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Abstract. In this paper we study a new discontinuous Galerkin method which uses a computa-
tional structure compatible with conforming finite element methods, reducing considerably the
number of degrees-of-freedom. The Locally Discontinuous but Globally Continuous Galerkin
method starts with a discontinuous finite element space and constructs a continuous represen-
tation for it by means of local projections. The used technique is similar to that employed in
hybridizable methods, and discontinuous solution is recovered by solving local element-wise
problems. We present the numerical analysis of the method and numerical results to confirm
the predicted convergence rates. Moreover, numerical experiments are conducted in order
to evaluate the better performance of this formulation when compared to the continuous or
discontinuous Galerkin formulations.
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1. INTRODUCTION

A great variety of Discontinuous Galerkin (DG) methods have been proposed and an-
alyzed over the last decades for elliptic [7, 15, 3, 4, 14, 16, 27, 8, 26, 5], parabolic [2, 25] and
hyperbolic [24, 22, 18, 19, 1, 20, 21] problems. Robustness, flexibility for implemehting
and p-adaptivity strategies and easy parallelization are well known advantages of DG meth-
ods arising from the use of broken finite element spaces. However, the practical utility of DG
methods has been limited by their complexity of formulation and computational implementa-
tion. Moreover, the use of DG methods requires a much larger number of degrees-of-freedom,
when compared with classical continuous Galerkin methods.

Recent works have been presented some alternatives to reduce computational cost of
DG methods. A Multiscale Discontinuous Galerkin Method (MDG) with the computational
structure and cost of a conforming method was introduced by Hughes, Scovazzi, Bochev and
Buffa in [17] and analyzed by Buffa, Hughes and Sangalli in [9]. The MDG formulation uses
local, element-wise problems to project a continuous finite element space into a given discon-
tinuous space, and then applies a discontinuous Galerkin formulation. Another approach was
derived from a combination between DG formulations and hybrid methods, the hybridizable
discontinuous Galerkin (HDG) methods [13, 10, 11, 12, 23]. These methods reduce computa-
tional cost, with improved stability but keeping the robustness and flexibility of DG methods.



Based on the ideas supporting hybridization techniquestenDG method we pro-
pose in [5] the locally discontinuous but globally contimgdinite element method (LDGC).
This method combines the advantages of Discontinuous Kialerethods with the element
based data structure and reduced computational cost aicdasonforming finite element
methods. The proposed method can be viewed as a stabilized Hgrmulation consist-
ing of locally discontinuous Galerkin problems coupled tglabally continuous problem.
In [5] the LDGC method is presented and analyzed for Poissohl@m, according to DG
framework studied in [4]. In this paper we present the LDGQGhud for Reaction-Diffusion
problems, and the main results of the numerical analydisyiong the approach presented in
[25].

The LDGC method is tested on simple elliptic problems witlown exact solutions.
Convergence studies confirm the optimal rates of convegggnedicted by the numerical
analysis. In all examples analyzed the LDGC approximatexisbited accuracy equivalent
or even better than the corresponding DG approximations r@imainder of the paper is orga-
nized as follows. Section 2 is dedicated to a summary of tha features of DG formulations
for reaction-diffusion problems. The LDGC method is intnedd in Section 3. A numerical
analysis of the LDGC formulation is presented in Section@wshg that it preserves the main
properties of the associated DG method. Numerical restdtpeesented in Section 5 and
some concluding remarks are drawn in Section 6.

2. DG METHODS
We consider the second order elliptic model problem

—Au+ou = f in Q (1)
u = g on T (2)

whereQ) C R? (d = 2) is an open bounded domain with a Lipschitz boundary 092, A is
the Laplacian operatot, > 0 is the diffusion coefficienty > 0 is the reaction coefficient, the
source terny € L*(Q2) and the Dirichlet boundary conditione H'/?(T").

