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Abstract. In many different fields of engineering, like automotive industry or civil engi-
neering, room acoustical tasks are of interest. Sound fields have to be predicted in order to
design the acoustic cavity by placing acoustic elements like reflectors or absorbers (passive
absorbers or plate resonators) into the room for example. Therefore models for the Fluid
Structure Interaction (FSI) are used, where passive absorbers or plate resonators can be con-
sidered. For simulations of the spatial resolution of the sound field within acoustic cavities
very often techniques based on Finite Element formulations are used. In order to reduce the
number of degrees of freedom and therefore the numerical effort, a model reduction method,
based on a Component Mode Synthesis (CMS), is applied in this contribution. The advan-
tage is related to the fact, that the modal analysis is done only once for the rigid walled
cavity, which is modeled with Spectral Finite Elements (SFEM). The cavity boundary condi-
tions, e.g. compound absorbers made of homogenous plates and porous foams, are modeled
using Integral Transform Methods (ITM). Therefore the differential equations of motion are
established for the individual components, where the Lamé Equation is used for homogenous
and the Theory of Porous Media (TPM) for porous materials. These equations are solved
in the wavenumber-frequency domain after applying a Fourier Transformation. The results
(wavenumber dependent impedances) for the absorptive structure are coupled with the acous-
tic cavity adding interface coupling modes for the fluid and applying Hamilton’s principle,
considering the velocity of both components to coincide as a constraint at the interface. The
method is presented and models of the subsystems, the absorber and the fluid, are shown.
Finally examples for the simulation of the coupled structure are presented.

Keywords: Room Acoustics, Fluid Structure Interaction, Component Mode Synthesis, Inte-
gral Transform Methods.

1. INTRODUCTION

Due to increasing requirements of comfort, acoustic design has become more impor-
tant during the last years, especially in the field of civil engineering and automotive design.
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The sound field within rooms or vehicles has to be predicted and then modified in an acoustic
optimization process in order to reach an optimal result for the specific use.

The calculation of the sound pressure level inside of acoustic cavities is usually done
with the help of the Statistical Energy Analysis (SEA). This method is robust for systems with
a high modal density and it is based on an averaging over frequency bands, points of excitation
and points of observation. However, its performance is limited if a description of the spatial
resolution of the response is necessary and if the influence of boundary conditions has to be
described in detail.

The acoustical improvement of rooms or vehicles is done by placing elements like
reflectors or absorbers (e.g. passive absorbers or plate resonators) into the sound field. There-
fore a robust method for the phase correct modeling of interior sound fields with sufficient
spatial resolution is needed, where the absorptive behavior of the delimiting surfaces can be
considered. Methods, based on Finite Element formulations are used for this purpose, where
the robustness can be enhanced by applying an averaging in the post-processing. This requires
multiple calculations with slight changes in geometry or load data [5].

Finite Element models for absorptive boundary conditions in acoustical calculations
lead to a huge number of degrees of freedom. In order to reduce this number of unknowns
in [11] and [7] an impedance approach considering a plane wave of incidence is used. In [6],
[3] and in the scope of the presented work a wavenumber dependent impedance is used for
plate-like compound absorbers to introduce varying angles of incidence for the sound wave.
The porous foam, which is part of compound absorbers, is modeled by the TPM [1].

An efficient way, especially to reduce the computational effort for the optimization of
the position of these acoustic elements or for averaging techniques as mentioned above, is to
simulate the coupled system (fluid-structure) in the frequency domain by applying a CMS.

2. FLUID STRUCTURE INTERACTION

The derivation of the FSI method is carried out in the frequency domain. Therefore
only forces, harmonically oscillating in time, with the circular frequency of excitation Ω are
considered. Consequently the steady state solution for both state variables pressure pA and
sound velocity vA is harmonic in time.

