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Abstract. Nowadays, looking to reduce global warming and improve sustainability energy,
wind turbine generators are a real alternative for clean power generation. To withstand wind
forces, aerogenerators should be analyzed properly to ensure a good operation in the system
lifetime. Several approaches can be established to perform analysis and design of this kind
of structures. In this paper, an engineering solution considering fluid structure interaction is
presented. Wind action is modelled thru a stabilized fluid flow formulation, while the struc-
ture (wind turbine) is solved with geometrically nonlinear shell elements with only translation
degrees of freedom. In both cases, the finite element method is used to found a solution. Inter-
action between both formulations are capable to reproduce spin of turbine blades, including
self weight forces and time history analysis to obtain stresses and acting forces for several
operational conditions.
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1. INTRODUCTION

The implementation of a coupled problem can be done using two different global strategies,
which are themonolithicmethods and thepartitionedmethods. In monolithic methods, the
discretized fluid-structure system is solved together with the mesh movement system in a
single iteration loop, leading to a very large system of nonlinear equations to be solved si-
multaneously. Some advantages of this method are that it ensures stability and convergence
of the whole coupled problem. On the contrary, in simultaneous solution procedures the time
step has to be equal for all subsystems, which may be inefficient if different time scales are
presented for the problem. An important disadvantage is the considerably high computing
time effort required to solve each algebraic system and sometimes the necessity to develop
new software and solution methods for the coupling method. A monolithic approach to FSI is
presented by Ḧubner et al. [18].

In partitioned methods, the application of existing appropriate and sophisticated solvers
for either structural or fluid subsystems will continue to be used. These methods enjoy great
popularity due to the simplified coupling procedure in many cases. Partitioned methods are di-
vided intoweakor loosecoupling algorithms andstrongor implicit coupling schemes. Weak
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algorithms are also known asstaggeredor explicit schemes. The major drawbacks of parti-
tioned methods are lack of accuracy and stability problems,which sometimes may diverge
from the solution.

Partitioned methods were introduced by Park and Felippa [29]. The key idea for these
methods is described in Felippa et al. [13]. An interesting and simple example showing a
complete description for partitioned methods can be found in Valdés [37]. Partitioned so-
lutions with staggered coupling algorithms are developed by Farhat et al. [12] to be used
in aeroelastic wing problems. Strong coupling of partitioned algorithms are applied to large
displacements 2D structural problems coupled to viscous incompressible fluids by Wall and
Ramm [40] and Wall [38]. They also applied the same method for acoupled fluid structure
environment with an initially flat three-dimensional shellmodel as given in Wall and Ramm
[41]. Other large displacements structural problems interacting with incompressible fluids are
detailed in Mok [26], Mok and Wall [25] and Tallec and Mouro [32]. FSI with large displace-
ments applied to wind problems is developed by Rossi [30], Wüchner and Bletzinger [43],
Badia [2] and Ẅuchner [42].

More sophisticated developments on strong partitioned methods for FSI problems can
be found in Steindorf [31], Matthies and Steindorf [22], [23], [24] and Tezduyar et al. [34]. A
study on strong coupling partitioned methods for FSI applied to hemodynamic problems can
be found in Nobile [27], Causin et al. [4], and Fernández and Moubachir [14]. Strong coupling
of fluid-structure interaction including free surfaces is studied in Dettmer [9] and Wall et al.
[39]. Recently, a new approach based on Robin transmissions conditions for fluid-structure
interaction problems is given in Badia et al. [1].

2. FORMULATION

The governing equations for the couple incompressible fluid-structure problem consist of the
momentum equations together with the continuity equation.However the fluid and the struc-
tural parts of the domain must be treated differently. Then the problem is split into the fluid
test functions over the fluid domain and the solid test function operating over the structural
part.

For convenience, the boundary of the coupled problem is divided into the Dirichlet
boundary for the fluidΓD

f and the Dirichlet boundary for the solidΓD
s , the Neumann bound-

ary for the fluidΓN
f and the Neumann boundary for the solidΓN

s , and a common interface
boundaryΓI between the fluid and the solid. Then the boundary of the couple problem is
Γ = ΓD ∪ ΓN ∪ ΓI , whereΓD = ΓD

f ∪ ΓD
s andΓN = ΓN

f ∪ ΓN
s .

