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Abstract. A uniform high-order time-domain approach for wave propagation in bounded
and unbounded domains is proposed. It is based on improved continued-fraction expansions
of the dynamic stiffness. The coefficient matrices of the continued-fraction expansion are
determined recursively from the scaled boundary finite element equations in dynamic stiffness.
The resulting solution is suitable for systems with many degrees of freedom as it converges
over the whole frequency range, even for high orders of expansion. In the time-domain, the
continued-fraction solutions correspond to equations of motion with symmetric, banded and
frequency-independent coefficient matrices.
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1. INTRODUCTION

The numerical modelling of wave propagation in unbounded domains is required in a
number of engineering applications. Consider for example the design of machine foundations,
earthquake analysis of large structures and dam-reservoir systems or the vibro-acoustic opti-
mization of passenger vehicles. In these examples, displacement or pressure waves propagate
in semi-infinite media such as soil, air or water. Here, it is of crucial importance to accurately
model the effect of radiation damping in a numerical simulation. The well-established finite
element method cannot be used straightforwardly in these types of problems, since outgoing
waves are reflected at the artificial boundaries of the finite element mesh. The consistent mod-
elling of wave propagation in unbounded domains has been a major research topic for more
than 30 years, and is still challenging [7, 14]. The numerical approaches which have been
developed in this context include absorbing boundaries [8, 10, 15], the boundary element
method [3, 4], infinite elements [5], perfectly matched layers [2] and the scaled boundary
finite element method [16].



Wave propagation in bounded domains is of interest for exanmpnon-destructive
testing using wave based methods or in dynamic fractureysisalwhen simulating propa-
gating cracks. Here, the finite element method is not corineetf singularities occur inside
the bounded domain due to cracks or material interfacesicaiy very fine finite element
meshes are required around crack tips. In dynamic craclkagain analyses or in the con-
text of inverse analyses the numerical effort associaté reimeshing can be prohibitive.

In this paper, a high-order mass or damping matrix approachvéve propagation
analyses in bounded or unbounded domains is presented) wdccomes these drawbacks
of the finite element method. It is based on a unified time-dorfmulation of the scaled
boundary finite element method. This is a semi-analytioahnegue which excels in mod-
elling time-dependent problems in unbounded domains amdadelling bounded domains
with singularities.

The scaled boundary finite element method is based on a cabediransformation
which allows the governing equations to be discretizedecircumferential directions, while
the solution in the direction of wave propagation is obtdia@alytically. The method was
originally formulated in the frequency domain, leading toaalinear differential equation in
dynamic stiffness. The scaled boundary finite element nekeiththe time-domain is obtained
by expanding the dynamic stiffness into a series of condrfuactions [1, 12]. An improved
continued-fraction solution is presented in this paperictvltonverges over the whole fre-
quency range with increasing order of expansion. Comparad &xisting approach, it leads
to numerically more robust solutions for large-scale systend arbitrarily high orders of
expansion. By using the continued-fraction solution ancbohicing auxiliary variables, the
equation of motion of a bounded domain is expressed in higbfcstatic stiffness and mass
matrices. For an unbounded domain, a formulation in terntsgf-order static stiffness and
damping matrices is obtained. Both formulations corresponelquations of motion with
symmetric, banded and frequency-independent coefficiertices, which can be coupled
seamlessly with finite elements. Standard proceduresuntstial dynamics are then directly
applicable.

The further outline of this paper is as follows. In Sectioriz concept of the scaled
boundary finite element method is briefly summarized. IniSe@, the improved continued
fraction solutions of the scaled boundary finite elementagéiqas for the dynamic stiffness
matrix of a bounded and unbounded domain, respectively eneedl. In Section 4, the cor-
responding equations of motion are constructed by usingdh@nued fraction solutions and
introducing auxiliary variables. Numerical examples aralgsed in Section 5.

2. SUMMARY OF THE SCALED BOUNDARY FINITE ELEMENT METHOD

The scaled boundary finite element method is described aildethe book [16] and
in Reference [11]. For completeness, the equations negeksathe development of the
high-order time-domain formulations are summarized lyiefithe following.