2.1. Hamiltons Principle and Ritz Approach

For the vibro-acoustical problem discussed in this contribution a description of Hamil-
ton’s principle, which is based on velocities, is applied. The structure is divided into sub-
structures (see figure 1), where the acoustic fluid and the boundary conditions are defined
as subsystems respectively. According to Hamilton’s principle equilibrium is fulfilled by the
velocity field, which meets the kinematic boundary conditions, the conditions at t = t1 and
t = t2 and, in addition to that, satisfies

t2∫
t1

δ
(
LA(t) + LBC(t, Z) + RTλ(t)

)
+ δW nc

BC(t, Z) + δW nc
Load(t) dt = 0. (1)



xy

z

Lx

Ly

Lz

d

Subsystem 1

Absorber

Fluid

Subsystem 2

Figure 1. Subsystem definition

The Lagrangian function LA for the acoustic fluid results from the kinetic energy TA and the
potential energy UA

LA(t) = TA(t) − UA(t), (2)

where the energies are computed out of

TA(t) =
ρA

2

∫
V

|vA(x, t)|2dV and UA(t) =
1

2ρAc2
A

∫
V

|pA(x, t)|2dV

respectively. The harmonically oscillating load is considered in Hamilton’s Principle as a non
conservative force by its virtual work δW nc

Load

δW nc
Load(t) =

∫
ALoad

pLoad(x, t) nLoad(x) δw(x, t) dA. (3)

The formulation of LBC and δW nc
BC will be given for a wavenumber-dependent impedance in

Chapter 3. In the scope of a Ritz approach, using the ansatz functions, which will be defined
in section 2.2 a linear equation system is obtained to compute the unknown coefficients.

2.2. Component mode Synthesis

The Component Mode Synthesis (CMS) is a substructuring technique for large cou-
pled problems, which was introduced by Hurty [9, 10] to reduce the number of unknowns
while keeping the physical characteristics of the structure. In contrast to Hurty, the CMS is
used based on a modal description in the scope of this method. In order to model arbitrary
geometries for the acoustic fluid the numerical approach developed in [12], which is based
on the Spectral Finite Element Method (SFEM) is used. In the frame of the CMS the super-
script N stands for normal modes and the superscript C for coupling modes. Normal modes
are the eigenmodes of the air volume enclosed by totally reflecting boundaries and coupling
modes are additionally introduced to provide the coupling to other boundary conditions, like
a deformable structure, an absorber or an open interface to another acoustic volume. For the



velocity vA in the acoustic fluid the approach (4) is applied.

vA(x, t) =
∑
m

vN

m(x)
(
AmeiΩt +Ame−iΩt

)
+
∑
n

vC

n(x)
(
BneiΩt + Bne−iΩt

)
(4)

Assuming an acoustic fluid, the irrotational behavior of the sound velocity allows the use of a
velocity potential ΦA(x)eiΩt.

vA(x, t) = grad ΦA(x, t)

Considering the steady state problem after applying a Fourier-transformation from the time-
to the frequency-domain, the velocity potential solves the Helmholtz equation (5), where cA
denotes the constant speed of sound.

∆Φ̂A(x, ω) +
ω2

c2
A

Φ̂A(x, ω) = 0 (5)

In the Fourier-transformed domain the velocity v̂A and the pressure p̂A read as follows:

v̂A(x, ω) = grad Φ̂A(x, ω) (6)

p̂A(x, ω) = −ρAc
2
A

i ω
div v̂A(x, ω)

= −ρAc
2
A

i ω
∆Φ̂A(x, ω)

(7)

The normal modes for the acoustic fluid are defined in terms of the velocity potential Φ̂N

assuming fixed interfaces, which means reflective wall conditions for all boundaries of the
fluid:

grad Φ̂N

m(x, ωm) · nBC = 0 (8)

The normal modes are supplemented by coupling modes in order to define a valid set of
trial functions for (4). These coupling modes enable velocities perpendicular to the coupling
interface. They fulfill the reflective boundary conditions at all surfaces of the room, except for
the interface defined as xBC, where modal trial functions g(xBC) are prescribed.

grad Φ̂C

n(x,Ω) · nBC = g(xBC) (9)

In the following a rectangular geometry is considered for the absorptive boundary condition
and g(xBC) is expressed with ψn(y, z) for each mode, where y and z mark the local coordi-
nates in the reference coordinate system of the absorber. Considering the procedural method
in the next steps, in especially the computation of the Lagrangian LBC for the absorber out of
impedances, it is advantageous to express ψn(y, z) with its Fourier Series.

ψ̂n(y, z) =
∑
r

∑
s

Enrs e
i(ky(r)y+ kz(s)z) (10)

Thus the trial function for at the interface is specified for an absorptive boundary condition as

v̂BC(y, z, t) =
∑
n

ψ̂n(y, z)
(
CneiΩt + Cne−iΩt

)
. (11)



Carrying out the integration required in equation (1) over one period of the steady state vi-
bration one obtains the Lagrangian LBC and the virtual work of the non conservative forces
δWBC . In this short essay we focus on trial functions, where due to reasons of orthogonality
the off diagonal terms vanish.

