the FIC formulation offtate [28]. New development of the FIC
formulation can be found in Lynga [21].

Among the wide possibilities to update meshes in the fluid figdle most common is
the Laplacian method which can be found in [3]. Other metharégsbased on the pseudo-
structural system, which can be done through the elastioggpnalogy, i.e. see [11] and [8],
or by solving the elasticity equation as a pseudo-elasstesy, i.e. see [20], [3] and [5]. In
this work, two different ways for the mesh movement of thedfktibdomain are implemented:
the Laplacian and the pseudo-elastic method.

In this way, the mesh is considered as another system. Tnertife fluid-structure
interaction problem yields a coupled three-field systene fthid, the solid and the mesh
movement.

3. FINITE ELEMENT DISCRETIZATION FOR SHELLS

The discretization used for the rotation-free thin shelitdéirelement is given for the total
Lagrangian formulation. A detailed description of thisatxdn-free element is found in Flores
and (Rate [15],[16], Val@s [37], and Valés and @ate [36]. Here only the general idea and
principal results are presented. It is important to remiaak in case of studying an orthotropic
shell, first a principal fiber orientation is needed, as giuenaldés [37]. Fig. 1 shows
a general shell mesh before the fiber orientation (left) dtet she fiber orientation (rigth)
where red-dashed lines show vectors of principal fiber taign e4 for an initially out-of-
plane membrane structure together with its unit base veetoA deep study of membranes
using the fiber orientation methodology can be found in &alét al. [35].

Figure 1. Fiber Orientation

Bending effect for this rotation-free shell triangle elemismgiven by the displacement
field of one element and all nodes of adjacent elements, asnshothe patch of Fig. 2.
Membrane forces for the rotation-free element are comptakishg into account only the
main element of the patch.

The path description is as follows:

Element number is inside a circle.

Nodes of the main element (M) are numbered locally as 1, 2 and 3

Main element sides are defined by its local node oppositeetsitte.

Adjacent elements are numbered with the number associatide tommon side 1, 2
and 3.



Figure 2. Shell patch

e The remaining nodes of the patch are numbered locally asaficb6 corresponding to
nodes on adjacent elements (1), (2) and (3) respectively.

In this work, a local coordinate system is given by the lodsifiCartesian base system
as shown in Fig. 1, and given in Vad [37]. Then the base system for each finite element is
given by the unit vectore/”, €/ and the norma&/”. The choice for this local system allow
us to compute shells with orthotropic material definitions.

The virtual internal work for shells can be expressed by

h
SWint — / ’ OBy COPPEITdCdy +
Qo J—

%
N 9)
2 bend o %) bend
/ (OB, ;C° 25 dCdQy
Q J-1
where the Green-Lagrange strain tensor is given by
Eus = Eny + (B = €ag + Chap (10)
where
1
€ap = 5 (Jas = Gap) (11)
measures membrane strains and
Rap = Kaﬁ — kag = Gaﬁ -N — ga,,B -n (12)

measures bending strains.
From the virtual internal work, internal forces for the memanie part in curvilinear
coordinates can be written as

fim=h / Bi i S Sg (13)
Qo

Using the Voigt notation to express the internal forces irviimear coordinates, Eq.
(13), yields

= [ By, (14
Qo

mem|

where the strain-displacement matBX™ is given by
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Finally, this strain-displacement matrix is changed framvdinear to Cartesian coor-
dinates and then using the fiber orientation methodologgratated to fiber direction yielding

memb

the membrane strain-displacement maB)x .
From the virtual internal work, forces for the bending parturvilinear coordinates

can be written as

12

Using the Voigt notation to express the internal forces irvitimear coordinates, EQ.
(16), yields

bend h/3 bend
fu — 7195 / Baﬂi[ benddQO (16)
Qo

bend h&
f
I~ 192

where the variation of the bendlng strain tensor in Voigtatioh and expressed in
Cartesian coordinates can be written explicitly as

[BT]be"d{S}be"ddQU (17)

ON1\,J  Gh ONrvJ oh
1 Nsides nl 0 Nnode 8_$IX, - X 1 + a_IX, - X

Bblend ~ 94 Z Lo my Z n
0 =1 ﬁg ﬁ‘{ I=1 %X:’ -X + 6N’XJ )~(h2
(18)

_ ONY
1 Nsides ni] 0 Tnode 8_:(:I

——> V|0 @ n
240 Z _J 7}2J ; ONY
oy
wheren/ is the normal of the each side of the main element of the pafclye the Cartesian

derivatives following the principal fiber orientation ax{g are the contravariant base vectors.
Finally the internal forces for the rotation-free shellrant are expressed by

h3A
—5 BL S e (19)

