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Abstract. In this paper we study a new discontinuous Galerkin method which uses a computa-
tional structure compatible with conforming finite element methods, reducing considerably the
number of degrees-of-freedom. The Locally Discontinuous but Globally Continuous Galerkin
method starts with a discontinuous finite element space and constructs a continuous represen-
tation for it by means of local projections. The used technique is similar to that employed in
hybridizable methods, and discontinuous solution is recovered by solving local element-wise
problems. We present the numerical analysis of the method and numerical results to confirm
the predicted convergence rates. Moreover, numerical experiments are conducted in order
to evaluate the better performance of this formulation when compared to the continuous or
discontinuous Galerkin formulations.

Keywords: discontinuous Galerkin, hybridizable discontinuous Galerkin.

1. INTRODUCTION

A great variety of Discontinuous Galerkin (DG) methods have been proposed and an-
alyzed over the last decades for elliptic [7, 15, 3, 4, 14, 16, 27, 8, 26, 5], parabolic [2, 25] and
hyperbolic [24, 22, 18, 19, 1, 20, 21] problems. Robustness, flexibility for implementingh

andp-adaptivity strategies and easy parallelization are well known advantages of DG meth-
ods arising from the use of broken finite element spaces. However, the practical utility of DG
methods has been limited by their complexity of formulation and computational implementa-
tion. Moreover, the use of DG methods requires a much larger number of degrees-of-freedom,
when compared with classical continuous Galerkin methods.

Recent works have been presented some alternatives to reduce computational cost of
DG methods. A Multiscale Discontinuous Galerkin Method (MDG) with the computational
structure and cost of a conforming method was introduced by Hughes, Scovazzi, Bochev and
Buffa in [17] and analyzed by Buffa, Hughes and Sangalli in [9]. The MDG formulation uses
local, element-wise problems to project a continuous finite element space into a given discon-
tinuous space, and then applies a discontinuous Galerkin formulation. Another approach was
derived from a combination between DG formulations and hybrid methods, the hybridizable
discontinuous Galerkin (HDG) methods [13, 10, 11, 12, 23]. These methods reduce computa-
tional cost, with improved stability but keeping the robustness and flexibility of DG methods.
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Based on the ideas supporting hybridization techniques andthe MDG method we pro-
pose in [5] the locally discontinuous but globally continuous finite element method (LDGC).
This method combines the advantages of Discontinuous Galerkin methods with the element
based data structure and reduced computational cost of classical conforming finite element
methods. The proposed method can be viewed as a stabilized hybrid formulation consist-
ing of locally discontinuous Galerkin problems coupled to aglobally continuous problem.
In [5] the LDGC method is presented and analyzed for Poisson problem, according to DG
framework studied in [4]. In this paper we present the LDGC method for Reaction-Diffusion
problems, and the main results of the numerical analysis, following the approach presented in
[25].

The LDGC method is tested on simple elliptic problems with known exact solutions.
Convergence studies confirm the optimal rates of convergence predicted by the numerical
analysis. In all examples analyzed the LDGC approximationsexhibited accuracy equivalent
or even better than the corresponding DG approximations. The remainder of the paper is orga-
nized as follows. Section 2 is dedicated to a summary of the main features of DG formulations
for reaction-diffusion problems. The LDGC method is introduced in Section 3. A numerical
analysis of the LDGC formulation is presented in Section 4 showing that it preserves the main
properties of the associated DG method. Numerical results are presented in Section 5 and
some concluding remarks are drawn in Section 6.

2. DG METHODS

We consider the second order elliptic model problem

−ε∆u+ σu = f in Ω, (1)

u = g on Γ (2)

whereΩ ⊂ R
d (d = 2) is an open bounded domain with a Lipschitz boundaryΓ = ∂Ω, ∆ is

the Laplacian operator,ε > 0 is the diffusion coefficient,σ > 0 is the reaction coefficient, the
source termf ∈ L2(Ω) and the Dirichlet boundary conditiong ∈ H1/2(Γ).