T∫
0

LBC dt =
T

Ω
Ly Lz

[∑
n

CnCn
∑
r

∑
s

Im (Z (r, s,Ω)) |Enrs|2
]

(12)

T∫
0

δWBC dt = − T
iΩ
Ly Lz

∑
n

(
CnδCn − CnδCn

)∑
r

∑
s

Re (Z (r, s,Ω)) |Enrs|2 (13)

In case of sinusoidal functions also the Fourier approximation ψ̂n(y, z) can be omitted. A
detailed discussion as well as the expressions for a general definition of the trial functions
are presented in [3]. With the imaginary part of the impedance Im (Z (r, s,Ω)) the flexible
characteristics of the absorber can be modeled, as shown above. The absorptive characteristics
are expressed by the real part of impedance Re (Z (r, s,Ω)).

3. COMPOUND ABSORBERS

In the next step these impedances Z (r, s,Ω), depending on the circular frequency of
excitation Ω and the wavenumbers ky(r) and kz(s) in order to build up the dependency on the
angle of incidence, are derived for compound absorbers containing porous layers.

3.1. Classification

Absorbers used in room acoustics can be classified in passive absorbers and plate- or
Helmholtz resonators (figure 2). Passive absorbers consist of porous materials like foams,
mineral wool or cellular glass. The sound waves enter the pores of the absorber and initiate
a vibration of the air in the interconnected pores. The kinetic energy of the sound field is
reduced due to the flow resistance within the porous absorber. In case of resonators either a
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Figure 2. Classification of absorbers

flexible homogeneous plate or a Helmholtz resonator is excited to vibrations by sound waves.



Energy is reduced due to internal damping, which can be increased by absorption in a porous
layer, installed in the air cushion behind the vibrating plate, or inside the resonator. In or-
der to describe these kinds of absorptive structures, a layered model, in which homogeneous
material, porous material and air are combined, has to be used.

In the following sections the theory for modeling these structures and the solution of
the differential equation system are presented. In contrast to the detailed derivation, which
is published in [3, 4], a short review is given in the scope of this contribution. Finally the
boundary conditions, which are needed to specify the coefficients of the fundamental system
for compound structures, are listed.

3.2. Material Description

For modeling porous layers of an absorber the linear Theory of Porous Media (TPM)
is applied. The porous medium, consisting of the constituents solid and gas (air) is modeled
as a smeared volume with statistically distributed pores, whereas the solid phase spans the
control space [1, 2]. The porous solid is assumed to be much stiffer than the air. This results
in a structural compressibility of a material, which consists of an incompressible porous solid
and a compressible gas.

The volume fractions concept allows to identify the individual constituents in the
smeared continuum. Volume fractions nα refer the volume element dvα of the constituent
α to the volume element of the mixture dv.

nα(x, t) =
dvα
dv

(14)

Due to the assumption, that the pores are completely filled with gas, the constituents
ϕα must fulfill the saturation condition (15), which reads:∑

nα = 1 (15)

The stress tensor of the solid component consists of a weighted pore pressure and the solid
extra stresses. It is defined as

TS = −nS p I + λ̃S (ES · I) I + 2µS ES. (16)

The stresses in the gas phase are expressed by a weighted pore pressure.

TG = −nG p I (17)

The balance and conservation laws in mechanics have to be satisfied for each constituent
ϕα. Their interaction is considered by an interaction force p̂ α, which depends on the on the
seepage velocity between the solid- and the gas-phase as well as on the permeability constant
SG. The conservation of momentum results in

−nS grad p+
(
λ̃S + µS

)
grad div uS + µS div grad uS + SG (vG − vS) = ρS aS (18)

−nG grad p− SG (vG − vS) = ρG aG, (19)



where λ̃S and µS are the macroscopic Lamé constants. The conservation of mass finally reads

nG
∂ρGR
∂t

+ ρGR nG div (vG) + ρGR nS div (vS) = 0. (20)

The layers, consisting of homogeneous, linear-elastic, isotropic material are described by the
Lamé Equation. Assuming the external acceleration to be zero the equation is given in a
cartesian reference frame by

(λH + µH) grad div uH + µH div grad uH = ρHaH . (21)

The subscript H denotes the homogeneous material in order to distinguish from the con-
stituents of the porous medium in the following.