In the scaled boundary finite element method, a so-calldohgazentreO is chosen in
a zone from which the total boundary, other than the stragtiaces passing through the scal-
ing centre, must be visible (Figure 1(a)). Only the boundaxysible from the scaling centre
O is discretized. Figure 1(b) shows a typical line elementéoubed in two-dimensional
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Figure 1. Concept of the scaled boundary finite element metliap unbounded domain,
(b) three-node line element on boundary of 2D problem, (ghtenode surface element on
boundary of 3D problem

problems and Figure 1(c) shows a typical surface elemenetaosed in three-dimensional
problems. The coordinates of the nodes of an element in ae-ttireensional Cartesian coor-
dinate system are arranged in the vecfary, {y} and{z}. The geometry of the isoparametric
element is interpolated using the shape functiong,, ()] formulated in the local coordinates
n, ¢ of an element on the boundary as

2(6,m,¢) = &N, O}, 9(&n,¢) = EINM, Oy}, 2(6,m,¢) = N (0, Oz}, (1)

where¢, n and( are called thescaled boundary coordinates

The nodal unknown displacements(¢) } are introduced along the radial lines passing
through the scaling cent@ and a node on the boundary. (The dependency on the excitation
frequencyw in a frequency-domain analysis or on timé omitted from the argument for
simplicity when it is not explicitly required.) The unknovdisplacements at a poify, 1, ¢)
are interpolated from the nodal displacement&f)} as

{u(€n. O} = [N"(n. OHu(&)} = [N (n. QUL N*(n, Q)L1], . {u(€) }- @)

In Equation (2), the size of the identity matfiX is n x n, wheren is the number of degrees
of freedom per node. In a next step, Galerkins weighted uestéchnique or the virtual work
method is applied in the circumferential directiong to the governing differential equations.
In the frequency domain, the scaled boundary finite elengrtéon in displacements:(¢)}
results,

(B u(€)}ee + ((s = DIET] = [E'] + [E']") €{u() e+
((s =B = [E7]) {u(§)} + M )E{u(©)} =0, (3)
wheres (=2 or 3) denotes the spatial dimension of the domai’], [E?], [E?] and [M?]

are coefficient matrices obtained by assembling the elemmeificient matrices as in the
finite element method. For three-dimensional elastodyog@mablems the element coefficient



matrices are expressed as

B = [ [ B OB . O, Ol dndc (42)
= [ [ B 0w .0, Ol dndc (ab)

1B = / / [B2(n, ) [D][B(n, )| I (n, )| dnd. (4c)

= [ NN O O (ac)

where[B!(n, ()] and[B?(n, ¢)] represent the strain-displacement relationsiipand|.J (n, )|
are the elasticity matrix and the determinant of the Jacoimatrix on the boundary, respec-
tively. The matricesB'] and[B?] depend on the geometry of the boundary only. The coeffi-
cient matricesE£°] and[M°] are positive definitel£?] is symmetric.

In an elastodynamic problem, the internal nodal for€e&)} on a surface with a
constant are obtained by integrating the surface traction over eldsnd his yields

{a(©)} = &7 ([E°J{u(©) }e + BT {u()}) - (5)

The internal nodal forces are related to the nodal fofde$ on the boundary by R} =
—{q(¢ = 1)} for an unbounded domain. The dynamic-stiffness mgix(w)] of an un-
bounded domain is defined by

{R(w)} = [5%(w){u(w)} (6)

In Equation (6), the notationSR(w)} = {R({ = 1,w)} and{u(w)} = {u({ = 1,w)} are
introduced to denote the force and displacement amplitatibe boundary. Using Equations
(5) and (6), the relationship between the nodal displacésraard the radial derivatives of the
displacements on the boundary is expressed as

(B (€ w)tel oy = = (15%(@)] + [E']") {u(©)}. (7)

Using Equation (7), the scaled boundary finite element égug8) in displacemenfu(&)}
can be transformed into the so-called scaled boundary fahéent equation in dynamic
stiffness (8) (see [11, 16]).

([5> ()] + [E) [E°]F ([S™ ()] + [E']") = (s = 2)[$*(w)] — w[S™(w)]
— [B] +w?[M"] = 0. (8)

Equation (8) is valid for an unbounded domain with dynaniftr&tss[S>(w)]. For a bounded
domain, the internal nodal forces are related to the nodakf{ R} on the boundary by
{R} = +{q(¢ = 1)}. The corresponding scaled boundary finite element equatidynamic
stiffness (9) is derived analogously to the unbounded case,

(["(@)] = [E']) [E°) " ([S"(@)] = [E']T) + (s = 2)[$"(w)] — w[S" ()]
— [E] +w?[M"] =0, (9)



where[S?(w)] is the dynamic stiffness matrix of a bounded domain.

Equation (8)/(9) is a system of non-linear differential agons in the independent
variablew. Forw — oo, it can be solved using an asymptotic power expansion [X6ihé
rigorous scaled boundary finite element method, the dynatiiiness matrix at intermediate
and low frequency is obtained by numerical integration ofi&epn (8)/(9). This computa-
tionally expensive task is avoided by constructing a car@difraction solution of the scaled
boundary finite element equation in dynamic stiffness. Thigescribed in detail in the fol-
lowing section.