The notation commonly utilized in DG methods is presented, since is also adopted in
LDGC method, which will be introduced in next section. Let

Th = {K} := union of all elements K

be a regular finite element partition of the two dimension domainΩ and let

Eh = {e : e is an edge of K for all K ∈ Th} (3)

denote the set of all edges of all elementsK of the meshTh,

E0
h = {e ∈ Eh e is an interior edge} (4)

the set of interior edges, and
E∂
h = Eh ∩ ∂Ω, (5)



the set of edges ofEh on the boundary ofΩ. Discontinuous Galerkin methods are normally
formulated and analyzed using well defined averages and jumps on interior edges, for a scalar
functionϕ

{ϕ} =
1

2
(ϕ1 + ϕ2), JϕK = ϕ1n1 + ϕ2n2 on e ∈ E0

h (6)

and for a vector fieldτ

{τ} =
1

2
(τ 1 + τ 2), Jτ K = τ 1 · n1 + τ 2 · n2 one ∈ E0

h. (7)

For boundary edges it is usually set

{ϕ} = ϕ, JϕK = ϕn, {τ} = τ , Jτ K = τ · n on e ∈ E∂
h . (8)

Let Vh denote the broken function space

Vh = {v ∈ L2(Ω) : v|K ∈ Sk(K) ∀K ∈ Th} (9)

whereSk(K) = Pk(K) (the space of polynomial functions of degree at mostk in both vari-
ables) orSk(K) = Qk(K) (the space of polynomial functions of degree at mostk in any
variable), equipped with the broken Sobolev norm:

|||v|||Hs(Kh) :=

(

∑

K∈Kh

‖v‖2Hs(K)

)1/2

(10)

A well established class of primal Discontinuous Galerkin (DG) methods for our
model problem is formulated as follows: finduh ∈ Vh such that

ah(uh, vh) = fh(vh) ∀v ∈ Vh (11)

with

ah(uh, vh) =
∑

K∈Th

∫

K

(ε∇uh · ∇vh + σuhvh) dx

+
∑

e∈Eh

∫

e

(sJuhK · {ε∇vh} − JvhK · {ε∇uh}) ds

+
∑

e∈E0

h

η

∫

e

JuhK · JvhKds+
∑

e∈E∂
h

η

∫

e

uhvhds (12)

and

fh(v) =
∑

K∈Th

∫

K

fvdx+

∫

∂Ω

(ε∇v · n)gds+ η

∫

∂Ω

gvds. (13)

where the constants usually has been chosen−1 (SIPG),0 (IIPG) or 1 (NIPG) (see [27] for
more details). The penalty functionη is defined as

η =
η0
h
, ∀e ∈ Eh, (14)



with η0 > 0. The numerical analysis of this class discontinuous Galerkin methods fits in the
framework for the analysis of DG methods provided in reference [25]. See also references
[4, 2, 8]. Since the domainΩ is polygonal, there existsα > 0 such thath ≤ αhe, wherehe

is the measure of the edgee ∈ ∂K. For the sake of simplicity we will present all estimates in
terms ofh. We consider the following energy norm

‖v‖2E :=
∑

K∈Kh

∫

K

ε∇v · ∇vdx+

∫

Ω

σv2 +
∑

e∈Eh

η

∫

e

JvK · JvKds; (15)

to present a summary of the main results on the numerical analysis of the above DG formula-
tion based on references [4, 25].

DG Consistency. The solutionu the model problem (1) - (2) satisfies

ah(u, vh) = fh(vh) ∀ vh ∈ Vh. (16)

DG Local conservation. Fixing an elementK belonging to the interior of the domain
and choosingvh = 1 in K, vh = 0 elsewhere DG method (11) reduces to

∫

K

(σuh − f)dx+
∑

e∈∂K

η

∫

e

JuhK · nds =
∑

e∈∂K

∫

e

{ε∇uh} · nds, (17)

which expresses the local conservation of the DG formulation with boundary stabilization.
DG Stability. Forη0 sufficiently large there exists a constantαs > 0, independent of

s andh, such that
ah(vh, vh) ≥ κ‖vh‖

2
E ∀vh ∈ Vh. (18)

DG Continuity. If η0 > 0 for all e, there exists a constantαb such that

ah(uh, vh) ≤ M‖uh‖E‖vh‖E ∀uh, vh ∈ Vh (19)

DG Approximation. For anyu ∈ Hk+1(Ω) the continuous interpolant ofu, uI ∈ Vh,
satisfies

|||u− uI |||Hq(Kh) ≤ Chmin(k+1,s)−q|u|Hs(K). (20)

DG Error estimate in the energy norm. Consistency, stability and continuity lead to
the estimate

||u− uh||E ≤ Chmin(k+1,r)−1|||u|||Hr(Th). (21)

with r = 3/2.
DG Error estimate in L2(Ω). The adjoint consistent DG formulation corresponding

to s = −1 presents also the optimal rate of convergence inL2(Ω) norm

‖u− uh‖0,Ω ≤ Chmin(k+1,r)|||u|||Hr(Th). (22)

In the next section we introduce a new formulation preserving the all these above
properties of DG methods but with implementation and computational cost equivalent to a
continuous Galerkin method.



