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Abstract. This paper presents a novel simulation method for the large deformation behavior
of pressure-sensitive adhesives (PSAs). The focus is on visco-hyperelasticity and temperature-
dependence of PSAs. All the basic equations are numerically solved in the Eulerian frame-
work because it allows arbitrarily large deformations. Visco-hyperelasticity is formulated us-
ing Simo’s finite-strain viscoelastic model, where hyperelasticity is modeled as a novel strain
energy function of the left Cauchy-Green deformation tensor. The left Cauchy-Green deforma-
tion tensor is temporally updated from the Eulerian velocity field. Temperature-dependence is
described with the time-temperature superposition principle of Williams, Landel, and Ferry.
To validate the proposed approach, we simulate uniaxial tension tests under different tensile
speed and temperature conditions.
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1. INTRODUCTION

In recent years, pressure-sensitive adhesives (PSAs) have been increasingly used in
various industrial fields, from automobiles and building materials to electronic devices and
transdermal drug delivery systems. This widespread use of PSAs is due to ease of application
and technological advances. In the literature, many experimental studies of PSAs have been
presented. At the same time, there has been a growing need for numerical simulations of
the performance gain of PSAs. Numerical simulations, however, have not been practically
used to design the structural and material properties of PSAs for two reasons. The first one
is the difficulty of simulations of extremely large deformation and failure that tend to occur
in industrial applications of PSAs. Fig.1 shows peeling behavior of a PSA sheet. As shown
in Fig.1, the PSA shows large deformation with cohesive and interfacial failure [1, 2]. Such
deformations cannot be simulated with a Lagrangian finite element method due to highly
distorted elements. The second reason is that PSAs exhibit strong material nonlinearity such
as viscosity, hyperelasticity, temperature-dependence, failure, and chemical interfacial force
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Figure 1. Stringiness phenomenon in peel test.

between adherend and adhesive [3]. A constitutive model for such phenomena has not been
presented in the literature.

Recently, we proposed a visco-hyperelastic analysis scheme [4] based on Eulerian
finite element method [5] for the dynamics of PSAs. An Eulerian finite element method
can treat arbitrarily large deformations and create new free surfaces in a natural manner in
the spatially-fixed mesh [5]. In this paper, we propose the temperature-dependent visco-
hyperelastic formulation based on an Eulerian finite element method. The paper is organized
as follows. In Section 2, we present the basic equations and formulate the constitutive equa-
tion in the Eulerian framework. In Section 3, we explain the numerical alogorithm in terms
of an Eulerian/ALE finite element method. In Section 4, to validate the proposed approach,
we simulate uniaxial tension tests under different tensile speed and temperature conditions. In
Section 5, conclusions are drawn.

2. BASIC EQUATIONS

PSAs are usually based on an elastomer compounded with a suitable tackifier. In
this study, PSAs are modeled as macroscopic systems described with the continuum theory
because a microscopic approach tends to become too complicated to yield the desired results
and therefore doesn’t meet our present needs.

2.1. Equation of motion and boundary conditions

Let Ω ⊂ Rndim (ndim =1,2, or 3) be the current configuration of a continuum body
with a smooth boundaryΓ = ∂Ω as shown in Fig.2, wherev is the velocity vector,b is
the body force per unit mass,t is the Cauchy traction vector, and the overline indicates a
given quantity. Derived from the momentum conservation law, the equation of motion for the
current configuration of the body in the Eulerian description is given by

ρ

{
∂v

∂t
+ (v · ∇) v

}
= ∇ · σ + ρb, (1)

whereρ is the current mass density,σ is the Cauchy stress tensor, and∂/∂t is the spatial time
derivative. In addition, both the kinematic and dynamic boundary conditions are defined as

v = v, (2)



σ · n = t, (3)

respectively onΓv ∪ Γt = ∂Ω. Here,n is the outward unit normal vector on the boundary
surface∂Ω in the current configuration.

Figure 2. Moving solid body in the current configuration.