Also the coupled problem domain is divided into a solid partΩ s and a fluid partΩ f,
whereΩ = Ω s ∪ Ω f. In particular, solid displacementsus are given as a function of the solid
motionxs as

us(X, t) = xs − X (1)

whereX ∈ Ω s
0 with Ω s

0 being the reference solid domain. The fluid mesh motion is defined as
an extension inside the fluid domainΩ f of the solid displacementsus located at the interface
boundaryΓI . In other words, fluid displacements are found by

û = uf = Ext(us
ΓI) (2)

where different forms to make this extension are i.e. the Laplacian method or the pseudo-
elastic structural technique, among others. Fluid mesh displacements yield a fluid mesh ve-
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locity, v̂(uf) = vmesh, that has to be integrated into the fluid formulation. Since the Lagrangian
solid displacements move the eulerian fluid domain then our fluid formulation has to be mod-
ified to include this movement. In this work we take into account the fluid movement using
the Arbitrary Lagrangian Eulerian (ALE) formulation, as given in [3],[10].

Before writing the continuous formulation of the couple fluid-structure interaction
problem, the subspace test functions for the fluid, with a homogeneous Dirichlet boundary
condition, are defined by

δwi ∈ W0, W0 =
{

δwi ∈ H1(Ωf), δwi = 0 on ΓD
f ∪ ΓI , δwi = 0 on Ωs

}

(3)

and the subspace test functions for the structure are expressed as

δwi ∈ W0, W0 =
{

δwi ∈ H1(Ωs), δwi = 0 on ΓD
s , δwi = Ext(δwi|ΓI) on Ωf

}

(4)

Note that the test functions for the fluid vanish at the interface and inside the solid subdomain,
while the solid test functions are nonzero on the interface and extend inside the fluid subdo-
main. In this way, thekinematiccontinuity for the displacement and velocity field is imposed
as Dirichlet boundary conditions on the fluid by the interface, andkinetic continuity for the
traction is given as Neumann boundary conditions on the structure at the interface.

The structural problem is obtained by considering the spaceof the solid test functions
on the momentum equations, yielding

∫

Ωs
0

δwiρ0üidΩ0 +

∫

Ωs
0

δEijSijdΩ0 =

∫

Ωs
0

δwiρ0bidΩ0+

∫

ΓN0;s

δwit̄
0
i dΓ0 +

∫

ΓI

δwin
s
jσ

f
ijdΓ

(5)

which shows the interface traction obtained directly from the momentum conservation equa-
tion and not considered as an additional independent equation. A detailed mathematical ex-
planation can be found in [37],[32].

The fluid problem is obtained by substituting into the momentum equation the corre-
sponding test functions, which vanish in the solid part, yielding after integrating by parts

∫

Ωf

δwi

(

ρ
∂vi

∂t
+ ρcj

∂vi

∂xj

)

dΩ−

∫

Ωf

p
∂δwi

∂xi

dΩ +

∫

Ωf

µ
∂vi

∂xj

∂δwi

∂xj

dΩ =

∫

Ωf

δwiρbidΩ (6)

In this equation, mesh movement is taking into account with the convective termcj which
is given by the differencevj − vmesh. This equation must be complemented by adequate
boundary conditions dictated by the fluid space test functions. Since fluid test functions vanish
at the interface, then displacement and velocity fields can only be governed by imposing the
kinematic compatibility given by the Dirichlet conditions

uf
ΓI = us

ΓI (7)

vf
ΓI = vs

ΓI (8)
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The continuity equation for the fluid part remains the same that for the eulerian fluid
problem. Besides for the fluid formulation, a stabilization technique has to be added, which
in this work is taken with the FIC formulation of Õnate [28]. New development of the FIC
formulation can be found in Lynga [21].

Among the wide possibilities to update meshes in the fluid field, the most common is
the Laplacian method which can be found in [3]. Other methodsare based on the pseudo-
structural system, which can be done through the elastic spring analogy, i.e. see [11] and [8],
or by solving the elasticity equation as a pseudo-elastic system, i.e. see [20], [3] and [5]. In
this work, two different ways for the mesh movement of the fluid subdomain are implemented:
the Laplacian and the pseudo-elastic method.