3. THE LDGC METHOD

To define the Discontinuous Galerkin formulation based on a local projection we in-
troduce a new variableλ, uniquely defined asλ = u|e on each edgee ∈ Eh, and consider the
finite dimension function sets

Mg
h = {λ ∈ C0(Eh) : λ|e = Pl(e), ∀e ∈ E0

h, λ|e = g, ∀e ∈ E∂
h},

Mh = {λ ∈ C0(Eh) : λ|e = Pl(e), ∀e ∈ E0
h, λ|e = 0, ∀e ∈ E∂

h},

wherePl(e) is the space of of polynomials of degree at mostl on each edgee. The Locally
Discontinuous but Globally Continuous Galerkin method is formulated as:

Find the pair{uh, λh} ∈ Vh ×Mg
h such that, for all{vh, µh} ∈ Vh ×Mh,

∑

K∈Th

∫

K

ε∇uh · ∇vh + σuhvhdx −

∫

∂K

(ε∇uh · n)(vh − µh)ds

+s

∫

∂K

(ε∇vh · n)(uh − λh)ds +

∫

∂K

β(uh − λh)(vh − µh)ds =

∫

K

fvhdx, (23)

with s as defined before.The penalty functionβ is such that

β =
β0

h
, (24)

with β0 > 0. Given thatvh, belonging to the broken function spaceVh, is defined indepen-
dently on each elementK ∈ Th, we observe that equation (23) can be split into a set of local
problems defined on each elementK and a global problem defined onEh. Consequently, the
LDGC method can be presented as:

Finduh|K ∈ Vh(K) = Vh|K andλh ∈ Mg
h , such that

∫

K

(ε∇uh · ∇vh + σuhvh)dx −

∫

∂K

(ε∇uh · n)vhds+ s

∫

∂K

(ε∇vh · n)(uh − λh)ds

+

∫

∂K

β(uh − λh)vhds =

∫

K

fvhdx, vh|K ∈ Vh(K) (25)

and
∑

K∈Th

∫

∂K

(ε∇uh · n)µhds+

∫

∂K

β(λh − uh)µhds = 0, ∀µh ∈ Mh. (26)

3.1. The local problems

Equation (25) can be solved locally to findu as a function ofλ. Moreover, we define
the local operatorsaK(u, v) andbK(λ, v), and the linear functionalfK(v), such that

aK(uh, vh) =

∫

K

(ε∇uh ·∇vh + σuhvh)dx

+ s

∫

∂K

uh (ε∇vh · n) ds−

∫

∂K

vh (ε∇uh · n) ds+ β

∫

∂K

uhvhds; (27)

bK(λh, vh) = s

∫

∂K

λh (ε∇vh · n) ds− β

∫

∂K

λvhds; (28)

fK(vh) =

∫

K

fvhdx. (29)



Then, the local problem is given by:
For any givenλh, find uh|K ∈ Sk(K) such that

aK(uh, vh) + bK(λh, vh) = fK(vh), ∀vh ∈ Sk(K). (30)

ConsideringAK andBK the matrices generated by the local operatorsaK(·, ·) and
bK(·, ·), respectively, andFK the vector originating fromfK(·), we can rewrite the local
problem (30) in a matrix form, expressingu in terms ofλ:

AKu+BKλ = FK . (31)

Given thatAK is positive definite, we solve the system (31) to obtain

u = A
−1
K (FK −BKλ). (32)

3.2. The global problem

Based on equation (26), we define the local operatorscK(u, µ) anddK(λ, µ), such that

cK(u, µ) =

∫

∂K

µ (ε∇u · n) ds− β

∫

∂K

uµds; (33)

dK(λ, µ) = β

∫

∂K

λµds. (34)

ConsideringCK andDK the matrices generated by the local operatorscK(·, ·) anddK(·, ·),
respectively, we can rewrite equation (26) in a matrix form:

∑

K∈Th

CKu+DKλ = 0. (35)