3. CONTINUED FRACTION SOLUTIONS OF DYNAMIC STIFFNESS MATRIX

In this section, continued-fraction solutions for the dymastiffness matrix are de-
termined from the SBFE equation in dynamic stiffness. Sinajgproaches have been orig-
inally derived in References [1] and [12] for unbounded andriaied domains, respectively.
These methods, however, have only been used for the anafysisall problems. For sys-
tems with many DOFs and high-orders of expansion, the nwalesteps involved in these
approaches may become ill-conditioned. In Reference [@,r&ason of these numerical
problems has been identified studying a simple analyticaimgte and an improved algo-
rithm for unbounded domains has been proposed. This digoig presented in Section 3.1
and extended to the bounded case in Section 3.2.

3.1. Unbounded domain

In a first step, the continued-fraction solution (10) is assd,
[5°(w)] = iw [Coc] + [Ko] = [RP(w)]. (10)

The first two terms are the constant dashpot and spring megsigectively. The terR™®) (w)]
denotes the yet unknown residual of the two-term expanditigha frequency. Substitution
of Equation (10) in Equation (8) leads to

(iw[Coc] + [Koc] = [RV ()] + [EY) [E°) ™ (iw[Coc] + [Koo] — [RY ()] + [E']T)
—(s—2) (iw[C’oo} + [Ko] — [R 1)(w)]) iw[Cs] + w[RW], — [E?] + W?*[M°] = 0. (12)
The terms in Equation (11) can be sorted in descending ofgeveers of(iw). Equation (11)

is satisfied when the two terms correspondingi¢d? and(iw) and the remaining lower-order
term are equal to zero. Setting the terms correspondi(i@pg) and(iw)1 equal to zero yields,

(w)?: 0 =[Cu][E%) 7 Cx] — [M], (12)
(iw)' s 0=[Cu][E”) " ([Ku] + [EYT)
+ ([Koo] + [EY]) [E°]Cx] = (s — D[Cx). (13)

In the solution process, the eigenvalue problem (14) is.used

(MO)[@] = [E°)[@][A%], [A*] =diag{ A} A} --- A} }. (14)



The eigenvaluesA? | are positive, since botfd/°] and[E°] are positive definite. Normalizing
the eigenvectorgb] with respect to the matrii=°],

[®]"[E][@] = [1], (15)

yields
(@] [MP)[@] = [A?], (16)
[E°] " = [@][a]". (17)

Using Equation (17), pre- and post-multiplying Equatio)(by [®]” and[®], respectively,
and introducing

(o] = [P [Cac][@], [hoo] = [P [Ksc][@], ] = [@]"[E"][@], (18)
yields
The matrix[k..] results from:
()" s [A][keo] + (ko] [A] = =[A[e']" = [e'][A] + (s — 1)[A]. (20)

Equation (20) can be solved directly by back substitutiothasoefficient matrix at the left-
hand side is diagonal. The remaining part of Equation (1apisquation fofR") (w)],

— iw[C][BY]HRW) + (K] + [EY) [E°) 7 ([Koo] + [E']) — iw[RW][E) O]
— (o] + [EY) [E)HRW] — [RUYES) ([Ku] + (')
+ [RONETHRY] = (s = 2)[Ko] + (s = 2)[RY] + w[RY], — [E*] = 0. (21)
The unknown residudR™ (w)] is expressed as
[RY(w)] = X[y ()] [xO]F, (22)
with s = 1 and ' ’
D“WH—WW+MWW (R @) (23)
In Equation (23), the termEYO(i ] and[ ] are constants corresponding to the constant and
linear term of the-th continued fraction anfR(+1)] is the residual of the ordérexpansion.
[X @] is a yet undetermined factor. If the facfof”)] is chosen agX )] = [I], then Equations
(22) and (23) are identical to the decomposition used in Retfer [1]. In this papef,X @]
will be selected such that the robustness of the numerigali#hm is improved.
The derivativg R"] , is determined as
[RY(w)]w = (XY O ()] YO ()] W[y O ()] X O] (24)
An equation forlY (" (w)] is obtained by using Equations (22) and (24) to reformulajpess
tion (21) and by pre- and post-multiplying the result[By") (w)][X V]~ and[X W]~T[y )],
respectively.