In this way, the mesh is considered as another system. Therefore the fluid-structure
interaction problem yields a coupled three-field system: the fluid, the solid and the mesh
movement.

3. FINITE ELEMENT DISCRETIZATION FOR SHELLS

The discretization used for the rotation-free thin shell finite element is given for the total
Lagrangian formulation. A detailed description of this rotation-free element is found in Flores
and Õnate [15],[16], Vald́es [37], and Vald́es and Õnate [36]. Here only the general idea and
principal results are presented. It is important to remark that in case of studying an orthotropic
shell, first a principal fiber orientation is needed, as givenin Valdés [37]. Fig. 1 shows
a general shell mesh before the fiber orientation (left) and after the fiber orientation (rigth)
where red-dashed lines show vectors of principal fiber orientation ed for an initially out-of-
plane membrane structure together with its unit base vectors ei. A deep study of membranes
using the fiber orientation methodology can be found in Valdés et al. [35].
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Figure 1. Fiber Orientation

Bending effect for this rotation-free shell triangle element is given by the displacement
field of one element and all nodes of adjacent elements, as shown in the patch of Fig. 2.
Membrane forces for the rotation-free element are computedtaking into account only the
main element of the patch.

The path description is as follows:

• Element number is inside a circle.
• Nodes of the main element (M) are numbered locally as 1, 2 and 3.
• Main element sides are defined by its local node opposite to the side.
• Adjacent elements are numbered with the number associated to the common side 1, 2

and 3.
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Figure 2. Shell patch

• The remaining nodes of the patch are numbered locally as 4, 5,and 6 corresponding to
nodes on adjacent elements (1), (2) and (3) respectively.

In this work, a local coordinate system is given by the local fiber Cartesian base system
as shown in Fig. 1, and given in Valdés [37]. Then the base system for each finite element is
given by the unit vectorsefib1 , efib2 and the normalefib3 . The choice for this local system allow
us to compute shells with orthotropic material definitions.

The virtual internal work for shells can be expressed by

δW int =

∫

Ω0

∫ h

2

−h

2

δE
memb

αβ CαβγδE
memb

γδ dζdΩ0 +

∫

Ω0

∫ h

2

−h

2

ζ2δE
bend

αβC
αβγδE

bend

γδ dζdΩ0

(9)

where the Green-Lagrange strain tensor is given by

Eαβ = E
memb

αβ + ζE
bend

αβ = ǫαβ + ζκαβ (10)

where

ǫαβ =
1

2
(gαβ −Gαβ) (11)

measures membrane strains and

καβ = Kαβ − kαβ = Gα,β · N − gα,β · n (12)

measures bending strains.
From the virtual internal work, internal forces for the membrane part in curvilinear

coordinates can be written as

f
memb

iI = h

∫

Ω0

B
memb

αβiIS
αβ
membdΩ0 (13)

Using the Voigt notation to express the internal forces in curvilinear coordinates, Eq.
(13), yields

f
memb

I = h

∫

Ω0

[BBBT
I ]

memb

{S}
memb

dΩ0 (14)

where the strain-displacement matrixBBB
memb

I is given by
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BBB
memb

I =

















∂NI

∂ξ1
∂xh

1

∂ξ1
∂NI

∂ξ1
∂xh

2

∂ξ1
∂NI

∂ξ1
∂xh

3

∂ξ1

∂NI

∂ξ2
∂xh

1

∂ξ2
∂NI

∂ξ2
∂xh

2

∂ξ2
∂NI

∂ξ2
∂xh

3

∂ξ2

∂NI

∂ξ1
∂xh

1

∂ξ2
+ ∂NI

∂ξ2
∂xh

1

∂ξ1
∂NI

∂ξ1
∂xh

2

∂ξ2
+ ∂NI

∂ξ2
∂xh

2

∂ξ1
∂NI

∂ξ1
∂xh

3

∂ξ2
+ ∂NI

∂ξ2
∂xh

3

∂ξ1

















(15)