The notation commonly utilized in DG methods is presentagtesis also adopted in
LDGC method, which will be introduced in next section. Let

T = {K} := union of all elements K
be a regular finite element partition of the two dimension dorf2 and let
En={e:eisanedge of K forall K € T} (3)
denote the set of all edges of all elemeft®f the meshy;,,
E) = {e € &, eis an interior edge} 4)

the set of interior edges, and
EP = &, N o, (5)



the set of edges &), on the boundary of). Discontinuous Galerkin methods are normally
formulated and analyzed using well defined averages andgwmmterior edges, for a scalar
functiony

1
ler =5t [e]=pm+em; onec & (6)

and for a vector field-
{T}:%(Tl—i-Tg), [f]=71-n,+72-ny, onecé&. (7)
For boundary edges it is usually set
{¢}=¢. [Pl=¢n, {r}=7, [rl=7-n oneecg. (8)
Let V}, denote the broken function space
Vi={v e L*Q) : v|gx € Sp(K) VK €T} (9)

whereS,(K) = P,(K) (the space of polynomial functions of degree at miost both vari-
ables) orS,(K) = Qx(K) (the space of polynomial functions of degree at most any
variable), equipped with the broken Sobolev norm:

1/2
Ho(Ky) = <Z Hvaqs(K)) (10)

Keky

[I[]]

A well established class of primal Discontinuous Galerkd(s) methods for our
model problem is formulated as follows: fing € V), such that

ah(uh, Uh) = fh(vh) Yv e V), (11)

with

ah(uh, Uh) = Z / (5Vuh . Vvh + Uuhvh) dx
K

KeTy

+ Y [ (s[ual - {eVon} — [oa] - {eVun}) ds

ece&y €

+ Yo [Tl fodds+ 3 0 [[wonds 12)

ecg?d € ecg? ¢
and

fn(v) = Z /Kfvda: + /BQ(€VU -n)gds + 7)/ guds. (13)

KeT, o0

where the constantusually has been choserl (SIPG),0 (IIPG) or1 (NIPG) (see [27] for
more details). The penalty functionis defined as

0= 77—h° Ve € &, (14)



with 1o > 0. The numerical analysis of this class discontinuous Galarlethods fits in the
framework for the analysis of DG methods provided in refeee[25]. See also references
[4, 2, 8]. Since the domaif? is polygonal, there exists > 0 such that: < «ah., whereh,

Is the measure of the edgec 0K. For the sake of simplicity we will present all estimates in
terms ofh. We consider the following energy norm

W2 = XlAWWVWHAk“+XM[MWWW (15)

KeKy, ecéy

to present a summary of the main results on the numericaysisalf the above DG formula-
tion based on references [4, 25].
DG Consistency. The solutionu the model problem (1) - (2) satisfies

ah(u,vh) = fh(vh) Y, € V. (16)

DG Local conservation. Fixing an elemenis belonging to the interior of the domain
and choosingy, = 1in K, v, = 0 elsewhere DG method (11) reduces to

/ (oup — f)de + Z n/[[uh]] ‘nds = Z {eVun} - nds, 17)
K ccOK V€ ecOK V€
which expresses the local conservation of the DG formutatith boundary stabilization.
DG Stability. Forn, sufficiently large there exists a constant> 0, independent of
s andh, such that
an(vn,vp) > K||onllz You € V. (18)

DG Continuity. If ny > 0 for all e, there exists a constant such that
an(up,vn) < M|upllellvnlle  Yun, vn € Vi (19)

DG Approximation. For anyu € H**1(2) the continuous interpolant af, u; € V;,
satisfies
Ilw = urlllzge,) < CR™ 970y

DG Error estimatein the energy norm. Consistency, stability and continuity lead to

the estimate
|lu = un|le < CR™ ™D || o (21)

with r = 3/2.
DG Error estimatein L?(Q2). The adjoint consistent DG formulation corresponding
to s = —1 presents also the optimal rate of convergencg?iff2) norm

lu = unllog < CR™ ™S [l || 51r 7). (22)

In the next section we introduce a new formulation presgniire all these above
properties of DG methods but with implementation and comfpahal cost equivalent to a
continuous Galerkin method.