+ [X(l)]T[EO]*l[X(”] [Y(l (W)X W]~ {iw Kool + [El]} [E°) 1 [xW)
— {u,u COO T} X(1 Y(1
+ [Y(”(w)][X(”] {([ J+[EY) [E° ( EN') = [E%] = (s — 2)[ K]} x

[xO) [Y“H( 2)[Y(”] WY D (w)]w = 0. (25)



Here and in the following, the superscripi” denotes the transpose of the inverse of a matrix.
Using Equations (18) and (19), Equation (25) is written asdhsei = 1 of the following
equation:

] = O] (i + 0517 — (bl + 667) V)
FIVOOIY O] -y Ol = 0. (26)

with
[aM] = [X W] (@] (@) (X V)], (27a)
bi"] = [XO) [@][AJ[@) X V], (27b)
[b6"] = XDV [@][@]" ([K] + [E']") [X<1>1 05<s—2>m (27¢)
] = [XO) {([Ka] + [EY) [@)[] ([Ka] + [E')
—(5s = 2)[K EA} X (27d)

Using Equation (23), Equation (26) is again expande(id9?, (iw) and remaining lower-
order terms,

) = (7] + ] = ROV (@)]) (il 17 + 1))
= (1B + 1) (6] + i) - (R (w)])
+ (107 + i) = R @)]) 9] (1%7) + iw ] - (RO @)))
— iw[Y;"] + w[RV], = 0. (28)

As for Equation (11), Equation (28) is satisfied when all tvee¢ terms in the power series
are equal to zero. Setting tlie)? term to zero leads to an equation f@’[(’)],

~ [ — 1Y) + [V = o. (29)

Pre- and post-multiplying the above equation V\[R’Iﬁi)]—l leads to a Lyapunov equation for
D/l(l)]fl,
T AT ] = () (30)

Equating the terms corresponding(t@)! to zero yields
(=187 + 1) [¥6™) + (Y] (~B)7 + [e0]1v)) =
Y1 + 1Y, + ). BD)

This is a Lyapunov equation f¢Y @) ] The remaining lower-order term is reformulated using
Equation (22). Pre- and post-multiplying the resultingatepn by[Y ¢+ (w)][ X “+D]~! and



(X ED)=TY G+ (w)], respectively, yields:
[ ()] X D) O X D) [y )
=~ @I T (T + BT+ O] ) XTI ) )
+ XD (o) + (b)) (X)) )
+ D@ X (wfbl”] + (57 X 4 [X T[] X )
— Y@K (7] + i) ()X O]
= X)) + iy ] X T [ )] = [y D (w)] o = 0. (32)
Equation (32) is thé: + 1)-case of Equation (26),
0] = D] (T 4 57 = (il 6Y]) 1Y)

+ YOI ] -y ], =0, (33)

with
[a(Hl)] _ [X(i+1)]T[C(z‘)] [X(i+1)] (34a)
b7 ] = [XCOT (17 (O ) (X (340)
b ] = [XCOT (17 + (O ) (X0, (340)

) = O ([a0] = BV - e T + 1Y)
(X7 (34d)

Equation (33) can be solved by following the same steps asdieing Equation (26). For
given coefficients X @], the coefficient matrice&®], "], [\"] and [¢?)] are evaluated
recursively using Equation (34), starting from those at 1. An orderM continued fraction
terminates with the approximati¢R(+) (w)] = 0. Increasing the order of continued fraction
does not require the recalculation of the coefficient masrabetermined previously for a lower
order.

The coefficientd X (?] are yet undetermined. It is worth noting that the algorithm
presented above reduces to the method presented in Ref¢i¢ntéhese coefficients are
equal to[ X @] = [I]. In the following, these coefficients are chosen such tratdbustness
of the approach is improved. The analytical study of theacalave equation in a full-
space bounded by a spherical cavity in Reference [6] has stwatithe original continued-
fraction approach breaks down if the corresponding scalefficientc) becomes zero. The
same study has revealed that this problem can be overcomedmgiag the corresponding
scalar coefficientX ) such thatc”| = 1. In the multidimensional case, the coefficigsit)]
approaches a singular matrix if the original continuedticm procedure of Reference [1] is
used. The idea of choosing the coefficiéfit) such thatc(?| is equal to one is extended to the
matrix case in the following equations. In each step of ticergve procedure, the coefficient
[c)] can be expressed as follows:

9] = (X)) x0T, (35)



6] = ([Fo] + [BY) [@][0] (K] + [E']7) = (s = 2)[Ka] = [E7] i i =1, (36)

9] = [ = IS ] = DT
F YOI i1 (37)
The matrix[¢®)] is symmetrlc It can be expressed as the product of a lowaergular matrix

[L®)], a diagonal matrixD®] and an upper triangular matrix )7,
(@] = [T, (38)

using the so-callel.DL"-decomposition, see [9], Sec. 5.1, page 82. Hgr#&)] is normal-
ized such that the entries of the diagonal maffiX’] are+1.0. The LDL”-decomposition
of a matrix|[A] is a generalization of the Cholesky decomposition, whiclpjdiaable even if
the matrix|[A] is indefinite. Choosing

[(X@] =L, (39)

yields
D] = [LOT LD DO LOT[LO)T = [DW]. (40)

Thus, the coefficien{c”] is diagonal with entries:ﬁf,z = +1.0 and thus perfectly well-
conditioned.