Finally, this strain-displacement matrix is changed from curvilinear to Cartesian coor-
dinates and then using the fiber orientation methodology, itis rotated to fiber direction yielding
the membrane strain-displacement matrixB

memb

ab .
From the virtual internal work, forces for the bending part in curvilinear coordinates

can be written as

f
bend

iI =
h3

12

∫

Ω0

B
bend

αβiIS
αβ
benddΩ0 (16)

Using the Voigt notation to express the internal forces in curvilinear coordinates, Eq.
(16), yields

f
bend

I =
h3

12

∫

Ω0

[BBBT
I ]

bend

{S}
bend

dΩ0 (17)

where the variation of the bending strain tensor in Voigt notation and expressed in
Cartesian coordinates can be written explicitly as

B
bend

I =
1

2A0

nsides
∑

J=1

lJ





n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1





nnode
∑

I=1





∂NI

∂x
xJ
,1 · x̃h

,1 +
∂NI

∂y
xJ
,1 · x̃h

,2

∂NI

∂x
xJ
,2 · x̃h

,1 +
∂NI

∂y
xJ
,2 · x̃h

,2



 n

−
1

2A0

nsides
∑

J=1

lJ





n̄J
1 0
0 n̄J

2

n̄J
2 n̄J

1





nnode
∑

I=1







∂NJ

I

∂x

∂NJ

I

∂y






n

(18)

wheren̄J
α is the normal of the each side of the main element of the patch,xJ

,α are the Cartesian
derivatives following the principal fiber orientation andx̃h

,α are the contravariant base vectors.
Finally the internal forces for the rotation-free shell element are expressed by

f int
a = hA0[BT

ab]
memb{Sb}

memb+
h3A0

12
[BT

ab]
bend{Sb}

bend (19)

Now the complete structural problems is expressed as

f int + Mü = f ext (20)

whereM is the mass matrix and̈u is the acceleration vector of the nodal variables. An im-
plicit solution of Eq. (20) requires the derivative of the internal forces yielding a tangent
matrix. In Flores and Õnate [15] the complete tangent matrix including material nonlinearity
is developed for the isotropic rotation-free shell element.
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4. FINITE ELEMENT DISCRETIZATION FOR FLUIDS

Finite element discretization of the incompressible flow equations is presented using the
Galerkin-type weak form. Õnate [28] gives a full description of the incompressible fluid for-
mulation using the finite calculus FIC stabilization technique and the fractional step method.
A complete description for the fluid problem emerged from thecontinuum mechanics equa-
tions including finite element discretization, stabilization and time integration schemes is
given in Vald́es [37]. From the conservation of linear momentum equation,given by Eq.
(6), we can find after discretization

Mv̇ + K(c)v − Gp = fext (21)

whereK(c) = Ac(c) + K v and

MijIJ v̇jJ = δij

∫

Ω

ρNINJdΩ v̇jJ (22)

Ac
ijIJ vjJ = δij

∫

Ω

ρNI ch
∂NJ

∂xj

dΩ vjJ (23)

Kv
ijIJ vjJ = δijµ

∫

Ω

∂NI

∂xj

∂NJ

∂xj

dΩ vjJ (24)

GiIJ pJ =

∫

Ω

∂NI

∂xi

NJdΩ pJ (25)

with ch being the convective velocity given by the difference between the spatial velocityvh

and the mesh velocityvh
mesh. From the continuity equation, the divergence of the velocity

yields after discretization

GTv = 0 (26)

which is the incompressibility condition for fluids where

GT
jIJ vjJ =

∫

Ω

NI

∂NJ

∂xj

dΩ vjJ (27)

Equations (21) and (26) describe the incompressible Navier-Stokes equations for fluids.
Since the original works of Chorin [6] and Temam [33], fractional step methods for

the incompressible Navier-Stokes equations have earned widespread popularity because of
the computational efficiency given by the uncoupling of the pressure from the velocity field.
A detailed stability analysis of fractional step methods for incompressible flows is given in
Codina [7].