The homogeneous and porous layers, discussed in the previous part, interact within
the model of the porous absorber with the acoustic fluid. The differential equation for the air
is the wave equation.

∆pA −
1

c2
A

∂2pA

∂t2
= 0 (22)

The subscript A specifies the air.
The equations (18), (19), (20) and (21), specified above can be simplified expressing

the displacement field with a scalar potential Φ and a vector potential Ψ [8]. They are defined
in equation (23) for the homogeneous material and in equations (24) and (25) for the porous
material.

uH = grad ΦH + rot ΨH (23)

uS = grad ΦS + rot ΨS (24)

uG = grad ΦG + rot ΨG (25)

Using a Fourier transform into the wavenumber frequency domain the partial differential
equations and systems of PDEs can be simplified to ordinary differential equations and sys-
tems of ODEs respectively. The time t is transformed into the frequency domain (t e u Ω)

because of a harmonic excitation. The spatial coordinates x and y are transformed into the
wavenumber domain (x e u kx) and (y e u ky), assuming infinite dimensions in two
directions.

The disadvantage of this transformation is the loss of the possibility to vary the param-
eters of the system in x- and y-direction. However for the applications in acoustics, presented
in this paper, especially for an application in room acoustics the definition of different layers
in z-direction is sufficient (see figure 2).

The solution can be carried out in the transformed domain using an exponential ap-
proach as depicted in [3].

3.3. Boundary Conditions and Equation System

In order to specify the coefficients of the respective fundamental system the boundary
conditions have to be evaluated for the individual compound absorber. These boundary con-
ditions are sketched exemplarily for the interface between a homogeneous and a porous layer
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Figure 3. Interface between a homogeneous and a porous layer

in the following. The transformed quantities are marked with a hat and the normal vector
n =

[
0 0 1

]T defines the horizontal layer of the interface in a Cartesian reference frame.
For a change from a porous to a homogeneous layer as shown in Fig. 3, there are seven

equations defined for the boundary conditions. Normal and shear stresses have to correspond
in both media at the interface zTPM = 0

T̂z=0
TPM n− T̂z=dH

H n = 0, (26)

where the stresses in the mixture are defined as the sum of the stresses of the constituents.
In contrast to the solid, where all displacements are equated with the displacements of

the homogeneous material, for the gas phase only the z-component is coupled:

ûS (z = 0)− ûH (z = dH) = 0 (27)

ûzG (z = 0)− ûzH (z = dH) = 0 (28)

The height of the homogeneous layer is specified with dH . In total seven equations are gained
for this type of transition. The equations for the combination of other materials within com-
pound absorbers can be derived analogously. A survey of the boundary-equations related to
the different transitions depicted in table 1.

Table 1. Summary of the equations resulting out of the boundary conditions [3]
Stresses Displacements Eqns.

Lamé-TPM T̂z=0
TPMn− T̂z=dH

H n = 0
ûS (z = 0)− ûH (z = dH) = 0
ûzG (z = 0)− ûzH (z = dH) = 0

7

Helmholtz-TPM T̂z=0
TPMn + p̂z=dAA n = 0

ûzS (z = 0)− ûzA (z = dA) = 0
ûzG (z = 0)− ûzA (z = dA) = 0

5

Helmholtz-Lamé T̂z=0
H n + p̂z=dAA n = 0 ûzH (z = 0)− ûzA (z = dA) = 0 4

In this ITM-based absorber model the number of unknowns, which is defined in equa-
tion (29) for arbitrary configurations of compound absorbers with ni layers of each material i
is reduced significantly compared to finite element approaches.

ntot = nTPM · 8 + nH · 6 + nA · 2− 1 (29)



In case of a single porous layer, which is presented in the examples in Chapter 5 the unknown
coefficients of the fundamental system, which are stored in a vector x, are calculated out of
a linear equation system K x = f with only nine unknowns. The load, which is the pressure
amplitude of the incident sound wave pi (compare figure 2), is defining the load vector f and
the matrix K is obtained from the boundary conditions in table 1 as discussed in [3].