3. THELDGC METHOD

To define the Discontinuous Galerkin formulation based owocallprojection we in-
troduce a new variablg, uniquely defined a8 = u|. on each edge € &, and consider the
finite dimension function sets

M? ={\€C%&): \. = Pi(e), Ve € E), M. = g, Ve € £},
M, ={\ € C°%&EL) : M= Pi(e), Ve € £, M. =0, Ve € EY,

whereF,(e) is the space of of polynomials of degree at mosh each edge. The Locally
Discontinuous but Globally Continuous Galerkin methodisrfulated as:
Find the pai{u,, A} € Vi, x M} such that, for alfvy,, pi,} € Vi, x My,

Z eVuy - Vo, + oupvpde  — / (eVuy, - n) (v, — pp)ds
oK

KeT, VK

—i—s/8 (eVuy -n)(up, — \p)ds  + Bup — Ap)(vp, — pp)ds = / fopdx, (23)

with s as defined before.The penalty functiéms such that

Bo
== (24)
with g, > 0. Given thatv,, belonging to the broken function spakg, is defined indepen-
dently on each elemetf € 7,, we observe that equation (23) can be split into a set of local
problems defined on each eleméntand a global problem defined @h. Consequently, the
LDGC method can be presented as:
Finduy|x € Vi, (K) = Vi|x and), € M7, such that

/ (eVuy, - Vo, + oupop)de — /
K

oK

(5Vuh . n)vhds + S/ (vah : n)(uh — )\h)ds

oK oK
-+ ﬁ(uh — )\h)vhds = / fUhdﬂf, Uh‘K & Vh(K) (25)
oK K
and
Z / (eVuy - n)upds + B(An — up)pnds =0, Y, € My, (26)
ke, JOK oK

3.1. Thelocal problems

Equation (25) can be solved locally to fimcas a function of\. Moreover, we define
the local operatorsx (u, v) andbk (A, v), and the linear functionglx (v), such that

ag(up,vp) = / (eVuy, - Vo, + oupvy)dx
K

+ s/ up, (eVoy, -n)ds — / vy (eVuy -n)ds+ upvpds; (27)
oK oK

oK

b (Ap,vp) = s/ A eV, -n)ds — Avpds; (28)
OK

oK
fK(Uh) = L fUhdﬂf. (29)



Then, the local problem is given by:
For any given\, find u,|x € Si(K) such that

aK(uh,vh) + bK()\h, Uh) = fK(Uh), Vvh € Sk(K) (30)

ConsideringA x and By the matrices generated by the local operatoé-, ) and
bi(+,-), respectively, and; the vector originating fromfx(-), we can rewrite the local
problem (30) in a matrix form, expressimgn terms of:

AKU+BKA:FK. (31)
Given thatA f is positive definite, we solve the system (31) to obtain

3.2. The global problem

Based on equation (26), we define the local operate(s, ;1) andd (A, 1), such that

cx(u,p) = /aK p(eVu-n)ds — upds; (33)

oK

dx(\p) = B Auds. (34)
0K

ConsideringCx andDy the matrices generated by the local operatgs§, -) anddg (-, ),
respectively, we can rewrite equation (26) in a matrix form:
> Cxu+DgrA=0. (35)
KeT,

Replacing (32) in (35), we obtain

D CxA (Fx —ByA) + DA =0, (36)
KeTy,
which gives
> Dk - CxkABr)A= > —CrA'Fy. (37)
KeTy, KeTy,

We can consider equation (32) under another point of viefinitg an affine operator
H : M, x L*(K) — Vj, which associates to ea¢h,,, f) € M) x L*(Q) a discontinuous
solutionu, € Vj,. Thus, equation (32) can be rewritten@as= H (), f). Therefore, the
LDGC global formulation is given by: find, € A, such that

ArpaeAn, ) =0, Y, € My, (38)
where
Appae(An, pn) = Z (e (H(An, f), pn) 4 di(Ans pin)) - (39)
KeT,,

Thus, since)\, is continuous, the global problem is solved by using (38)ictviie-
duces strongly the number of degrees-of-freedom. The digsaeus solution is recovered



by solving the local element-wise problems described in,(88ing equation (31) element
by element. An interesting issue of this method is that ckffé degrees of the interpolation
polynomials can be used fay, and\,. Consideringt and/ the degrees of the interpolation
polynomials foru,; and ), respectively, the choick > [ produces better approximations
for the discontinuous solution,. This selection keeps the number of degrees-of-freedom
reduced and has almost the same computational cost of éraativet = [.