The easiest form to understand the development of the fractional step method is from
the expression of the incompressible Navier-Stokes equations, where Eq. (21) can be split and
yield the equivalent incompressible flow equations

M
1

∆t
(ṽn+1 − vn) + K(c̃n+1)ṽn+1 − Gpn = f ext

n+1 (28)

M
1

∆t
(vn+1 − ṽn+1)− G(pn+1 − pn) = 0 (29)
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whereṽn+1 is an auxiliary velocity variable and the following essential approximation has
been taken:K(cn+1)vn+1 ≈ K(c̃n+1)ṽn+1. From Eq. (29),vn+1 can be expressed in terms of
ṽn+1 yielding

vn+1 = ṽn+1 +∆t M−1G(pn+1 − pn) (30)

Substituting this last equation into Eq. (26) yields

−∆t GTM−1G(pn+1 − pn) = GT ṽn+1 (31)

Now observe thatGTM−1G represent an approximation to the Laplacian operator, as men-
tioned in Codina [7], given byLIJ = ρ (∇NI ,∇NJ).

Finally the incompressible fluid flow equations to be solved using theθ f-family inte-
gration scheme and using the FIC stabilization technique, developed by Õnate [28], yield

M
1

∆t
(ṽn+1 − vn) + H(c̃n+θf)ṽn+θf − Gpn + Cĉn+θf = f ext

n+θf (32)

−(∆t+ τ) L(pn+1 − pn) + Qπππn = GT ṽn+1 (33)

M
1

∆t
(vn+1 − ṽn+1)− G(pn+1 − pn) = 0 (34)

Mĉn+θf − Ac vn+θf = 0 (35)

M̂πππn+θf − QTpn+θf = 0 (36)

whereH(c) = Ac(c) + K v + K̂(c) and

K̂ijIJ = δij

∫

Ω

ρ
hi

2

∂NI

∂xj

c̃h
∂NJ

∂xj

dΩ (37)

CijIJ = δij

∫

Ω

ρ
hi

2

∂NI

∂xj

NJdΩ (38)

QIJ =

∫

Ω

τi
∂NI

∂xi

NJdΩ (39)

M̂IJ =

∫

Ω

ρNINJdΩ (40)

with 1

2
≤ θ f ≤ 1 for unconditionally stable implicit schemes andτi being the intrinsic time

parameters defined in Õnate [28].

5. FLUID-STRUCTURE INTERACTION

With the developed equations for the fluid solverF and the solid solverS, the problem consist
on finding the appropriate method to solve the fluid-structure interaction (FSI) problem. Two
different global methods for FSI problems can be used: monolithic methods and partitioned
methods. In this work the last technique is described.

Numerical simulation of FSI problems is not only difficult because of the problems
associated with the fluid or structure solution, but also because of the coupling interface be-
tween these two fields which sometimes represents another challenge. These difficulties de-
pend strongly on theadded masseffect introduced by the fluid over the structure, as given in
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Causin et al. [4]. When the structure densityρs is much larger than the fluid densityρf, the
added mass effect of the fluid is not significant and the problem can be solved with staggered
partitioned schemes or strong coupling partitioned techniques as in the case ofaeroelasticity.
However when the structure and fluid densities are of the sameorder, as in the case ofhemody-
namics, the added mass effect of the fluid over the structure is very important and the coupling
algorithm to be used must be a strong coupling partitioned scheme with relaxation, or even
better techniques as the exact Newton or inexact Newton method for strong coupling prob-
lems, or the recently partitioned procedures based on Robin transmissions conditions given
by Badia et al. [1].

To explain these methods, assume that the fluid unknowns are grouped together in the
vectorx and that the nonlinear iterative fluid solver is written as

xi = F(xi−1, y) (41)

wherey represent the displacements of the structure, which also define the current configura-
tion of the interface. The nonlinear iterative solid solveris given by

yi = S(yi−1, x) (42)

wherex defines the nodal fluid velocities and pressure including thetraction fluid forces at the
interface for the structure. In this work, theBlock Gauss Seidelmethod is used which consists
in iterating the fluid and solid solvers independently as shown next

xi = Fp(xi−1, yi) (43)

yi = Sq(yi−1, xi) (44)

wherep andq are the number of times that the solversF andS are repeated respectively. Also
for i = 1, x0

n+1 = xn andy0
n+1 = yn. Once the tolerance or maximum number of iterations is

reached, the time step is advanced and the process is repeated.