Replacing (32) in (35), we obtain
∑

K∈Th

CKA
−1
K (FK −BKλ) +DKλ = 0, (36)

which gives
∑

K∈Th

(DK −CKA
−1
K BK)λ =

∑

K∈Th

−CKA
−1
K FK . (37)

We can consider equation (32) under another point of view, defining an affine operator
H : Mh × L2(K) → Vh, which associates to each(Mh, f) ∈ M0

h × L2(Ω) a discontinuous
solutionuh ∈ Vh. Thus, equation (32) can be rewritten asuh = H(λh, f). Therefore, the
LDGC global formulation is given by: findλh ∈ Λh such that

ALDGC(λh, µh) = 0, ∀µh ∈ Mh, (38)

where
ALDGC(λh, µh) =

∑

K∈Th

(cK(H(λh, f), µh) + dK(λh, µh)) . (39)

Thus, sinceλh is continuous, the global problem is solved by using (38), which re-
duces strongly the number of degrees-of-freedom. The discontinuous solution is recovered



by solving the local element-wise problems described in (30), using equation (31) element
by element. An interesting issue of this method is that different degrees of the interpolation
polynomials can be used foruh andλh. Consideringk andl the degrees of the interpolation
polynomials foruh andλh, respectively, the choicek > l produces better approximations
for the discontinuous solutionuh. This selection keeps the number of degrees-of-freedom
reduced and has almost the same computational cost of the alternativek = l.

3.3. Main Properties of LDGC Method

Now we present some properties of LDGC method that are preserved from DG meth-
ods, like consistency and local conservation. We start rewriting the LDGC method in a DG
framework, giving rise a coupled problem where these properties can be obtained naturally.
Using identity

∑

K∈Th

∫

∂K

(τ · n)ϕds =
∑

e∈Eh

∫

e

{τ} · JϕKds+
∑

e∈E0

h

∫

e

{ϕ}Jτ Kds, (40)

considering thatλh andµh are uniquely defined onEh and taking into account the following
identities:

ϕ1 =
1

2
(ϕ1 − ϕ2) +

1

2
(ϕ1 + ϕ2),

ϕ2 =
1

2
(ϕ1 + ϕ2)−

1

2
(ϕ1 − ϕ2), (41)

the LDGC method can be presented as:
Find the pair{uh, λh} ∈ Vh ×Mh such that

A({uh, λh} , {vh, µh}) = F ({vh, µh}) ∀ {vh, µh} ∈ Vh ×Mh (42)

where

A({uh, λh}, {vh, µh}) =
∑

K∈Th

∫

K

ε∇uh · ∇vh + σuhvhdx

+
∑

e∈Eh

∫

e

(sJuhK · {ε∇vh} − JvhK · {ε∇uh}) ds

+
∑

e∈E0

h

∫

e

β

2
JuhK · JvhKds+

∑

e∈E∂
h

∫

e

βuhvhds

+
∑

e∈E0

h

∫

e

(Jε∇uhK(µh − {vh})− sJε∇vhK(λh − {uh})) ds

+
∑

e∈E0

h

∫

e

2β(λh − {uh})(µh − {vh})ds (43)

and

F ({v, µ}) = fh(vh) (44)



with fh(vh) given by (13).
In the above LDGC formulation (42) the boundary conditionu = g on Γ = ∂Ω is

weakly imposed using the same Nitsche’s approach adopted inthe associated DG method
(11). For this reason the unknownλh is restricted toMh and identify withg on the boundary
Γ (λh = g on eache ∈ E∂

h ).

Remark 3.1. We can see the LDGC formulation (42) as a small modification ofthe Dis-
continuous Galerkin methods (11), but LDGC is not a hybridization of the associated DG
formulation.

LDGC Consistency. The pair{u, λ}, with u solution of the model problem (1) - (2)
andλ = u|e on each edgee ∈ Eh satisfies

∑

K∈Th

∫

K

ε∇u · ∇vh + σuvhdx −

∫

∂K

(ε∇u · n)(vh − µh)ds+ s

∫

∂K

(ε∇vh · n)(u− λ)ds

+

∫

∂K

β(u− λ)(vh − µh)ds =

∫

K

fvhds, (45)

for all {vh, µh} ∈ Vh ×Mh. Considering equations (43-44), LDGC consistency (45) canbe
presented as

ah(u, vh) − fh(vh)