3.2. Bounded domain

In order to facilitate the derivation of the continued-tian solution of the dynamic
stiffness of a bounded domain, Equation (9) is rewritten as

([5°(@)] = [E']) [E°) " ([S"(@)] = [B']") + (s — 2)[S"(2)] + 22[S"(2)] o
—[E*] —2[M"] =0, (41)
where the independent variable has been changed to
T = —w. (42)
The derivation is started by assuming
[S°(x)] = [K] + 2[M] - 2?[R"V)]. (43)

In Equation (43), the matriceld{| and [)/] are the static stiffness and mass matrix of the
bounded domain, respectively. The tefi(!)] denotes the yet unknown residual of the
continued-fraction expansion, representing the hightfemcy response. Substituting Equa-
tion (43) in Equation (41) yields

(K] = [B"] + a[M] = 2*[RV]) [ ([K] = [E"]" + «[M] - 2*[RM)])

+wJMM+MHawwwmuwr%[<n 2RO ()].)
~ (B - oM =0, (a4)



The terms of Equation (44) can be written in ascending ordemowers ofz. Setting the
constant term equal to zero yields:

o (K] = [BY) (B (K] = [E']") = [B?] + (s = 2)[K] = 0. (45)
Equation (45) is the scaled boundary finite element equatistatic stiffnes$i’] of a bounded
domain. The solution of this algebraic Riccati equation sotded in detail in Reference [13]
and not repeated here. Equating the linear termstozero leads to:
([K] = [E7) [E°) 7 [M] + [M[E°] ((K] = [E']7) + s[M] — [M°] = 0. (46)

Equation (46) is a Lyapunov equation for the mass matyiX . It solution is described in
detail in Reference [11]. Setting the remaining terms equakto yields an Equation for the
unknown residualR® (z)]:

[M[E°) M [(M] — ([K] — [BY]) [E°) R (2)] — [RW(2)][E°) ! (K] — [E']")
— (s +2)[RW(2)] — 2[M][E°) ' [RY] — 2[R (2)][E°] ' [M]
— 2z[RY(2)] » + 2’ [RM (2)][E°] ' [RW (2)] = 0. (47)

The unknown residual teri(Y) ()] is decomposed as

[RD] = [XD][SO ()] X D)7, (48)
with7 = 1 and
(SO ()] =[] + 2[S1"] — 2* R (2))]. (49)
The derivativg R ()] , is determined as
(RO (2)] o = —[XP][SD (2)] 7 [SD (2)] o[SP ()] X W] (50)

Substituting Equations (48) and (50) in Equation (47) ard and post-multiplying the result-
ing expression byS™ (2)][XW]~! and [XM]~T[SW(z)], respectively, leads to an equation
for [SW)],
(S (@)X O MEO) M XD TS ()] + 2 (X D) B X W)
= [SW (@) XV (K] = [B1) [E) X D) + 22[5 ().
— [(XWITE (K] = [BY") (XW)T[SW(@)] = (s +2)[SP(2)]
— 2SO ()] [X W] ME) X W] = o[ X OB M][X V)T (S (2)] = 0. (51)
Equation (51) is written as the case- 1 of the following equation

[SD(@)][D][SD ()] - [SD(2)][b")T — [b§1[SD ()]
— 2SO @) = 2p)[SD (2)] + 2[5V ()] . + 2°[a?) = 0, (52)

with
[a®] = [XOIT[EO - x O], (53a)
1) = XOP B (K] - [2)7) (x0T - 22 (53b)
1] = X OB X O] (53¢)
"] = (XU MBS M) (53d)



Using Equation (49), Equation (52) is again expanded andeanritten in ascending order
of powers ofr. Setting the terms correspondingatbequal to zero leads to

~[11SS] — 1SS 1T + 111188 = o. (54)

Equation (54) can‘be transformed into a Lyapunov equatitmjfai‘ﬁ)]*1 by pre- and post-
multiplying with [S{7] -,