2.2. Deformation measure in the Eulerian framework

In the Lagrangian framework, solid deformation is described using the deformation
gradient tensor

F =
∂x

∂X
, (4)

wherex is the current position vector of material points whileX is the referential position
vector. By contrast, the Eulerian description lacks material points to link the reference and
current configurations. Therefore, we must devise a method to describe solid deformation
without material points. To this end, we introduce the material time derivative of the left
Cauchy-Green deformation tensor. The left Cauchy-Green deformation tensor is defined by

B = F · F T . (5)

According to the definition (5) and the product rule, we obtain

DB

Dt
=

D
(
F · F T

)
Dt

(6)

=
DF

Dt
· F T + F · DF T

Dt
, (7)

whereD/Dt is the material time derivative. We then find the useful relationship

∂B

∂t
+ (v · ∇) B = L · B + B · LT (8)

with the relationDF /Dt = L · F . Here,L is the spatial velocity gradient, which is defined
by L = ∇v. For the stress-free reference configuration, the left Cauchy-Green deformation
tensor must satisfy the initial condition, i.e.B = I. According to the relation (8), the
left Cauchy-Green deformation tensor is temporally updated from the Eulerian velocity field
without material points.



2.3. Constitutive equation for temperature-dependent visco-hyperelasticity

PSAs can sustain finite strains without noticeable volume changes and be regarded as
initially isotropic material. In this paper, we postulate that PSAs are incompressible isotropic
material and focus on the viscosity, hyperelasticity, and temperature-dependence.

To describe the temperature-dependence, we introduce the time-temperature super-
position principle, which is frequently used to describe the mechanical relaxation behaviour
of polymers. According to this principle, time and temperature are equivalent, i.e. a given
property measured for short times at a given temperature is identical with one measured for
longer times at a lower temperature. In order to convert the experimental relaxation timeτ at
a measured temperatureθ into the equivalent relaxation timeτ ′ at a reference temperatureθr,
the shift factora(θ) is defined by

τ ′ =
τ

a(θ)
. (9)

In the literature various functional forms of the shift factor have been proposed [6-10]. For
polymer materials, the Arrhenius [9] and Williams-Landel-Ferry Equation (WLF) [10] equa-
tions are commonly used. For elastomers such as PSAs above the glass transition temperature,
the shift factora(θ) follows the WLF equation, given by

log10a(θ) =
−d1(θ − θr)

d2 + θ − θr

, (10)

whered1[-] and d2[◦C] are constants. In order to identify the constants, we derived discrete
values of the shift factor from stress relaxation experiments of an acrylic PSA. The Discrete
values can be approximated with the WLF equation whered1 = 12.2，d2 = 120[◦C] for
θr = 0[◦C], as shown in Fig.3.
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Figure 3. Time-temperature shift factor.

For the visco-hyperelastic formulation, we introduce Simo’s finite-strain viscoelastic
model [11]. The Cauchy stress tensor can be split into isochoric and volumetric parts, i.e.

σ = σiso + σvol . (11)

Here, the volumetric partσvol is determined from the incompressibility constraint

J =
√

detB = 1 , (12)



whereJ denotes the volume ratio. To readily enforce the incompressibility constraint within
the context of finite element methods, near incompressibility is assumed, i.e.

σvol = κ(J − 1)I (13)

whereκ is the penalty number. In this study, values ofκ in the region of105 − 108 are used
for this purpose.

Figure 4. Generalized Maxwell model.

On the other hand, a time-dependent change of the system is caused purely by iso-
choric deformations. The isochoric partσiso is formulated with the generalized Maxwell
model, shown in Fig.4. In this model, the isochoric part is given by

σiso = σ∞
iso +

m∑
α=1

Qα , (14)

DQα

Dt
=

Dσiso α

Dt
− Qα

τ ′
α

(α = 1, · · · , m) , (15)

whereσ∞
iso andσiso α are the stress in the spring representing the hyperelasticity andQα is

the stress in the dashpot of theα-Maxwell element characterizing the dissipation mechanism
caused by the viscosity. In (15), the equivalent relaxation timeτ ′ at a reference temperature
θr is used to describe the temperature-dependence on the assumption that the temperature
of PSAs is steady during deformations, i.e. the self-heating effects can be ignored. Simple
closed form solutions of the evolution equations (15), which are valid for some semi-open
time intervalt ∈ (0, T ], are given by the convolution integrals

