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Abstract. In this research activity, we are now developing the numerical model for the motor 
dysfunction, for example Parkinson’s disease, on a high performance computer. The final 
target of the activity is to develop the integration model consisting of neural networks (brain, 
central nervous system, and so on) and three-dimensional musculo-skeletal system, and to 
reproduce primary symptoms of Parkinson’s disease in order to clarify the cause of the motor 
dysfunction and obtain the knowledge about effective treatments. The developed central nerv-
ous system includes major motoneurons related to a motion (e.g. α-motoneuron) and de-
scribed as simultaneous ordinary differential equations, in which communications of excitato-
ry and/or inhibitory signals with each other are expressed mathematically The musculo-
skeletal model is based on a nonlinear finite element framework for incompressible 
hyperelastic materials, and can treat both passive behavior of biological soft tissues and ac-
tive behavior of muscle fibers. The model can successfully reproduce the muscle-tendon be-
havior and generated force during an isometric contraction. 
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1. INTRODUCTION 

Parkinson’s disease is a degenerative disorder of central nervous system and causes 
motor dysfunction. The motor dysfunction is generally considered to be caused by an abnor-
mal motor command from the basal ganglia, which results from the death of dopamine-
producing cells in a midbrain region. However, the cause of the depletion is not clarified yet. 
Therefore, treatments remain palliative and its development cannot be stopped. 

In this research, we are now developing a numerical model for the motor dysfunction 
in Parkinson’s patients on a high performance computer system. The final target of this study 
is to develop the integrated model of brain, central nervous system, and three-dimensional 
musculo-skeletal system, in order to clarify the cause of the motor dysfunction in Parkinson’s 
patients and obtain the knowledge about effective treatments. 
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The final objective of this research, therefore, is to develop a numerical model consist-
ing of a brain, neural networks, and musculo-skeletal system for a human motion and to re-
produce primary symptoms of Parkinson’s disease on a high performance computer, in order 
to clarify the cause of the motor dysfunction and obtain the knowledge about effective treat-
ments. In the current status, central nervous model and skeletal muscle model are developed 
separately, then these models are integrated. 

 

2. NEURAL NETWORKS 

To reproduce a motion of a human in a numerical simulation, development of the 
models for brain, neural networks, and musculo-skeletal system and integration of their mod-
els are required. Numerical results by Cutsuridis [1] are given as a successful work about nu-
merical simulation of Parkinson’s disease. In his model, activities of primary motoneurons 
and interneurons related to an arm motion are expressed as simultaneous ordinary differential 
equations. His results show dopamine depletion in a brain causes abnormal muscle behaviors 
and neuron activities which are similar to rigidity in Parkinson’s patients. Meanwhile, many 
researchers are now developing numerical models for the brain (consisting of globus pallidus 
externa, globus pallidus interna, subthalamic nucleus, and so on) of Parkinson’s patients and 
investigating the influences of dopamine depletion generating an abnormal motor command. 
In such research activities, membrane potentials of neurons are expressed as ordinary differ-
ential equations and the voltage depends on the behavior of ion channels. As mentioned above, 
our final target is to develop the integration model, and the central nervous system plays a 
role in transmitting signals from brain to muscle. Accordingly, an analogous strategy to a 
brain model is adopted for the neural networks for a motion in view of the connection of brain 
and muscle behavior. 

To realize this concept, we follow the success of the numerical model developed by 
Cisi et al. [2], which simulation system consisting of the spinal cord circuitry and associated 
muscles can successfully reproduce force generation and motonueron recruitment. Mathemat-
ical treatments for neurons forming neural networks for motor command communication are 
based on a compartment model and expressed as ordinary differential equations for membrane 
potential. As an example, the expressions for an α-motoneuron are given below: 
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Here, Vs is a membrane potential for soma, Vd is a membrane potential for dendrite (two com-
partment model is employed for α-motoneuron), m, h, n, and q are gate variables for corre-
sponding ion channels. The three kinds of ion channels (sodium, fast potassium, and slow 
potassium) are considered in the model. The size principle can be reproduced by means of 
changing the size (radius : rs, length : ls, and so on) of each neuron. An example of the soma 
diameter is shown in Fig. 1. In this figure, 800 S-type motoneurons, 50 FR-type motoneurons, 
and 50 FF-type motoneurons are illustrated, and they have linear slope in diameter.  
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Figure 1. Soma diameter for three types of α-motoneurons. 
 