[S57171 B8] + by 17 1SS = (). (55)
Equating terms corresponding:té to zero yields
(—06"1+ 5511 (1] + 18] (661" + V1571 + 2[s1”) =
BSE] + [S51). (56)

This is a Lyapunov equation quf)]. Equating the remaining terms to zero leads to an
equation for the residuaR(+Y (z)],
0] = B8] = S0 — (17001
= (201 = )+ 55711 (RO (a)] - [R“‘*”(a:)] (2t - [bé“]T + [cﬁmsé”])
—a (B 1SP10EO]) 1RO ()] = 2l RO @)] (] + [ Nls17))
- 2x[R“+”(x>] (R @) H ROV (x)] = 0. (57)
Substituting Equations (48) and (50) in Equation (57) arel pnd post-multiplying the re-
sulting expression bySt+Y (2)][X +Y]~1 and [X +D]-T[SE+D(1)], respectively, leads to
an equation fofS(+1 ()], which can be expressed as
[SED@N[ISED (@) — (S @)V - ST ()]
—a STV @)V = e VNS (@) + 28T ()] + 2 V) = 0, (58)

with
[a(i—l—l)] _ [X (i+1) T[ ][X(i—i-l)]’ (593)
0§ = (XU (201) = )7 + [e9]18§7]) (X0, (59b)
) = XD (=] + [(9[17]) (X0, (59¢)

) = X (0] = )] - 18P0 — [8P01e9)1sE7]) X (59d)

The yet undetermined coefficierts )] are chosen as the lower triangular mafii%)] of the
LDL”-decomposition of the coefficienfs”], analogously to the unbounded domain.



4. CONSTRUCTION OF HIGH-ORDER TIME-DOMAIN FORMULATIONS

Starting from the continued-fraction solutions of the dyma stiffness matrix,5]
or [S*], high-order time-domain formulations can be construceéguations of motion de-
scribing unbounded or bounded domains, respectively. @bealting coefficient matrices are
frequency independent and symmetric. These high-ordeelsa@an be coupled seamlessly
and straightforwardly with finite elements. They are oladimnalogously to Reference [1].
The expansions in Equations (10) and (43) are substitutedtie force-displacement rela-
tionship (6),

{R(w)} = (W[Co] + [Koe]) {u(w)} = [XVHuD (W)}, (60a)

{R(w)} = (K] + 2[M]) {u(w)} = 2[XV{u ()}, (60D)

where the auxiliary variable is defined as
(X O {u(w)} = [ (w){u (@)}, (61)
for an unbounded domain and as
2 XD {u(w)} = [ (@){u (W)}, (62)
for a bounded domain, respectively. Equations (61) and¢é@)e generalized as
XD (W)} = [ (@){u (W)}, (63a)
X Hu D ()} = (89 (@) {u (W)}, (63b)
Using Equations (23) or (49), Equation (63) is expressedhei-th continued fraction as

OO @)+ (7] + i) (0 @)y - XD w)) =0, (64a)

—a XD @)} + (1807] + 2[51]) {u(@)} = 2l XD {ul D (@)} = 0. (64b)

An order M continued fraction expansion is terminated with the asgiomgu(" 1 (w)} =
0. For an unbounded domain, Equations (60a) and (64a) canmbirwed into the following
matrix form:

([K]u + w[Clu) {Z(w)} = {F(w)}, (65)
with
(K]  —[XW] 0 0 0 |
Xy —[x @) . 0 0
% 0 —[XO)1T [V e 0 0 66
[ ]u— . . . —[X(M_l)] 0 , ( a)
0 0 0 (XD [y 0]
0 0 0 0 —[xr [y

O] = diag ([Coc), Y], (1), 70 (0. (66b)



(u()} (R}
(W@} 0
u® (w
ey={ L eyt 0L (660)
(W00} 0
| (@)} [ 0 )

Equation (65) is a standard equation of motion of a lineatesysn structural dynamics writ-
ten in the frequency-domain. It is expressed in the timealonas a system of first-order
differential equations with high-order stiffness and dargpmatrices.

[Klu{z(0)} + [CLiz(0)} = {f(®)}- (67)

For a bounded domain, Equations (60b) and (64b) can be cewchibito the following matrix
form:

(K] = w?*[M]n) {Z(w)} = {F(w)}, (68)
with
[ [M] —[XM] 0 0 0 ]
—mr sy —[x@) 0 0
Y 0 X7 [P 0 0 6
[ ]h - . [X(M 1)] 0 9 ( a)
0 0 0 [(XM=07 (g MED ()
0 0 0 0 —[x@nT (gt
[K)n = diag (K], 1561, 1557, . 156", 16™)) (69b)

and{Z(w)}, {F(w)} given in Equation (66c). Equation (68) can be expresseddnithe-
domain as a standard equation of motion with high-ordeinstss and mass matrices.