Qα = exp

(
−T

τ ′
α

)
Qα|t=0+ +

∫ T

0+

DQα

Dt
exp

{
−(T − t)

τ ′
α

}
dt (16)

Let ∆t be the time increment from timetn to tn+1, and then the numerical time integration
algorithm of (16) is given by

Qn+1
α = exp

(
−∆t

τ ′
α

)
Qn

α + exp

(
−∆t

2τ ′
α

)
β∞

α

(
σ∞n+1

iso − σ∞n
iso

)
, (17)



whereβ∞
α are non-dimensional constants defined byσiso α = β∞

α σ∞
iso.

The stress in the springσ∞
iso is derived from the given strain-energy functionΨ∞

iso. Nu-
merous specific forms of strain-energy functions have been proposed in the literature. For
simulation-aided design of PSAs, the functional form should be simple and its physical mean-
ing should be clear. Thus we focus on Yamashita-Kawabata strain-energy function [12]

Ψ∞
iso = c1(IB − 3) + c2(IIB − 3) +

c3

p + 1
(IB − 3)p+1 (18)

wherec1, c2, c3, andp (> 0) are constants.̄IB and IIB are the modified invariants of the left
Cauchy-Green deformation tensor and are defined by

IB = J−2/3trB , (19)

IIB = J−4/3
{
(trB)2 − tr

(
B2

)}
. (20)

Yamashita-Kawabata strain-energy function (18) was proposed for carbon-black filled rub-
bers. The first two terms and the third term on the right-hand-side of (18) represent the linear
elastic and the hardening behaviors, respectively. Yamashita-Kawabata strain-energy func-
tion, however, cannot describe the stress-strain behavior of PSA with high accuracy because
the stress-strain behavior of PSAs is more nonlinear than carbon-black filled rubbers. In this
paper, therefore, we propose a novel strain-energy function based on Yamashita-Kawabata
strain-energy function, i.e.

Ψ∞
iso = c1(ĪB − 3) + c2(̄IIB − 3) +

c3

p + 1
(ĪB − 3)p+1 +

c4

q + 1
(̄IIB − 3)q+1 (21)

wherec1, c2, c3, c4, p (> 0), andq (> 0) are constants. The first two terms and the last
two terms on the right-hand-side of (21) represent the linear elastic and the hardening be-
havior, respectively. To verify the advantages of the proposed strain-energy function (21), we
compare computational results using the proposed strain-energy function (21) and Yamashita-
Kawabata strain-energy function (18) in Section 4. The strain-energy functions (18)(21) give
the most general form of a stress relation in terms of the modified invariants, which character-
izes isotropic hyperelastic materials at finite strains, i.e.

S∞
iso = 2

∂Ψ∞
iso

∂C
= 2

(
∂Ψ∞

iso

∂IC

∂IC

∂C
+

∂Ψ∞
iso

IIC

IIC

∂C

)
, (22)

whereĪB and IIB are the modified invariants of the right Cauchy-Green deformation tensor
and have the relationship

IC = IB , (23)

IIC = IIB . (24)

In (22) the derivatives ofIC andIIC with respect toC are given [14] by

∂IC

∂C
= J−2/3

(
I − 1

3
ICC−1

)
, (25)

IIC

∂C
= J−4/3

(
ICI − 2

3
IICC−1 − C

)
. (26)



Substituting (25)(26) into (22), we obtain

S∞
iso = 2J−2/3

(
∂Ψ∞

iso

∂IC

+
∂Ψ∞

iso

IIC

J−2/3IC

)
I

+2J−2/3

(
∂Ψ∞

iso

IIC

J−2/3

)
C − 2

3
J−2/3

(
IC

∂Ψ∞
iso

∂IC

+ 2IIC
∂Ψ∞

iso

IIC

J−2/3

)
C−1 (27)

(27) should be expressed in terms of notC butB because solid deformation is described with
(8). Next, we introduce the Piola transformation [14]

σ∞
iso = J−1F · S∞

iso · F T . (28)