6. STRONG COUPLING WITH RELAXATION

In this work, the strong coupling block Gauss-Seidel partitioned method with relaxation has
been implemented. The structural solverS is now referred to as the computational solid
dynamic (CSD) solver. The fluid solverF solves the fluid equations plus the movement of
the mesh, yielding in a high-cost task from the computational point of view. Therefore the
fluid solver F is split into the computational mesh dynamic (CMD) solver that moves the
interior nodes of the finite element mesh of the fluid subdomain, and the computational fluid
dynamic (CFD) solver that uses the fractional step method together with the ALE technique
incorporated in the momentum equation. All solvers of each field use an implicit scheme.

There are several methods in the literature to accelerate the solution of the problem by
means of relaxation, i.e. Mok [26]. In this work the Aitken method is implemented, i.e. Irons
and Tuck [19], which yields excellent solutions with simplemodifications to the code.

In order to compute the coupled fluid-structure interactionproblem, a unified algorith-
mic framework for the whole procedure is presented next. Considering known all values of
solid, fluid and mesh at time steptn, the new steptn+1 is found following the simple steps
given ahead:

1. Advance time step:tn+1 = tn +∆t
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2. Set iterationi = 1

3. Compute interface predictor displacement with one of the following methods

(a) Structural predictor: Solve the CSD problem to findûn+1

|ΓI ,i at the interface from
un+1

|Ωs,i
with a predicted external force given by:

i. Pressure:

· Order 1:pn+1 = pn

· Order 2:pn+1 = 2pn − pn−1, (for n ≥ 2)

ii. Forcetf = ns
σ

f
|ΓI : (whereσf

|ΓI ,0
= 0)

· Order 1:t f
n+1 = tf

n

· Order 2:t f
n+1 = 2t f

n − t f
n−1, (for n ≥ 2)

(b) Interface displacement predictor: Setu1

|ΓI ,1
= 0 and find directlyûn+1

|ΓI ,i at the
interface with a prediction of the form

i. Order 0:ûn+1

|ΓI ,i = ûn
|ΓI

ii. Order 1: ûn+1

|ΓI ,i = ûn
|ΓI +∆t v̂n

|ΓI

iii. Order 2: ûn+1

|ΓI ,i = ûn
|ΓI +∆t

(

3

2
v̂n
|ΓI − 1

2
v̂n−1

|ΓI

)

, (for n ≥ 2)

4. Iterate the coupled FSI problem

(a) CMD solver: Move Mesh

i. Transferûn+1

|ΓI ,i to the mesh solver

ii. Solve the CMD problem and find̂un+1

i = ûn+1

|Ωf ,i

iii. Compute mesh velocitieŝvn+1

i

(b) CFD solver: Solve fluid

i. Transfer̂vn+1

i to the fluid solver
ii. Solve the CFD problem and findvn+1

i , pn+1
i

iii. Compute fluid stress tensor at interfaceσf
|ΓI

(c) CSD solver: Solve structure

i. Transferσf
|ΓI to the solid solver and compute structure forcestf

ii. Solve the CSD problem and findun+1
i+1

(d) Relaxation phase

i. Compute optimal relaxation parameterw̄i via Aitken method
ii. Relaxation of predicted interface position with

ûn+1

|ΓI ,i+1
= (1− w̄i)û

n+1

|ΓI ,i + w̄iun+1

|ΓI ,i+1

(e) Advance iteration:i = i+ 1

(f) Check convergence. If reached, go to 5, else go to 4

5. Check time step. If end of time not reached, go to 1, else end of calculation

The Aitken method of relaxation is based on Aitken’s acceleration method for vectors. The
method can be easily implemented in any code which then ensures converge of the coupled
problem for adequate time step parameters. The Aitken relaxation parameter is computed
with the following algorithm, as given in Wall et al. [39].

1. For the first time step andi = 1, µ̄n+1
1 = 0 andw̄1 = 1

2. Fori = 1, µ̄n+1
0 = µ̄n

imax
andûn+1

|ΓI ,0 = ûn
|ΓI ,imax
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3. Compute Aitken optimal relaxation parameterw̄i

(a) Compute the difference between previous and actual interface solution

∆ûn+1

i = ûn+1

|ΓI ,i−1
− un+1

|ΓI ,i

∆ûn+1

i+1 = ûn+1

|ΓI ,i − un+1

|ΓI ,i+1

(b) Compute Aitken factor

µ̄n+1
i = µ̄n+1

i−1 + (µ̄n+1
i−1 − 1)

(∆ûn+1

i
−∆ûn+1

i+1)·∆ûn+1

i+1

(∆ûn+1

i
−∆ûn+1

i+1)
2

(c) Compute Aitken optimal relaxation parameter

w̄i = 1− µ̄n+1
i

More sophisticated and computationally expensive methods, such as the gradient method, lead
to solutions as good as the Aitken method for fluid-structureinteraction problems. Additional
computational cost for this technique is insignificant since only vector operations over the
interface nodes are performed.