3.3. Main Propertiesof LDGC Method

Now we present some properties of LDGC method that are predérom DG meth-
ods, like consistency and local conservation. We startitiagrthe LDGC method in a DG
framework, giving rise a coupled problem where these pt@secan be obtained naturally.
Using identity

S [ @owpis= 3 [t Telds+ 3 [tebrlas (o)

KeT;, ec&, V€ ecl €

considering thab, andu, are uniquely defined o, and taking into account the following
identities:

1 1
p1 = §(<P1—902)+§(901+<P2),
1 1
Py = §(¢1+802)—§(901—¢2)7 (41)

the LDGC method can be presented as:
Find the paif{u,, A} € V3, x M, such that

A({un, An} s {on, pn}) = F({vn, un}) ¥V {on, pn} € Vi x My (42)

where

A({uh, )\h}, {Uh, Mh}) = Z A 5Vuh . Vvh + O'Uhvhdl‘

KeTy

£ 3 [Tl V) - Tl ) ds

e€&y €

+ Z /g[[uh]] - Jon]ds + Z Bupvpds
6652 ¢

8655 €

+ ) /e([[5vuh]] (tn — {vn}) = s[eVor](An — {un})) ds

6652

+ D /6250% — {un})(pn — {vn})ds (43)

6682

and

F({v,u}) = fu(vn) (44)



with f,(v,,) given by (13).

In the above LDGC formulation (42) the boundary condition= g onI" = 09 is
weakly imposed using the same Nitsche’s approach adopt#teiassociated DG method
(11). For this reason the unknoww) is restricted tal/,, and identify withg on the boundary
I' (\, = gon eacthe € &7).

Remark 3.1. We can see the LDGC formulation (42) as a small modificatiothefDis-
continuous Galerkin methods (11), but LDGC is not a hybation of the associated DG
formulation.

LDGC Consistency. The pair{u, A}, with u solution of the model problem (1) - (2)
and\ = ul, on each edge € &, satisfies

Z / eVu - Vo, + ouvpdr  — / (eVu-n)(vy — pp)ds + 3/ (eVo, -n)(u — N)ds
K oK

KeTy, oK

+ Blu — N)(vp, — pp)ds = /K funds, (45)

oK

for all {v,,, un} € Vi, x M. Considering equations (43-44), LDGC consistency (45)hmn
presented as

an(w,vn) —  fa(vn)

- Y [ 51 Tulas

0 e
ec&y

- Z /e([[€VU]](uh —{wn}) = s[eVur](A = {u})) ds

865}?

£ 3 [ZRO D~ {md)ds =0, Vv € Vi x My (46)

865}?

Given thatu € H*(Q), then\ = {u}|. = u|. and considering thdu]. = 0 and[eVu]. =
0 Ve € &7, the consistency expression of the LDGC formulation reduoe

ah(u,vh) — fh(Uh) =0 WVuy,e€ Vh, (47)

which shows that the consistency of the LDGC formulationeshels only on the consistency
of the associated DG formulation.

LDGC Local conservation. Fixing an element belonging to the interior of the
domain and choosing, = 1 in K, v, = 0 elsewhere ang,; = 0, the LDGC method (42)
reduces to

RS

ecOK

3 [o (Gl n+ ) =) ds=o @9)

ecOK 7€

/e ({5Vuh} ‘n+ %[[5Vuh]]) ds



or, equivalently

/K(Uu — f)dx — Z /Vuh -nds + Z B(up — Ap)ds =0, (49

ecOK ecdK 7€

which is similar to the expression for the local conservatbDiscontinuous Galerkin meth-
ods stabilized via the addition of a penalty term defined erellement edges.

4. NUMERICAL ANALYSIS

In this section we present a numerical analysis of the LDG@outke(42) using the
same kind of arguments usually employed in the analysissafoditinuous Galerkin methods
for elliptic problems [4, 6]. Following we define a norm to peostability and continuity of
the bilinear formA(-, -) in the finite dimension product spatg x M,,.