With (27) we deduce from the Piola transformation (28) that

σ∞
iso = 2J−5/3

(
∂Ψ∞

iso

∂IB

+
∂Ψ∞

iso

IIB

J−2/3IB

)
B

+2J−5/3

(
∂Ψ∞

iso

IIB

J−2/3

)
B · B − 2

3
J−5/3

(
IB

∂Ψ∞
iso

∂IB

+ 2IIB
∂Ψ∞

iso

IIB

J−2/3

)
I (29)

Rearranging (29) with the modified invariants (19)(20) and the modified left Cauchy-Green
deformation tensor, defined by

B = J−2/3B , (30)

we finally obtain

σ∞
iso =

2

J

{(
∂Ψ∞

iso

∂IB

+
∂Ψ∞

iso

IIB

IB

)
B +

∂Ψ∞
iso

IIB

B · B − 1

3

(
IB

∂Ψ∞
iso

∂IB

+ 2IIB
∂Ψ∞

iso

IIB

)
I

}
.

(31)

3. EULERIAN FINITE ELEMENT FORMULATION

In this section, the numerical alogorithm for solving the basic equations is presented
in terms of an Eulerian/ALE finite element method [5, 15]. The Eulerian/ALE formulation in
this study is based on an operator splitting strategy for breaking complicated equations into a
series of less complicated equations [13].

3.1. Operator splitting

The basic equations have the general conservation form

∂Φ

∂t
+ c · ∇Φ = S , (32)

whereΦ is the arbitrary function,c is the relative velocity between the material and the mesh,
andS is the source term. The relative velocityc is defined by

c = v − v̂ , (33)

wherev̂ is the mesh velocity. If the mesh velocity is null, (32) reduces to a Eulerian equation.
If, on the other hand, the mesh velocity is not null, (32) is an arbitrary Lagrangian-Eulerian



(ALE) equation. In this study, the ALE formulation is used to impose the kinematic and dy-
namic boundary conditions (2)(3) on material interfaces. That’s because the present Eulerian
formulation cannot deal with them due to dissipated interfaces.

Operator splitting divides (32) into two equations,

∂Φ

∂t
= S , (34)

∂Φ∗

∂t
+ c · ∇Φ˜ = 0 , (35)

which are then solved sequentially. (34), the non-advective step, contains the source term,
and (35), the advective step, contains the convective term. A superscript * of (35) shows the
variable after the non-advective step. Fig.5 illustrates the steps in the Eulerian/ALE formu-
lation. The difference between (34) and the standard Lagrangian equations is the type of the
time derivative. (34) is hence identical to the standard Lagrangian formulation if the spatial
time derivative is replaced by the material time derivative. To solve (35), the deformed mesh
is moved to the fixed Eulerian mesh or the relaxed ALE mesh, and volume fraction of material
transported between adjacent elements is calculated. The Lagrangian solution variables such
as the velocity vector, Cauchy stress tensor and left Cauchy-Green deformation tensor are then
adjusted to account for the flow of the material between adjacent elements by the transport
algorithms presented below.

Advective step

Time

Non-advective step

n n + 1

Figure 5. The operator split for Eulerian/ALE formulation.

3.2. Non-advective step

The virtual work equation is derived from the non-advective part of (1),∫
Ω

ρa · δudV +

∫
v

σ : (δu ⊗∇)dV =

∫
Γt

t̄ · δudS +

∫
Ω

ρb · δudV (36)

whereδu is the virtual displacement vector anda is the acceleration vector. The updated
Lagrangian formulation is used since the reference configuration is the current configuration



in the Eulerian/ALE formulation. To avoid volumetric locking, selective reduced integration
[16] is used for the spatial discretization. The discrete equation of (36) is

Mâ + Fint = Fext (37)

whereâ is the nodal acceleration vector,M is the mass matrix, andFint andFext are the
internal and external force vectors, respectively. These matrices and vectors are given by

M =

Nel∑
e=1

ρ

∫
Ωe

NT NdVe , (38)

Fint =

Nel∑
e=1

∫
Ωe

BT
sdσdVe , (39)

Fext =
Nt∑
e=1

∫
Γt

NT t̄dSe +

Nel∑
e=1

∫
Ωe

ρNT bdVe , (40)

whereN is the shape function matrix, andBsd represents the strain-displacement matrix. In
addition,Nel is the number of total elements, whileNt andNel are the numbers of elements
whose edges are adjacent to the kinematic and dynamic boundaries, respectively.