The wavenumber- and frequency-dependent impedance, which is used for the La-
grangian (12) and the virtual work of the non conservative forces (13) of the compound ab-
sorber in the equilibrium formulation (1), can be computed according to equation (30).

Z(kx, ky,Ω) =
p̂A(kx, ky,Ω)

v̂zA(kx, ky,Ω)
(30)

4. COUPLING THE SUBSYSTEMS AND ASSEMBLING THE EQUATION SYSTEM

As Hamilton’s principle is applied for the formulation of the equilibrium of the cou-
pled system the Lagrangian has to be set up for all components of the problem and the virtual
work must be computed for the external forces as well as for the dissipative behavior of the
absorbers.

Normal and coupling modes, which are specified in the CMS approach in equation
(4), are computed for the acoustic fluid as trial functions in the scope of a Ritz approach and
the Lagrangian of the fluid as well as the virtual work of the external loads are computed with
equations (2) and (3) respectively. The Lagrangian of the compound absorber and the virtual
work of the non-conservative damping forces are computed with (12) and (13) for instance.

The unknown complex coefficients Ai and Bi refer to the normal and the coupling
modes in the acoustic volume, whereas Ci are the coefficients of the trial functions of the
compound absorber. The coupling condition of the fluid and the absorber at the interface,
which is defined in equation (1) with the help of the vector of Lagrange multipliers λ, simply
results in Bi = Ci and B̄i = C̄i, if the same velocity pattern is chosen for the trial function
of the absorber and for the boundary condition of the fluid at the absorber-interface. Thus
the vectors for the unknown coefficients x and the corresponding conjugate complex values x̄

read:

x =
[
A1 · · · Ammax B1 · · · Bnmax

]T
x̄ =

[
Ā1 · · · Āmmax B̄1 · · · B̄nmax

]T (31)

The solution of the variational problem is reduced to a problem of minimization because of
the Ritz approach. It is advantageous to express the conjugate complex coefficients with real
and imaginary values in order to formulate the extremal problem:

x =
[
xR + ixI

]T
x̄ =

[
xR − ixI

]T (32)

The real and imaginary parts of the complex coefficients mark the new set of unknowns y =[
xR xI

]T , where the total number of real valued unknowns is 2 (mmax + nmax). Here mmax



and nmax are the maximum numbers of normal and coupling modes respectively.

xR =
[
AR1 · · · ARmmax

BR1 · · · BRnmax

]T
xI =

[
AI1 · · · AImmax

BI1 · · · BInmax

]T (33)

For the consideration of the virtual work a vector δy is specified analogously. Carrying out
the minimization of the Lagrangian one obtains a system of real valued linear equations

K y = F, (34)

where the matrix of coefficients Kij reads

Kij =

∂2
T∫
0

LA dt

∂yi ∂yj
+

∂2
T∫
0

LBC(Z) dt

∂yi ∂yj
+

∂2
T∫
0

δW nc
BC (Z) dt

∂ δyi ∂yj
(35)

and the load vector F =
[
FR FI

]T considers the external forces:

Fi = −
∂
T∫
0

δW nc
Load dt

∂ δyi
(36)

Defining submatrices Krs for the matrix of coefficients, equation (34) reads:[
K11 K12

K21 K22

] [
xR

xI

]
=

[
FR

FI

]
(37)

In consequence of the complex property of the unknown coefficients the relations

K11 = K22 (38)

K21 = −K12 (39)

hold for the submatrices.

5. NUMERICAL EXAMPLES

The application of the method is presented in the following examples.

5.1. Application to a 1d Structure

In the first example the FSI of the acoustic fluid and porous absorbers is discussed
in order to present the application of the method to measured impedances as well as to
impedances out of numerical simulations. The rectangular acoustic volume, sketched in fig-
ure 4, with V = [0, Lx]×[0, Ly] = [0, 3m]×[0, 1m] is modeled with Spectral Finite Elements
according to [12].
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Figure 4. 1d structure with porous absorber

A layer out of Melamine Foam with a thickness of 7.2 cm is mounted on the reflective
wall at x = 0 and plane waves are excited in the system at x = Lx in x-direction in the
frequency range up to 275Hz. The response of the sound pressure within the cavity is eval-
uated along the x-coordinate. The computation is carried out with impedances, gained out of
the numerical TPM-ITM-model, which is explained in section 3 and the results are compared
with a computation based on impedances obtained from measurements. Figure 5 shows the
transfer function for the pressure, averaged over the acoustic volume.
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Figure 5. FSI-coupling with a layer of Melamine Foam