 
 

Behaviors of motoneurons obtained by numerical tests for the above model are illus-
trated in Fig. 2, in which direct currents of 5, 10, and 50 nA are injected. It is shown from this 
figure that small direct current can cause firing of only small α-motoneuron. When the inject-
ed current becomes larger, larger α-motoneuron can be activated. In this test, all of the α-
motoneurons are activated for the injected current of 50 nA. This result shows the size princi-
ple is successfully reproduced by this numerical modeling for α-motoneuron. Figure 3 shows 
generated force when the direct current is injected. The generated force becomes large gradu-
ally when the injected current becomes large. The maximum force is realized at the injected 
current of 50 nA. The increase in the injected current can’t change the generated force when 
the current is larger than 50 nA. This corresponds to the behavior of motoneurons shown in 
Fig. 3, which indicates successful reproduction of size principle of motoneurons. 
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Figure 2. Time train of membrane potential of α-motoneurons for three kinds of injected cur-
rents. The column means injected direct currents: 5, 10, and 50 nA from left to right. The row 
shows the membrane potential of each α-motoneuron: the smallest S-type neuron, the largest 
FR-type neuron, and the largest FF-type neuron from the top to the bottom. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Generated force against injected direct current. 
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3. MUSCULO-SKELETAL SYSTEM 

The numerical modeling for musculo-skeletal system is based on a nonlinear finite el-
ement method under the assumption of incompressibility of biological soft tissues such as 
muscle and tendon. Here, a mixed type displacement-pressure finite element formulation, a 
total Lagrangian formulation, and a fully implicit time integration procedure are adopted. One 
of the characteristics of the biological tissues is its ability to develop internal forces, therefore, 
the stress state in a muscle must be expressed as the result of a superposition of passive and 
active parts, i.e. [4] 
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where        ,        , and         are the total, the passive, and the active Cauchy stress normal 
components in the muscle fiber direction. 
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For the biological soft tissues, the strain energy density function can be written as [5] 
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The term     is the contribution of the isochoric strain energy and is a function of the adopted 
hyperelastic constitutive model. The second term Wvol represents the strain energy associated 
with the volumetric change, and the third term Q, which comes from the introduction of in-
compressibility of the biological soft tissues, is the function of both displacement and sepa-
rately interpolated pressure. The implemented model for the passive part of the muscle is as-
sumed to be the anisotropic material ones, i.e: [4] 
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The first term        corresponds to the connective tissues of muscles and is defined as a 
Mooney-Rivlin material: 
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where cij are material constants,     and     are reduced invariants right Cauchy-Green strain 
tensor, respectively. The second term          represents the muscle fibers and connects the 
Cauchy stress in the fiber direction (        ) to the fiber stretch (λ) by the relation 
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where           is a material constant and          is the normalized passive force given by pas
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where λ* is the normalized stretch defined as λ* = l / λ0. The models for tendon is assumed to 
be isotropic and expressed as Mooney-Rivlin model. 

The three-dimensional Hill-type model [4], which is written as Eq. (12), is used for the 
muscle active behavior. 
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In the above expression,            is the maximum isometric stress occurring at the optimum 
fiber stretch λ0. fl, fv, and ft are the activation function, length-dependence function, and veloc-
ity-dependence function, respectively. 
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Numerical results for isometric contraction of a human triceps surae muscle are shown 
in Fig. 4. In this calculation, modeled surae muscle is based on medical images. It is seen that 
each muscle causes a contraction in the fiber directions. The Achilles tendon is stretched by 
the aponeurosis existing between gastrocnemius and soleus, resulting in the force generation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Simulation results of the isometric contraction of a human triceps surae muscle. 
Four figures in the left-hand side illustrate the deformation and displacement of the longitudi-
nal direction. The right-hand side figure shows the nodal force vectors at the end of the con-
traction. 
 
 

The effects of the maximum isometric stress on the generated force at the insertion of 
Achilles tendon at the end of the activation are also examined. Figure 5 shows the numerical 
results of generated force against maximum isometric stress which is varied from 0.05 to 1.0 
MPa based on the literature. The maximum isometric stress increases the generated force. The 
largest force,           = 1.0 MPa, is about 9.7 times larger than the smallest one,             = 0.05 
MPa. 
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Figure 5. Generated force against the maximum isometric stress at the insertion of Achilles 
tendon at the end of the activation. 

4. SUMMARY 

In this paper, numerical models for the central nervous system and three-dimensional 
musculo-skeletal fininte element model are described. It is confirmed that the three-
dimensional mechanism of the force generation at Achilles tendon is obtained from the pre-
sent musculo-skeletal model based on a finite element approach. And the numerical model for 
motoneurons reproduces recruitment during force generation. The final target of our research 
activity is to integrate these models together and to reproduce a human motion, primary 
symptoms of Parkinson’s patients on a high performance computer. In the future, therefore, 
we are going to integrate these models, and furthermore brain model.  
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