The explicit formulation advances the solution in time with the central difference
method,

ân = M
−1

(F n
ext − F n

int) , (41)

v̂n+1/2 = v̂n−1/2 + ∆tân , (42)

x̂n+1 = x̂n + ∆tv̂n+1/2 , (43)

whereM is the diagonal lumped mass matrix transformed from the consistent mass matrix
(38), â is the nodal velocity vector, and̂x is the nodal position vector. After calculating the
nodal velocity vector, the left Cauchy-Green deformation tensor and the Cauchy stress tensor
are updated. The explicit formulation of the non-advective part of (8) is given by

Ln+1/2 = B
n+1/2
sd v̂n+1/2 , (44)

Bn+1 = Bn + ∆t
{
Ln+1/2 · Bn + Bn · (LT )n+1/2

}
. (45)

3.3. Advective step

In the advective step, the velocity, Cauchy stress, and left Cauchy-Green deformation
tensor are remapped from the Lagrangian mesh onto the fixed Eulerian mesh or the relaxed
ALE mesh with the second-order MUSCL scheme [17]. The advective calculation is further
split into a sequence of one-dimensional advection steps. The spatial locations of the material
boundaries is also advected by solving the advection equation of Volume-Of-Fluid (VOF)
function [18]. To avoid the numerical instability brought by the numerical diffusion in the
void domain, we update the left Cauchy-Green deformation tensor with VOF functionφ:

B̃n+1 =

{
Bn+1 for φn+1 ≥ φmin

0 for φn+1 < φmin
(46)

whereφmin is a threshold. In this study, values ofφmin in the region of10−2 − 10−1 are used.



4. NUMERICAL EXAMPLES

To validate the proposed approach, we compare the computational and experimental
results of uniaxial tension tests under different tensile speed and temperature conditions. Fig.6
is the computational model in two dimensions for uniaxial tension tests. The domain is dis-
cretized with33 × 50 mesh of uniform square elements. Values for the material constants
for Yamashita-Kawabata strain-energy function (18) and those for our proposed strain-energy
function are given in Tables 1 and 2, respectively. These were experimentally obtained from
uniaxial tension tests. All the walls are assumed not to have friction, and the symmetry con-
dition is imposed along the left edge of the PSA. The constant velocity in the vertical upward
direction is imposed on the top surface of the PSA, and then the ALE finite element method
is selected in order to enforce this boundary condition.

x

z

1.0cm

tensile speed

1.0cm
1.5cm

.

Figure 6. Computational model of uniaxial tension.

The first validation experiment considered is an uniaxial tensile test at different tensile
speeds (500mm/min, 50mm/min, 5mm/min) and constant temperature (20◦C). The numerical
accuracy is quantified by the error

ε =
1

Nd

Nd∑
i=1

|σexp.
i − σcomp.

i |
σexp.

i

, (47)

whereNd is the amount of experimental data,σ is thezz component of the Cauchy stress ten-
sorσ. Fig.7 (with Yamashita-Kawabata strain-energy function) and Fig.8 (with our proposed
strain-energy function) show comparison between the experimental and the computational re-
sults. Our proposed strain-energy function enables us to reduce the error rate by 78.6% thus
giving a more accurate description of the visco-hyperelastic behavior of PSAs.

In the second validation experiment, we also compare the experimental and compu-
tational results using first Yamashita-Kawabata strain-energy function in Fig.9 and then our



proposed strain-energy function in Fig.10. However, in this uniaxial tension test, we consider
constant tensile speed (50mm/min) at different temperature (0◦C, 20◦C, 40◦C) conditions.
The improvement in accuracy of description of the temperature-dependent behavior of PSAs
is 32.7% compared with the calculation that employed Yamashita-Kawabata strain-energy
function. However, the computation at 0◦C, shown in Fig.10, doesn’t show good qualitative
agreement with experimental data. This is probably due to the low accuracy of the shift factor
measurement in the low temperature regime.