Now the complete structural problems is expressed as

f(ilnt _ hAO[B:;Fb]memb{Sb}memb_’_

fit L M = e (20)

whereM is the mass matrix and is the acceleration vector of the nodal variables. An im-
plicit solution of Eq. (20) requires the derivative of theéamal forces yielding a tangent
matrix. In Flores and @ate [15] the complete tangent matrix including materiaillimzarity

is developed for the isotropic rotation-free shell element



4. FINITE ELEMENT DISCRETIZATION FOR FLUIDS

Finite element discretization of the incompressible flowagtpns is presented using the
Galerkin-type weak form. @ate [28] gives a full description of the incompressibledltor-
mulation using the finite calculus FIC stabilization teaciue and the fractional step method.
A complete description for the fluid problem emerged fromd¢batinuum mechanics equa-
tions including finite element discretization, stabilipat and time integration schemes is
given in Valces [37]. From the conservation of linear momentum equatjven by Eq.
(6), we can find after discretization

MV + K (c)v — Gp = (21)
whereK (c) = A°(c) + K” and
Mijry vjg = 0y | pNINyd2 v,y (22)
Q
ON
Ary vy =6, / pN; &t S0 (23)
Q j
) ON; ON
Ky vig = dip ) 871 ax{dQ Vi (24)
J J
ON
Girg ps = 5 LN AQ py (25)
Q 0%

with ¢ being the convective velocity given by the difference batwehe spatial velocity”
and the mesh velocity” ., From the continuity equation, the divergence of the véjoci
yields after discretization

GTv =0 (26)

which is the incompressibility condition for fluids where

ON.
G?IJ UjJ:/NIWi]dQ Uj] (27)
Q J

Equations (21) and (26) describe the incompressible N&itigkes equations for fluids.

Since the original works of Chorin [6] and Temam [33], fraoti step methods for
the incompressible Navier-Stokes equations have earngespiiead popularity because of
the computational efficiency given by the uncoupling of tihesgure from the velocity field.
A detailed stability analysis of fractional step methodsif@wompressible flows is given in
Codina [7].

The easiest form to understand the development of the dreadtstep method is from
the expression of the incompressible Navier-Stokes egustivhere Eq. (21) can be split and
yield the equivalent incompressible flow equations

1 . N N
M E(Vn—&-l - Vn) + K(Cn+1>vn+1 - Gpn = fnej—tl (28)
1 N
M E(Vn+1 — V1) =GP, —P,) =0 (29)



wherev,,,; is an auxiliary velocity variable and the following essah&approximation has
been takenK (C,,11)V,11 ~ K(€y41)Vyi1. From Eq. (29)y,, 1 can be expressed in terms of
V.1 Yielding

Vn-l-l = \77’L+1 + At M _IG(pn—i-l - pn) (30)
Substituting this last equation into Eq. (26) yields

—At GTM 716(pn+1 - pn) = GTvn+1 (31)

Now observe thaG”M ~'G represent an approximation to the Laplacian operator, as me
tioned in Codina [7], given by.;; = p (VN;, VN;).

Finally the incompressible fluid flow equations to be solvethg thed -family inte-
gration scheme and using the FIC stabilization technigeegldped by @Gate [28], yield

1 - . .
M E(Vn+1 - Vn) + H (Cn+9f)vn+9f - Gpn + CCn+9f - frixktéf (32)
—(At+7)L(p,y — P,) +Qm, =GV, (33)
1 -
M E(Vn-irl —Vnt1) = G(Pps1 — P,) =0 (34)
M én+9f - Ac Vn+9f - 0 (35)
Mﬂ'n+9f - QTpn+9f =0 (36)

whereH (c) = A°(c) + K¥ + K(c) and

o hz 8N1~ 8NJ
Kty =06 | p=—=—C——dQ 37
GIJ J/QPQ oz, Ch oz, (37)
h; ON;
Ciiry = 05 ———N;dS2 38
GIJ J 0028% J (38)
N
QIJ:/Ti&NJdQ (39)
o Oz
MIJ:/pNINJdQ (40)
Q

with 1 < 9" < 1 for unconditionally stable implicit schemes andoeing the intrinsic time
parameters defined inffate [28].

5. FLUID-STRUCTURE INTERACTION

With the developed equations for the fluid solteaind the solid solve$, the problem consist
on finding the appropriate method to solve the fluid-striectateraction (FSI) problem. Two
different global methods for FSI problems can be used: mitimoimethods and partitioned
methods. In this work the last technique is described.