The results with the computed impedances Zsim are plotted against the solution with
measured impedances Zmeas. A reduction of the amplitudes, especially at the location of
the natural frequencies of the system, can be observed as well as the fact, that the porous
absorber is working more efficiently for higher frequencies. Here the resulting wavelengths
λ are shorter and therefore the sound velocity within the absorber compared to the maximum
velocity is higher than for low frequencies of excitation. The results also illustrate, that the
simulation of the acoustic properties for porous foams with the TPM/ITM-model as a step of
preprocessing for a FSI-simulation is suitable, because there is a good agreement between the
results with the measured and the simulated impedances.

5.2. Application to a 2d Structure

For arbitrary geometries the normal and coupling modes can be computed with the
SFEM. The only restriction, given by the application of the ITM for the Lagrangian of the
absorber, is, that the interface has to be plain. In the following a 2d acoustic volume with
an inclining rear-wall is considered. The wall containing the interface could be inclined as



well. The geometry of the system is sketched in figure 6, where L1
x = 6m, L2

x = 1.5m and
Ly = 2m. The model is set up with 192 spectral finite elements. The interface is covered
with a 7.2 cm layer of Melamine Foam in analogy to the last example. A unit point source is
located at x = 1.15m and y = 0.77m. The location is chosen under the premise of exciting
nearly all modeshapes.

Z(kx,ky ,Ω)

Ly

L1
xdTPM L2

x

pLoad

Z(kx,ky ,Ω)

Ly

L1
xdTPM L2

x

pLoad

Figure 6. 2d structure with with inclined wall and porous absorber (holohedral and subre-
gional coupling)

In figure 8 the steady state response for the sound pressure level is sketched. The
different interface-specifications are compared for a frequency of excitation of 163Hz. Due to
the fact, that the frequency of excitation is near to a natural frequency, one specific modeshape
is excited, which would lead to very high sound pressures in case of an undamped system
(compare figure 7). A significant reduction is achieved due to the application of the absorptive
layer at the boundary. Comparing both results in figure 8 one observes lower sound pressure
levels for the holohedral case, because here the absorptive area, which is introduced into the
system by the boundary condition, and therefore the dissipation of energy is higher than for
subregional coupling.

Figure 7. Sound-pressure p(x, y) [Pa] for a frequency of excitation of 163Hz – spatial reso-
lution for a unit point source at x = 1.15m and y = 0.77m – undamped system



Figure 8. Sound-pressure p(x, y) [Pa] for a frequency of excitation of 163Hz – spatial reso-
lution for a unit point source at x = 1.15m and y = 0.77m – comparison of holohedral and
subregional coupling

6. CONCLUSION

In this contribution a method is presented to compute acoustic cavities under harmon-
ically oscillating loads in order to get phase correct results with a spatial resolution for the
sound field. The application of the CMS approach provides the possibility to recalculate the
system for small changes in geometry or load data with low numerical effort. Changes in the
location of boundary structures for example do not require a recalculation of the structure’s
normal modes or the impedances. The normal and constraint modes for the acoustic cavity
are calculated with the SFEM. This method provides a spectral convergence for an increasing
number of degrees of freedom related to the p-refinement. The SFEM formulation is imple-
mented in order to model arbitrary geometries for the acoustic cavity. Because of the Fourier
transforms in the scope of the ITM however the interface has to be plane. With the help of
the TPM absorptive foam structures, used in acoustic design, can be modeled close to reality,
which is verified in a comparison with measurement results in an impedance tube. Layered
boundary structures as compound absorbers, consisting of homogeneous and porous materi-
als, are modeled efficiently using the Fourier transform. Therefore the number of unknowns
can be reduced significantly compared to fully discretized coupled systems. Due to the con-
figuration of the method, especially due to the combination of single subsystem results, the
sensitivity of the final results for the coupled system to changes of subsystem parameters can
be estimated more efficiently than in a total approach. This is advantageous for engineering
design processes. The application of the derived FSI method is presented for a 1d benchmark
case and a 2d geometry. The results show, that this approach is very promising for com-



putation of more complex problems like optimization processes, uncertainty calculations or
computations in a higher frequency range with averaging in the post processing.
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