Finally, we check whether the material volume is numerically conserved during the
simulation because incompressible materials keep the volume constant throughout a motion.
Fig.11 shows the deformation at nominal strain of 0% and 1000%. The material volume is
well conserved during the simulation with error under 1.4%.
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Figure 7. Comparison between the experimental and computational results of uniaxial tension
tests at a constant temperature (20◦C) with Yamashita-Kawabata strain-energy function.
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Figure 8. Comparison between the experimental and computational results of uniaxial tension
tests at a constant temperature (20◦C) with our proposed strain-energy function.
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Figure 9. Comparison between the experimental and computational results of uniaxial tension
tests at a constant tensile speed (50mm/min) with Yamashita-Kawabata strain-energy function.
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Figure 10. Comparison between the experimental and computational results of uniaxial ten-
sion tests at a constant tensile speed (50mm/min) with our proposed strain-energy function.

(a) Nominal strain 0% (b) Nominal strain 1000%

Figure 11. Deformation simulated with the ALE finite element method.



Table 1. Values of the material constants for Yamashita-Kawabata strain-energy function.

　　

hyperelastic parameters
c1 [Pa] 2.32 × 101

c2 [Pa] 1.00 × 10−5

c3 [Pa] 6.80 × 10−3

p [-] 1.76

viscous parameters
β∞

1 [-] 1.00 τ1 [s] 1.00
β∞

2 [-] 5.19 × 102 τ2 [s] 1.00 × 101

β∞
3 [-] 1.00 τ3 [s] 5.00 × 101

β∞
4 [-] 5.62 × 102 τ4 [s] 1.00 × 102

β∞
5 [-] 1.00 τ5 [s] 1.00 × 103

temperature-dependent parameters
d1[−] 12.2
d2[

◦C] 120.0
θs[

◦C] 0

Table 2. Values of the material constants for our proposed strain-energy function.

　　

hyperelastic parameters
c1 [Pa] 5.00 × 103

c2 [Pa] −2.89 × 101

c3 [Pa] 4.88 × 10−1

c4 [Pa] 1.60
p [-] 4.19 × 10−7

q [-] 1.15

viscous parameters
β∞

1 [-] 1.00 τ1 [s] 1.00 × 10−5

β∞
2 [-] 1.00 τ2 [s] 1.00 × 10−5

β∞
3 [-] 1.10 τ3 [s] 1.00 × 10−5

β∞
4 [-] 5.40 τ4 [s] 4.00 × 10−1

β∞
5 [-] 1.70 τ5 [s] 1.70 × 101

β∞
6 [-] 2.70 τ6 [s] 1.00 × 102

temperature-dependentparameters
d1[−] 12.2
d2[

◦C] 120.0
θs[

◦C] 0



5. CONCLUSIONS

In this paper, we proposed the temperature-dependent visco-hyperelastic formulation
based on an Eulerian finite element method for the dynamics of PSAs. All the basic equations
were numerically solved in the Eulerian/ALE framework because it allows arbitrarily large
deformations. Visco-hyperelasticity was formulated using Simo’s finite-strain viscoelastic
model, where hyperelasticity was modeled as our proposed strain energy function of the left
Cauchy-Green deformation tensor. The left Cauchy-Green deformation tensor was temporally
updated from the Eulerian velocity field without material points. Temperature-dependence
was described with the time-temperature superposition principle of Williams, Landel, and
Ferry. To validate the proposed approach, we simulated uniaxial tension tests under different
tensile speed and temperature conditions. Our proposed scheme gave quantitative description
of the visco-hyperelastic and temperature-dependent behaviour of PSAs even in the large
strain regime.

The significance of the present Eulerian formulation is that in addition to application
of this approach to large deformation analysis of PSAs it can be used in large deformation
analysis of amorphous polymer materials that have visco-hyperelasticity and temperature-
dependence. Moreover, the present Eulerian formulation is well-suited for application of the
voxel-based multi-component geometry in the spatially-fixed mesh. Once the initial field of
the solid volume fraction is given by X-ray CT system, the present Eulerian method enables
us to treat complex surface shapes or internal structures with ease because mesh generation
procedure is not necessary. The practical demonstration is the subject of our future study.
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