Numerical simulation of FSI problems is not only difficultdaise of the problems
associated with the fluid or structure solution, but alscabee of the coupling interface be-
tween these two fields which sometimes represents anothélecpe. These difficulties de-
pend strongly on thadded massffect introduced by the fluid over the structure, as given in
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Causin et al. [4]. When the structure densifyis much larger than the fluid density, the
added mass effect of the fluid is not significant and the proldan be solved with staggered
partitioned schemes or strong coupling partitioned temines as in the case aéroelasticity
However when the structure and fluid densities are of the sade, as in the case bEmody-
namics the added mass effect of the fluid over the structure is vepprtant and the coupling
algorithm to be used must be a strong coupling partitionéese with relaxation, or even
better techniques as the exact Newton or inexact Newtonaddtr strong coupling prob-
lems, or the recently partitioned procedures based on Radmmsrissions conditions given
by Badia et al. [1].

To explain these methods, assume that the fluid unknownseuped together in the
vectorx and that the nonlinear iterative fluid solver is written as

X' =F(x""1y) (41)
wherey represent the displacements of the structure, which alfioedine current configura-
tion of the interface. The nonlinear iterative solid soligegiven by

i—1

y' =Sy, x) (42)
wherex defines the nodal fluid velocities and pressure includingrdeion fluid forces at the

interface for the structure. In this work, tBdock Gauss Seidehethod is used which consists
in iterating the fluid and solid solvers independently asashoext

x! = FP(xi~! y?) (43)

y' =Sy x) (44)
wherep andq are the number of times that the solvErandS are repeated respectively. Also

fori=1,x%,, = x, andy®,, =y, . Once the tolerance or maximum number of iterations is
reached, the time step is advanced and the process is repeate

6. STRONG COUPLING WITH RELAXATION

In this work, the strong coupling block Gauss-Seidel parig#gd method with relaxation has
been implemented. The structural sohgris now referred to as the computational solid
dynamic (CSD) solver. The fluid solvér solves the fluid equations plus the movement of
the mesh, yielding in a high-cost task from the computatipoat of view. Therefore the
fluid solverF is split into the computational mesh dynamic (CMD) solvert timoves the
interior nodes of the finite element mesh of the fluid subdomend the computational fluid
dynamic (CFD) solver that uses the fractional step methoethay with the ALE technique
incorporated in the momentum equation. All solvers of eagld fise an implicit scheme.

There are several methods in the literature to acceleratediution of the problem by
means of relaxation, i.e. Mok [26]. In this work the Aitkentimed is implemented, i.e. Irons
and Tuck [19], which yields excellent solutions with simptedifications to the code.

In order to compute the coupled fluid-structure interacporblem, a unified algorith-
mic framework for the whole procedure is presented next. {densg known all values of
solid, fluid and mesh at time step, the new step,, . is found following the simple steps
given ahead:

1. Advance time step:,,1 = t, + At



2. Setiteration = 1
3. Compute interface predictor displacement with one of tlewing methods

(a) Structural predictor: Solve the CSD problem to fujpﬁlz at the interface from
Ujs; with a predicted external force given by:
I. Pressure:
-Order 1:p,,, =P,
-Order 2:p,, ., = 2p,, — p,,_;, (forn > 2)
ii. Forcet’ = n°o|.,: (whereo|, , = 0)
- Order 1:t' ,, =t
-Order 2:t' | =2t" —tf

n—11

(forn > 2)
(b) Interface displacement predictor: 8;#1 , = 0 and find directlyﬂfﬁjli at the
interface with a prediction of the form
i. Order 0:01, = Gt
ii. Order 1:01i7, = Ujpy + At Vip

i, Order 2: 01, = s -+ At (30, — 1), (forn > 2)
4. lterate the coupled FSI problem

(a) CMD solver: Move Mesh
i. Transfertj’;’; to the mesh solver
ii. Solve the CMD problem and find; "' = 0}
iii. Compute mesh velocitieg ™
(b) CFD solver: Solve fluid
i. Transferv! ™! to the fluid solver
ii. Solve the CFD problem and fing'**, pi*!
iii. Compute fluid stress tensor at interfamg,
(c) CSD solver: Solve structure
I Transfera‘frj to the solid solver and compute structure fortes
ii. Solve the CSD problem and fing'}!
(d) Relaxation phase

I. Compute optimal relaxation parametervia Aitken method

ii. Relaxation of predicted interface position with
~n4-1 — ~n—+1 — n
u|FJ;,z‘+1 =(1- wi)u|ljf-,i + wiu|rt,1i+1
(e) Advance iterationi =17 + 1
() Check convergence. If reached, goto 5, else goto 4

5. Check time step. If end of time not reached, go to 1, else eodlculation

The Aitken method of relaxation is based on Aitken’s ac@len method for vectors. The
method can be easily implemented in any code which then essumverge of the coupled

problem for adequate time step parameters. The Aitken attax parameter is computed
with the following algorithm, as given in Wall et al. [39].