−
∑

e∈E0

h

∫

e

β

2
JuK · JvhKds

+
∑

e∈E0

h

∫

e

(Jε∇uK(µh − {vh})− sJε∇vhK(λ− {u})) ds

+
∑

e∈E0

h

∫

e

2β0

h
(λ− {u})(µh − {vh})ds = 0, ∀ {vh, µh} ∈ Vh ×Mh. (46)

Given thatu ∈ H2(Ω), thenλ = {u}|e = u|e and considering thatJuKe = 0 andJε∇uKe =

0 ∀e ∈ E0
h, the consistency expression of the LDGC formulation reduces to

ah(u, vh)− fh(vh) = 0 ∀vh ∈ Vh, (47)

which shows that the consistency of the LDGC formulation depends only on the consistency
of the associated DG formulation.

LDGC Local conservation. Fixing an elementK belonging to the interior of the
domain and choosingvh = 1 in K, vh = 0 elsewhere andµh = 0, the LDGC method (42)
reduces to

∫

K

(σuh − f)dx−
∑

e∈∂K

∫

e

(

{ε∇uh} · n+
1

2
Jε∇uhK

)

ds

+
∑

e∈∂K

∫

e

β

(

1

2
JuhK · n+ ({uh} − λh)

)

ds = 0 (48)



or, equivalently
∫

K

(σu− f)dx−
∑

e∈∂K

∫

e

∇uh · nds+
∑

e∈∂K

∫

e

β(uh − λh)ds = 0, (49)

which is similar to the expression for the local conservation of Discontinuous Galerkin meth-
ods stabilized via the addition of a penalty term defined on the element edges.

4. NUMERICAL ANALYSIS

In this section we present a numerical analysis of the LDGC method (42) using the
same kind of arguments usually employed in the analysis of discontinuous Galerkin methods
for elliptic problems [4, 6]. Following we define a norm to prove stability and continuity of
the bilinear formA(·, ·) in the finite dimension product spaceVh ×Mh.

Stability and continuity of the LDGC method (42) are proved in the norm

‖{v, µ}‖2GC := ‖v‖2E + |µ− {v}|2#, ∀{v, µ} ∈ Vh ×Mh (50)

where

|v|2# :=
∑

e∈E0

h

h−1‖v‖20,e (51)

4.1. Existence and uniqueness

The Lax-Milgram lemma is used to analyze problem (42). To this end we first prove
LDGC stability as follows.

Lemma 4.1. LDGC Stability. There existsαs > 0 such that

A({vh, µh}, {vh, µh}) ≥ αs‖{vh, µh}‖
2
GC, ∀ {vh, µh} ∈ Vh ×Mh. (52)

Proof:
See [6] for details.

�

Lemma 4.2. (Continuity of A(·, ·) and F (·)) There exist constantsαb < ∞ andγb < ∞ such
that

A({u, λ}, {v, µ}) ≤ αb‖{u, λ}‖GC‖{v, µ}‖GC ∀{v, µ} ∈ Vh ×Mh

and
F ({vh, µh}) ≤ γb‖{vh, µh}‖GC ∀{v, µ} ∈ Vh ×Mh.

Proof:
See [6] for details.

�



4.2. Error estimates

The Theorem 1 summarizes the main results of the numerical analysis of LDGC
method.

Theorem 1. The LDGC method (42) has a unique solution{uh, λh} ∈ Vh × Mh and if the
exact solution of our model problem (1) isu ∈ Hk+1(Ω), the following estimates hold for
k ≥ l

‖{u− uh, λ− λh}‖GC ≤ C
(

hmin(k+1,r)−1|||u|||Hr(Th) + hk |u|k+1,Ω + hl|u|l+1,Ω

)

(53)

and fork ≥ l ands = −1 (adjoint consistent formulation)

‖u− uh‖0,Ω ≤ C
(

hmin(k+1,r)|||u|||Hr(Th) + hk+1|u|k+1,Ω+hl+1|u|l+1,Ω

)

. (54)

Proof:
Existence and uniqueness of solution are direct consequences of Lemmas 4.1 and 4.2

and the Lax-Milgram lemma. Estimates (53) and (54) were obtained using consistency, ad-
joint consistency, stability and boundedness of the LDGC formulation.