Stability and continuity of the LDGC method (42) are provedhe norm

o i} llze = lol2+|n—{v}2  ¥{o.u} € Vi x My (50)
where
ol = > B3, (51)
6652

4.1. Existence and uniqueness

The Lax-Milgram lemma is used to analyze problem (42). Te #nd we first prove
LDGC stability as follows.

Lemma4.1. LDGC Stability. There exists, > 0 such that

A({Uhnu‘h}u {Uhnu‘h}) Z O[S”{'Uh,/lzh}Héc, V{'Uh,,uh} € Vh X Mh' (52)

Proof:
See [6] for detalils.
[

Lemma4.2. (Continuity of A(-,-) and F'(-)) There exist constants, < oo and-~y, < oo such
that

A{u, A}, {v, 1}) < awll{u, AHlgell{v, ubllge Vv, u} € Vi x M,
and
F({on, in}) < wll{on, untlge  V{v, u} € Vi X M.

Proof:
See [6] for detalils.



4.2. Error estimates

The Theorem 1 summarizes the main results of the numeriaysia of LDGC
method.

Theorem 1. The LDGC method (42) has a unique solutign,, \,} € V}, x M, and if the
exact solution of our model problem (1)disc H*1(Q2), the following estimates hold for
k>1

= un, A= Mndlge < C (RS [ful [ grersy + B° fulisro + hulige)  (B3)
and fork > [ ands = —1 (adjoint consistent formulation)
lu = unlloo < C (R™™ W |ful|| gy + B ko +h ™ ulig o) (54)

Proof:

Existence and unigueness of solution are direct conseqaaid.emmas 4.1 and 4.2
and the Lax-Milgram lemma. Estimates (53) and (54) wereionbthusing consistency, ad-
joint consistency, stability and boundedness of the LDG@Gtdation.

[

5. NUMERICAL RESULTS

Simple elliptic problems with known exact solutions werdizgd in convergence
studies in order to observe the behavior of LDGC method ingammson with continuous
and discontinuous Galerkin methods. In all examples we migally evaluate the conver-
gence properties of the proposed methodology aiming atrooinfy the rates of convergence
predicted by the numerical analysis presented in previecsas.

5.1. 1D Convergence Study

First we consider the one-dimensional case of problem (flpein = (0, 1), with
e = 1 ando = 10. The Dirichlet boundary conditions and the source term eh@scording
to the smooth exact solution

u(z) = (1—z)e™.

We compare the convergence behaviors of the approximabiotasned with contin-
uous Galerkin, discontinuous Galerkin and LDGC=£ —1,0, 1) methods, using uniform
partitions of the domairi0, 1) with 8, 16, 32 and64 linear two node elements. In all cases
the LDGC global systems have the same number of degreesexfdm as the correspond-
ing continuous Galerkin approximations while DG approximas lead to twice this number.
In Figure 1(a) and (d) we can observe the convergence rateBGLC(k), for s = —1 and
k = 1,2,3, compared with continuous Galerkin and SIPG [25] approsioma in L2(0,1)
and H'(0,1) norms, respectively. Fot = 1, LDGC(1) shows the optimal rates of con-
vergence in both7'(0,1) O(h) and L*(0,1) O(h?*) norms with accuracy identical or even
better than the corresponding continuous and discontsGalerkin approximations. Much
more accurate solutions with reduced computational caspened to discontinuous Galerkin
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Figure 1. 1D Convergence rates= —1,0,1; e = 1 ando = 10.



approximations are obtained with LDGC(2) and LDGC(3) as alsown in Figures 1(a) and
(d). As predicted in the numerical analysis, optimal rafeovergence are observed for both
LDGC(2) (O(h?)in H'(0,1), O(h®)in L?(0,1)) and LDGC(3) O(h?) in H'(0,1), O(h?) in
L?(0,1)) with s = —1. Similar results are presented for= 0 in Figure 1(b), (e) and for

s = 1in Figure 1(c), (f). In all cases, the LDGC method presentsgl rates of conver-
gence inH'(0, 1) norm. Fors # —1, the DG formulations loose adjoint consistency and their
observed convergence ratedif(0, 1) are, as expected)(h* 1) if k is odd andD(h*) if k is
even. We use, = 6 fork =1, By = 12 for k = 2, B, = 24 for k = 3.