1. For the first time step and= 1, "' = 0 andw, = 1
2. Fori =1, fig™" = fij,,, anddfry = U,

stmax
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3. Compute Aitken optimal relaxation parameigr

(a) Compute the difference between previous and actuafacesolution

~N+1 ~n+1 n+1
ACTTh =0 —u
T i—1 T
Antl _ oAantl 4l
AU = Urr; = U

(b) Compute Aitken factor
—n+1 _ =n+l -n+1l
=ty + (s — 1) (AG?+1—AG7;I11)2

(c) Compute Aitken optimal relaxation parameter

- —n+1
w; =1— [

~An—+41 ~An—41 ~an—+1
(Aui —AQ Z.H)AUZ.Jrl

More sophisticated and computationally expensive methsah as the gradient method, lead
to solutions as good as the Aitken method for fluid-structoteraction problems. Additional
computational cost for this technique is insignificant simnly vector operations over the
interface nodes are performed.

7. EXAMPLES

7.1. Wind Turbine Generator System

This work consists of several parts and aims to find the inflaef local topography on the
efficiency of wind turbines. The first part is to determine pinessure exerted by the wind on
the turbine. Figure 3 shows the wind pressure over the terbliades.

BOUNDARY PRESSU

446.61
l 399.37
352.12

- 304.87

. 257 .62

{21038

- 163.13

115.88

68.637

& 21.391

x
¥ ‘ step 10.136 .
Contour Fill of BOUNDARY PRESSURE. E||]

Figure 3. Wind Pressure on Turbine Blades
This pressure is transferred to the structural solver axsanral force, and then the

wind turbine is solved with those forces.
Figure 4 shows the wind pressure over the turbine bladeshativhole aerogenerator

system.
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EXT PRESSURE

448.25
398.44
348.64

- -208.83
-249.03
+ 199.22

- 149.42
z
k TIME STEP, step 0.66
Y x

99.61

49.805

0
Contour Fill of EXT PRESSURE. -
Deformation ( x1): DISPLACEMENTS of TIME STEP, step 0.66. EII]

Figure 4. Wind Pressure and Turbine

| —*= Node 5195 evolution.

|IDISPLACEMENTS)|
1 1 1 1 1 1 1 1 1 1

. T

252 —

",
189 s e —

126 — —

063 —

TIME_STEP E“]

Figure 5. Norm displacement for blades

Movement of blades can be plot for its norm displacementhaws in Figure 5.

A complete cicle for rotation of the turbine blades is preéednn Figure 6. As can be
seen from these figures, more work needs to be done to find auéfficient wind generator
systems are with different terrain conditions. Next pafthis work will be presented shortly.

12



T 7T

Deformation ( x1): DISPLACEMENTS of TIME STEP, step 8.76 ﬁ"] Deformation ( x1): DISPLACEMENTS of TIME STEP, step 9.12. ﬁ"]

1

Deformation ( x1): DISPLACEMENTS of TIME STEP, step 9.66 E"] Deformation (x1): DISPLAGEMENTS of TIME STEP, step 10.14. E"]

b

Deformation ( x1): DISPLACEMENTS of TIME STEP, step 10.74. E“] Deformation ( x1): DISPLACEMENTS of TIME STEP, step 11.1. E“]

™

. b s b

Deformation ( x1): DISPLACEMENTS of TIME STEP, step 114 ﬁ"] Deformation ( x1): DISPLACEMENTS of TIME STEP, step 11.7. ﬁ"]

Figure 6. Time history blades displacements

8. CONCLUSIONS

Many fluid-structure interaction problems are solved withggered coupling techniques,
which are only acceptable for problems where the added nigess do not have influence
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in the structure. However this kind of problem may becomeabis for long time periods of
study. To avoid this problem, strong coupling partitionedesmes are advised.

However when the added mass effect plays an important rdleeistructure, parti-
tioned methods with block Newton schemes are an excellesiteh Another option is the
block Jacobi or block Gauss-Seidel method with relaxatmhniques. These last two meth-
ods are useless if they do not include the relaxation tecteni¢n this work, the strong cou-
pling block Gauss-Seidel partitioned method with a relaxatechnique based on Aitken’s
method is implemented, yielding an excellent solution en¢kamples presented.

Finally, a detailed algorithm for the fluid-structure irdgetion problem using the strong
coupling block Gauss-Seidel partitioned method is preskrin there, a relaxation technique
with Aitken’s method is used. However, other relaxatiorhtéques can be added with minor
modifications.
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