�

5. NUMERICAL RESULTS

Simple elliptic problems with known exact solutions were utilized in convergence
studies in order to observe the behavior of LDGC method in comparison with continuous
and discontinuous Galerkin methods. In all examples we numerically evaluate the conver-
gence properties of the proposed methodology aiming at confirming the rates of convergence
predicted by the numerical analysis presented in previous section.

5.1. 1D Convergence Study

First we consider the one-dimensional case of problem (1) defined inΩ = (0, 1), with
ε = 1 andσ = 10. The Dirichlet boundary conditions and the source term chosen according
to the smooth exact solution

u(x) = (1− x)e−x2

.

We compare the convergence behaviors of the approximationsobtained with contin-
uous Galerkin, discontinuous Galerkin and LDGC (s = −1, 0, 1) methods, using uniform
partitions of the domain(0, 1) with 8, 16, 32 and64 linear two node elements. In all cases
the LDGC global systems have the same number of degrees-of-freedom as the correspond-
ing continuous Galerkin approximations while DG approximations lead to twice this number.
In Figure 1(a) and (d) we can observe the convergence rates ofLDGC(k), for s = −1 and
k = 1, 2, 3, compared with continuous Galerkin and SIPG [25] approximations inL2(0, 1)

andH1(0, 1) norms, respectively. Fork = 1, LDGC(1) shows the optimal rates of con-
vergence in bothH1(0, 1) O(h) andL2(0, 1) O(h2) norms with accuracy identical or even
better than the corresponding continuous and discontinuous Galerkin approximations. Much
more accurate solutions with reduced computational cost compared to discontinuous Galerkin



1 1.2 1.4 1.6 1.8

− log(h)

-6

-4

-2

0

lo
g
(e
rr
o
r)

Galerkin
SIPG
LDGC(1)
LDGC(2)
LDGC(3)

(a) H1(Ω) - s = −1.

1 1.2 1.4 1.6 1.8

− log(h)

-6

-4

-2

0

lo
g
(e
rr
o
r)

Galerkin
IIPG
LDGC(1)
LDGC(2)
LDGC(3)

(b) H1(Ω) - s = 0.

1 1.2 1.4 1.6 1.8

− log(h)

-6

-4

-2

0

lo
g
(e
rr
o
r)

Galerkin
NIPG
LDGC(1)
LDGC(2)
LDGC(3)

(c) H1(Ω) - s = 1.

1 1.2 1.4 1.6 1.8

− log(h)

-10

-8

-6

-4

-2

0

lo
g
(e
rr
o
r)

Galerkin
SIPG
LDGC(1)
LDGC(2)
LDGC(3)

(d) L2(Ω) - s = −1.

1 1.2 1.4 1.6 1.8

− log(h)

-8

-6

-4

-2

0

lo
g
(e
rr
o
r)

Galerkin
IIPG
LDGC(1)
LDGC(2)
LDGC(3)

(e) L2(Ω) - s = 0.

1 1.2 1.4 1.6 1.8

− log(h)

-8

-6

-4

-2

0

lo
g
(e
rr
o
r)

Galerkin
NIPG
LDGC(1)
LDGC(2)
LDGC(3)

(f) L2(Ω) - s = 1.

Figure 1. 1D Convergence rates;s = −1, 0, 1; ε = 1 andσ = 10.



approximations are obtained with LDGC(2) and LDGC(3) as also shown in Figures 1(a) and
(d). As predicted in the numerical analysis, optimal rates of convergence are observed for both
LDGC(2) (O(h2) in H1(0, 1), O(h3) in L2(0, 1)) and LDGC(3) (O(h3) in H1(0, 1), O(h4) in
L2(0, 1)) with s = −1. Similar results are presented fors = 0 in Figure 1(b), (e) and for
s = 1 in Figure 1(c), (f). In all cases, the LDGC method presents optimal rates of conver-
gence inH1(0, 1) norm. Fors 6= −1, the DG formulations loose adjoint consistency and their
observed convergence rates inL2(0, 1) are, as expected,O(hk+1) if k is odd andO(hk) if k is
even. We useβ0 = 6 for k = 1, β0 = 12 for k = 2, β0 = 24 for k = 3.

5.2. 2D Convergence Study

We now consider problem (1) defined in the two dimension domainΩ = (0, 1)×(0, 1)

with ε = 1 andσ = 10. The source term and the Dirichlet boundary conditions chosen
according to the exact solution

u(x, y) = sin(πx) sin(πy). (55)
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0.6 0.8 1 1.2 1.4

− log(h)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g
(e
rr
o
r)

Galerkin(1)
IIPG(1)
LDGC(1, 1)
LDGC(1, 2)
LDGC(1, 3)

(b) H1(Ω) - s = 0.