[Kln{z(t)} + [M]n{Z2(0)} = {/(D)}- (70)

The matrices K], [Cl., [K]n, [M], are symmetric and sparse. The natural frequencies and
vibration modes of a bounded domain can be determined fremitfenproblem correspond-
ing to Equation (70).

5. NUMERICAL EXAMPLES

In this section, the accuracy of the proposed improved bigler formulations in both
frequency and time domains is evaluated by numerical ex@snjtis superiority with respect
to the original continued-fraction approach [1, 12] is desstoated.

5.1. Three-dimensional elastc foundation embedded in homogeneousisotropic halfspace

As a 3D vector-valued problem, vertical motion of a squartenftation2b x 2b em-
bedded with depth = 2/3b in a homogeneous isotropic halfspace is analysed. Thersyste
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Figure 2. One quarter of a square foundation embedded isdzalé; geometry and mesh

shown in Figure 2. Only one quarter of the symmetric systemadelled using the SBFEM.
The foundation-soil interface is meshed with 12 8-node SBR&zding to a total of 129
DOFs. The continued-fraction solution for the dynamicfiségs matrix S| is constructed
using the proposed method or the original approach pres@nteeference [1]. The accuracy
in the frequency domain is evaluated in Figures 3-5. As amgka, the diagonal terrfi;, ; and
the off-diagonal ternb , of the 129 x 129 dynamic stiffness matrikS>] are shown in a di-
mensionless form. The continued-fraction solutions okofd = 3, M = 7andM = 10 and
17 are compared to the dynamic stiffness obtained by numadritagration of Equation (8)
in Figures 3, 4 and 5, respectively. Faf = 3, the two continued-fraction solutions obtained
using the original approach [1] or the proposed method amtidal, as is shown in Figure
3. This low-order continued-fraction solution, howeveiffeils strongly from the reference
solution in the low-frequency range. The agreement betweenlynamic stiffness obtained
by numerical integration and the continued-fraction sotuts improved significantly, if the
proposed method is used to calculate the coefficim@] and [Yf”] of an orderM = 7
approximation, as can be seen in Figure 4. On the contraydhtinued-fraction solution
of order M = 7 calculated using the original approach [1] is clearly eemus. Since the
continued-fraction solution of [1] diverges fad > 5, it is not shown for higher orders of
M. Figure 5 confirms that the proposed continued-fractioraggn converges to the exact
solution for increasing ordev/.

The transient response of the three-dimensional soil featks with excavation (no
foundation) initially at rest is evaluated. In the time-dam the unbounded domain is de-
scribed by the system of first-order differential equati¢(®g). It is assumed that a vertical
force P(t) acts at the bottom centre of the foundation€ 0, y = 0, z = ¢). The time-
dependence of the excitation is prescribed as a Ricker wavdle time history of the Ricker
wavelet is given as

P(t) = P, (1 9 (t ;0t5)2> exp (- (t ;0t5)2> , (71)

wheret, is the time when the wavelet reaches its maximarnt, is the dominant angular
frequency of the wavelet an#, is the amplitude. A Ricker wavelet with the parameters
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Figure 3. Continued-fraction solution of ordéf = 3 for dynamic stiffness matrix of embed-
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Figure 6. Displacement response of halfspace with squar@vakion to a vertical force ap-
plied as a Ricker wavelet (Equation (71)) at=€ 0,y = 0, z = ¢)

ts =t = 1, tg = Lo = 02and Py = 105N is considered. The resulting transient
displacements of the foundation-soil interface are cateadl solving Equation (67) using a
standard time-stepping scheme. The time-step size is olas¥®t = ¢,/200.

Figure 6 shows the computed vertical displacement at thternatentre of the founda-
tion. The results are non-dimensionalized witfy Gb. The displacement response obtained
using the proposed continued-fraction solution of orgler= 10 and of orderM = 17 is
compared to the numerical result calculated using theoighSBFEM based on convolution.
In the rigorous analysis, the time-st&p = 0.005b/c¢; is selected. The agreement between the
result of the rigorous analysis based on convolution anicbithe present transmitting bound-
ary is excellent for < 1.5b/c,. After that, very small differences occur. These deviation
are due to the fact that the proposed singly-asymptotisinatting boundary approximates
the high-frequency behaviour with higher accuracy tharstaéc stiffness. The accuracy in
the time-domain can be further improved by further incnegséine order of continued-fraction
expansionV/.