7. EXAMPLES

7.1. Wind Turbine Generator System

This work consists of several parts and aims to find the influence of local topography on the
efficiency of wind turbines. The first part is to determine thepressure exerted by the wind on
the turbine. Figure 3 shows the wind pressure over the turbine blades.

Figure 3. Wind Pressure on Turbine Blades

This pressure is transferred to the structural solver as an external force, and then the
wind turbine is solved with those forces.

Figure 4 shows the wind pressure over the turbine blades withthe whole aerogenerator
system.

11



Figure 4. Wind Pressure and Turbine

Figure 5. Norm displacement for blades

Movement of blades can be plot for its norm displacement, as shown in Figure 5.
A complete cicle for rotation of the turbine blades is presented in Figure 6. As can be

seen from these figures, more work needs to be done to find out how efficient wind generator
systems are with different terrain conditions. Next parts of this work will be presented shortly.
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Figure 6. Time history blades displacements

8. CONCLUSIONS

Many fluid-structure interaction problems are solved with staggered coupling techniques,
which are only acceptable for problems where the added mass effect do not have influence

13



in the structure. However this kind of problem may become unstable for long time periods of
study. To avoid this problem, strong coupling partitioned schemes are advised.

However when the added mass effect plays an important role inthe structure, parti-
tioned methods with block Newton schemes are an excellent choice. Another option is the
block Jacobi or block Gauss-Seidel method with relaxation techniques. These last two meth-
ods are useless if they do not include the relaxation technique. In this work, the strong cou-
pling block Gauss-Seidel partitioned method with a relaxation technique based on Aitken’s
method is implemented, yielding an excellent solution to the examples presented.

Finally, a detailed algorithm for the fluid-structure interaction problem using the strong
coupling block Gauss-Seidel partitioned method is presented. In there, a relaxation technique
with Aitken’s method is used. However, other relaxation techniques can be added with minor
modifications.

Acknowledgementes

The authors wish to acknowledge the support provided by the PROMEP program for this
research.

9. REFERENCES

References

[1] Santiago Badia, Fabio Nobile, and Christian Vergara. Fluid-structure partitioned pro-
cedures based on robin transmissions conditions.Journal of Computational Physics,
submitted, 2007.

[2] Santiago I. Badia.Stabilized Pressure Segregation Methods and Their Application to
Fluid-Structure Interaction Problems. PhD thesis, Technical University of Cataluña,
2006.

[3] Ted Belytschko, Wing Kam Liu, and Brian Moran.Nonlinear Finite Elements for Con-
tinua and Structures. Wiley, Chichester, 2000.

[4] P. Causin, J. F. Gerbeau, and F. Nobile. Added-mass effectin the design of partitioned
algorithms for fluid-structure problems.Computer Methods in Applied Mechanics and
Engineering, 194:4506–4527, 2005.

[5] G. Chiandussi, Gabriel Bugeda, and Eugenio Oñate. A simple method for automatic up-
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[39] Wolfgang A. Wall, Steffen Genkinger, and Ekkerhard Ramm. A strong coupling parti-
tioned approach for fluid-structure interaction with free surfaces.Computers and Fluids,
36:169–183, 2007.

[40] Wolfgang A. Wall and Ekkerhard Ramm. Fluid-structure interaction based upon a sta-
bilized (ale) finite element method. In Eugenio Oñate and Sergio Idelsohn, editors,IV
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[43] Roland Ẅuchner and K.-U. Bletzinger. Stress-adapted numerical formfinding of pre-
stressed surfaces by the updated reference strategy.International Journal for Numerical
Methods in Engineering, 64:143–166, 2005.

17