5.2. 2D Convergence Study

We now consider problem (1) defined in the two dimension daftai (0, 1) x (0, 1)
with e = 1 ando = 10. The source term and the Dirichlet boundary conditions ehos
according to the exact solution

u(zx,y) = sin(mx) sin(7y). (55)
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Figure 2. 2D Convergence rates= —1,0, 1; £ = [ = 1; Quadrilateral Elements.



The LDGC solutions will be identified by LDGC(k) in whichl > 1 is the degree of
the polynomial interpolations of the multipliey, on the element edges atds the degree
of polynomial interpolation of the primal variable, in the interior of each element. Fig-
ure 2 presents a comparison between convergence ratesambteith the Galerkin, DG, and
LDGC methods. In these studies we use uniform partitionhie@fdomain withl6, 64, 256
and 1024 quadrilateral elements. We present results of convergemdeDGC method for

= —1,0,1, settingl = 1 andk = 1,2, 3. Unlike the 1D case, in this 2D example the rates
of convergence of LDGC(k) are associated to the degrée= 1) of the interpolation poly-
nomial adopted for the multiplier fox,,, as presented in numerical analysis (see Theorem 1).
Nevertheless, LDGC(1,2) and LDGC(1,3) approximationswaoee accurate than LDGC(1,1)
and continuous or discontinuous Galerkin approximatiartsoth 2?(Q2) and H'(€2) norms.

5.3. Strongly Reactive Problem

We now consider the problem (1) defined in the two dimensianaln() = (0,1) x
(0,1) with e = 1074, ¢ = 1 and the source ternfi = 1. The Dirichlet boundary conditions
are homogeneous in

0No— R 0 M 06 08 1 40 o o ” o6 o8 1

(b) SIPG method. (c) LDGC method.

Figure 3. Strongly Reactive Problem= —1; k = [ = 1; 256 elements.



Figure 3 compare the approximate solutions obtained witei®ia, SIPG and LDGC
methods. We sef, = 2 for LDGC method andc = [ = 1 for all methods evaluated,
using an uniform partition of the domain wi#t36 elements. Figure 3(a) shows the Galerkin
method approximate solution, which presents spurioudlagens for this problem. These
oscillations are reduced using the SIPG method as showrguréB(b). However, the LDGC
solution is more accurate than Galerkin and SIPG method$ggisted in Figure 3(c), where
these oscillations are elliminated.

6. CONCLUDING REMARKS

A Locally Discontinuous but Globally Continuous (LDGC) fimielement formulation
for reaction-diffusion problems is proposed. The LDGC roeitis developed from a stabilized
hybrid formulation consisting of a set of local problems deél at the element level and a
global problem associated with the multiplier. The LDGC huet uses the same data structure
of continuous Galerkin finite element methods, allowinded#nt degrees of interpolation
polynomials for the primal variable and for the multiplieesulting in more flexibility and
improved accuracy. The numerical analysis of LDGC methosl prasented, attesting that it
preserves the main properties of DG methods such as camsiskecal conservation, stability,
boundedness and optimal rates of convergence in the energy, and inZ*(2) norm for
adjoint consistent formulations.

Some academic numerical experiments are conducted trataghe behavior of the
LDGC method applied to regular reaction-diffusion probéeronfirming the optimal rates of
convergence predicted by the numerical analysis. Numexgeeriments with a 1D problem
confirmed the optimal rates of convergence predicted in thmarical analysis for the two
node element with any degrée > 1 of the interpolation polynomial adopted for the dis-
continuous field. For 2D problems, optimal rates of convecgeare proved and numerically
confirmed fork = [, with [ denoting the degree of the polynomial interpolation addoe
the multiplier. Fork > [ we have observed improved accuracy of the LDGC approximatio
compared with continuous and discontinuous Galerkin apprations with the same number
of elements in both7!(Q) seminorm and.?(©2) norm. For strongly reactive problems the
LDGC method presents accurate approximate solutionsgisgpspurious oscillations. In all
examples analyzed the LDGC approximations exhibited aoyuequivalent or even better
than the corresponding continuous or discontinuous Galaproximations.
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