5.2. Regular polygon

As a bounded domain example, a regular octagon is considéhedscaling center is
chosen at the geometry center. The elastic medium has tlogviiod) parameters: modulus
of elasticity £ = 1%, Poisson’s ratiav = 0.25, mass density = 1%. Plane stress
state is considered. Two nine-node elements on each edgsede The system and scaled
boundary finite element mesh are shown in Figure 7. The eiggnéncies of the octagon are
calculated solving the eigenvalue problem correspondirigpuation (70). A converged finite
element solution is used as a reference solution. Figuresl®ahow the first 150 natural
frequencies obtained with/ = 6 and M = 19 using the original approach [12] and the
proposed improved method, respectively. A parameter studgference [12] has shown that
a continued-fraction expansion of ordef = 6 leads to accurate results. Figure 8(b) shows
that the error corresponding td = 6 for higher modes is lower than 3%. Nevertheless,
it is expected that this error decreases further for inéngasrder of approximation. Figure
8(b), however, shows that this is not the cas@/ifis increased ta\/ = 19. In fact, the
error corresponding td/ = 19 is considerable higher than that associated with= 6,
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Figure 7. Regular octagon

=
~

—M=19

p

=
N
T

=
o
T

[ee]
T

NATURAL FREQUENCY a0=(.ob/c

0 50 100 150
MODE

(a) dimensionless natural frequency

N
&

RELATIVE ERROR (%)
[
3

0.5r

N
T

[y
T

—error M=19
- - -error M=6

MODE

(b) relative error

Figure 8. Natural frequencies of octagon computed usirgjrai approach [12]

[N
~

—M=19

p

=
)
T

=
o
T

[oe]
T

(o2}
T

&

NATURAL FREQUENCY ao=u)b/(:

N
T

(@)

50 100 150
MODE

o

(a) dimensionless natural frequency

3
—error M=19
25 - - -error M=6 ::
II
& i
x 2t |: | |l.’
O :I : 1y
o o :
[ad o '
uqg o '
w ‘l o .
> i o
E O
< 1 PO
& poorn T
" n ' :| P |: |:
0.5 W gy
(L ",ll‘ |l—\:|| I.‘ !
LR T R
0 " AUV LB L
0 50 100 150
MODE

(b) relative error

Figure 9. Natural frequencies of octagon computed usingorga method



v

P(t) 2b 3
W O + -
Al B
Yy
- G, p,v=0.25 &t oo
(a) system (b) mesh

Figure 10. Bounded domain under strip loading

if the original approach [12] is used. For high degrees ofr@xmation ill-conditioning is
observed. The improved continued-fraction expansiongseg in this paper leads to more
robust results, as can be seen in Figure 9. Here, the higher-expansion clearly leads to a
smaller error and strict convergence.

5.3. Transient analysis of two-dimensional bounded domain under strip loading

The in-plane motion of the two-dimensional domain showniguFe 10 with shear
modulusG, mass density and Poisson’s ratie = 0.25 is considered. A uniformly dis-
tributed strip loadingP(t) is applied on the free surface. Its time-dependence is deresil
as a triangular impulse with an amplitudeand a duratior8b/cs, see Figure 11(a). The
corresponding Fourier transform is plotted in Figure 11(b)n the scaled boundary finite
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Figure 11. Force history

element method, the bounded domain is divided into 2 subomas shown in Figure 10(b).
Each edge of the subdomains is discretized with one ten-higheorder element. The total
calculation time i20b/c,. The fixed time step = 0.02b/¢; is selected.

The vertical displacement responses at points A, B aregalott Figure 12. The re-
sults are non-dimensionalised wiity Gb. The agreement between the results of the finite el-
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Figure 12. Vertical displacement due to strip loading

ement method and those of the improved method is excellegwie order of the continued-
fraction expansion/ is increased to 9. On the other hand, the results of the alignethod
calculated using/ = 9 at points A, B are NaNs (Not a Number), due to ill-conditiapniand
thus not plotted in Figure 12.

6. CONCLUSIONS

High-order time-domain formulations for the modelling oawve propagation in un-
bounded and bounded domains of arbitrary geometry are gl These formulations
are based on continued-fraction expansions of the dynatifficess. Improved continued-
fraction solutions are proposed, which are computatigmatbre robust than previous proce-
dures [1, 12]. These are characterized by an additionakpmatlued factor, which is cho-
sen such that singularities are removed. Numerical exag@eonstrate that the improved
continued-fraction expansion converges to the exact dymatiffness for increasing orders
of expansionV/. No ill-conditioning is observed, even for very high ordef@&pproximation.
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