0.6 0.8 1 1.2 1.4

− log(h)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g
(e
rr
o
r)

Galerkin(1)
NIPG(1)
LDGC(1, 1)
LDGC(1, 2)
LDGC(1, 3)

(c) H1(Ω) - s = 1.
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(d) L2(Ω) - s = −1.
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(e) L2(Ω) - s = 0.
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Figure 2. 2D Convergence rates;s = −1, 0, 1; k = l = 1; Quadrilateral Elements.



The LDGC solutions will be identified by LDGC(l, k) in which l ≥ 1 is the degree of
the polynomial interpolations of the multiplierλh on the element edges andk is the degree
of polynomial interpolation of the primal variableuh in the interior of each element. Fig-
ure 2 presents a comparison between convergence rates obtained with the Galerkin, DG, and
LDGC methods. In these studies we use uniform partitions of the domain with16, 64, 256
and1024 quadrilateral elements. We present results of convergencefor LDGC method for
s = −1, 0, 1, settingl = 1 andk = 1, 2, 3. Unlike the 1D case, in this 2D example the rates
of convergence of LDGC(l, k) are associated to the degree (l = 1) of the interpolation poly-
nomial adopted for the multiplier forλh, as presented in numerical analysis (see Theorem 1).
Nevertheless, LDGC(1,2) and LDGC(1,3) approximations aremore accurate than LDGC(1,1)
and continuous or discontinuous Galerkin approximations in bothL2(Ω) andH1(Ω) norms.

5.3. Strongly Reactive Problem

We now consider the problem (1) defined in the two dimension domainΩ = (0, 1)×

(0, 1) with ε = 10−4, σ = 1 and the source termf = 1. The Dirichlet boundary conditions
are homogeneous inΓ.
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(b) SIPG method.
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(c) LDGC method.

Figure 3. Strongly Reactive Problem;s = −1; k = l = 1; 256 elements.



Figure 3 compare the approximate solutions obtained with Galerkin, SIPG and LDGC
methods. We setβ0 = 2 for LDGC method andk = l = 1 for all methods evaluated,
using an uniform partition of the domain with256 elements. Figure 3(a) shows the Galerkin
method approximate solution, which presents spurious oscillations for this problem. These
oscillations are reduced using the SIPG method as shown in Figure 3(b). However, the LDGC
solution is more accurate than Galerkin and SIPG methods, asdepicted in Figure 3(c), where
these oscillations are elliminated.

6. CONCLUDING REMARKS

A Locally Discontinuous but Globally Continuous (LDGC) finite element formulation
for reaction-diffusion problems is proposed. The LDGC method is developed from a stabilized
hybrid formulation consisting of a set of local problems defined at the element level and a
global problem associated with the multiplier. The LDGC method uses the same data structure
of continuous Galerkin finite element methods, allowing different degrees of interpolation
polynomials for the primal variable and for the multiplier,resulting in more flexibility and
improved accuracy. The numerical analysis of LDGC method was presented, attesting that it
preserves the main properties of DG methods such as consistency, local conservation, stability,
boundedness and optimal rates of convergence in the energy norm, and inL2(Ω) norm for
adjoint consistent formulations.

Some academic numerical experiments are conducted to illustrate the behavior of the
LDGC method applied to regular reaction-diffusion problems confirming the optimal rates of
convergence predicted by the numerical analysis. Numerical experiments with a 1D problem
confirmed the optimal rates of convergence predicted in the numerical analysis for the two
node element with any degreek ≥ 1 of the interpolation polynomial adopted for the dis-
continuous field. For 2D problems, optimal rates of convergence are proved and numerically
confirmed fork = l, with l denoting the degree of the polynomial interpolation adopted for
the multiplier. Fork > l we have observed improved accuracy of the LDGC approximations
compared with continuous and discontinuous Galerkin approximations with the same number
of elements in bothH1(Ω) seminorm andL2(Ω) norm. For strongly reactive problems the
LDGC method presents accurate approximate solutions, avoiding spurious oscillations. In all
examples analyzed the LDGC approximations exhibited accuracy equivalent or even better
than the corresponding continuous or discontinuous Galerkin approximations.
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