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Abstract. The paper proposes a hyperelasticity-based concept of finite strain plasticity with
combined hardening using evolving structure tensors to represent the evolution of elastic and
plastic anisotropy in the material. By defining the Helmholtz free energy density and the
yield surface as functions of the evolving structure tensors, we are able to describe both
evolving elastic and plastic anisotropy, respectively. The model considers also nonlinear
kinematic and isotropic hardening and is derived from a thermodynamic framework based
on the multiplicative split of the deformation gradient. The kinematic hardening component
represents a continuum extension of the classical rheological model of Armstrong-Frederick
kinematic hardening. Exploiting the dissipation inequality leads to the important result that
the model includes only symmetric tensor-valued internal variables. Evolution of elastic and
plastic anisotropy is numerically investigated by means of simulations of cylindrical deep
drawing of metal sheets and thermoforming of thermoplastic polymer blends.
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1. INTRODUCTION

Finite element analysis is increasingly being used in modern sheet forming processes,
provided that it relies on modules that capture the realistic behaviour sufficiently well. One
of the important factors influencing the simulation result is the underlying material model.
Due to the characteristic anisotropy of sheet metals, the material model should be capable
of predicting initial and deformation-induced anisotropy. Sheet metals exhibit anisotropic
plastic behaviour due to their orientation-dependent microstructure. Many problems in sheet
metal forming processes arise due to the inherent sheet anisotropy. During the rolling process
of the sheet, large plastic deformations occur which may induce texture and are responsible
for the initial anisotropy. In addition, sheet metal parts are subjected to stretching, bending
and reverse bending during forming, and an accurate prediction of e.g. the blank springback
requires the use of an appropriate material model, which is capable of modelling the kinematic
and isotropic hardening behaviour of metals.

Various approaches for introducing plastic anisotropy into the finite element analysis
of sheet metal forming are popular nowadays. The initial plastic anisotropy can be incorpo-
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rated either through an anisotropic yield surface or directly by means of a crystallographic
texture model. Here, one basically distinguishes between empirical and phenomenological
anisotropic yield functions ([2], [1], [8]), where the anisotropy coefficients can be obtained
from mechanical tests, and texture-based models ([3] the coefficients of which are directly de-
termined based on experimentally obtained grain orientation distributions. Nowadays many
scientists utilize the microstructural behaviour into their constitutive concept. Despite the
significant progress achieved in material modelling at mesoand micro scales, however, the
methods are still computationally too expensive and time consuming. Approaches based
on phenomenological continuum mechanics are frequently used due to their relatively low
computational effort, which makes them especially advantageous for the simulation of real
forming processes. Anisotropic continuum mechanical approaches in the regime of large de-
formations can be, in general, separated into two groups: additive formulations, either in the
logarithmic strain space ([4]) or using generalized stress-strain measures ([5]), and multiplica-
tive formulations utilizing the classical split of the deformation gradient ([7], [11]).

In this work, we discuss a finite strain continuum mechanicalmodel combining both
nonlinear isotropic hardening and nonlinear kinematic hardening. The kinematic hardening
component represents a continuum extension of the classical Armstrong-Frederick concept
based on a strain-like tensor-valued internal variable. The material model includes, in addi-
tion, evolving elastic and plastic anisotropy and can be understood as an extension of a re-
cently published finite-strain framework for plastic anisotropy and combined hardening [11].
In the present model, the evolution of elastic anisotropy isrepresented by representing the
Helmholtz free energy as a function of a family of evolving structure tensors. In addition,
plastic anisotropy is modelled via the dependence of the yield surface on the plastic deforma-
tion and on the same family of structure tensors. Exploitingthe dissipation inequality leads to
the important result that all tensor-valued internal variables are symmetric. Thus, the integra-
tion of the evolution equations can be efficiently performedby means of a newly-developed
form of the exponential map algorithm [9] based on an implicit time integration scheme. It
automatically satisfies plastic incompressibility in every time step, and in addition, has the
advantage of retaining the symmetry of the internal variables.

2. MATERIAL MODEL

The derivation of the constitutive model is based upon the multiplicative split of the
deformation gradientF into elasticFe and plasticFp parts, where, in order to model kinematic
hardening, the plastic deformation gradient is additionally decomposed into elasticFpe and
inelasticFpi parts. The Helmholtz free energy is assumed to read

ψ = ψe (Ce,M1,M2) + ψkin (Cpe) + ψiso (κ) (1)

whereψe is an isotropic function of the elastic right Cauchy-Green tensorCe and two structure
tensorsM1 andM2. These second order structure tensors live asCe in the intermediate
configuration. The corresponding structure tensors in the reference configuration are defined
as dyadic products of the preferred material orientations,i.e. principal axes of anisotropy:

Mref,i = Nref,i ⊗Nref,i, i = 1, 2, 3 (2)



The unit vectors of the preferred material orientations in the reference configuration are as-
sumed to be mapped to the intermediate configuration by meansof the plastic deformation
gradientFp and are subsequently normalized (see [6]):

Ni =
Fp [Nref,i]

||Fp [Nref,i]||
(3)

Exploiting the Clausius-Duhem form of the second law of thermodynamics yields the impor-
tant result that the so-called Mandel-type stress tensors

Σ = 2Ce

∂ψe

∂Ce

− 2
2

∑

i=1

( ∂ψe

∂Mi

Mi − tr(
∂ψe

∂Mi

Mi)Mi

)

− 2Fpe

∂ψkin

∂Cpe

F
T
pe

(4)

and

Σkin = 2Cpe

∂ψkin

∂Cpe

(5)

are symmetric. A consequence of this latter symmetry is the fact that only the symmetric
parts of the corresponding thermodynamically conjugate velocity gradients are relevant. This
yields a framework with symmetric tensor-valued strain-like internal variables. The Clausius-
Duhem inequality
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is satisfied by a physical expression for the second Piola-Kirchhoff stress tensor
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and evolution equations for the internal variables. Note that in this work no evolution equa-
tions for the structure tensorsMref,i are proposed, thus the stress-like tensorsΓi do not have
to be computed. Clearly, experimental evidence of evolvinganisotropy is required in order
to define realistic evolution equations for the structure tensors as internal variables. Never-
theless, due to the dependence on the non-constant structure tensorsMi, the effect of large
plastic deformation on the evolution of elastic and plasticanisotropy is still taken into account
in the current approach.

Due to numerical reasons the constitutive model is specifiedin the undeformed or ref-
erence configuration. After a pull-back to the reference configuration, the evolution equations
for the internal variables of the modelCp (plastic deformation),Cpi (kinematic hardening)
andκ (isotropic hardening) read
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Here,Y andYkin are stress-like quantities resulting from the pull-back ofthe Mandel-type
stress tensorsΣ andΣkin into the reference configuration:

Y = CS−CpX+CpG4 +Cp G6, Ykin = CpX (9)



The stress-like second-order tensorsG4 andG6 are derived from the anisotropic Helmholtz
energy partψean :
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whereas̄Y reads as follows:
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Plastic anisotropy is included in the model by defining an explicit dependence of the
yield function on the structure tensors. Here, the classical Hill anisotropic yield criterion of
[2] has been used
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where the expression for the equivalent stressσHill is given as
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The plastic anisotropy parametersm1, m2, m3, l1, l2, l3 can be set in relation to the classical
Hill parametersF ,G,H, L,M , N .

Elastic anisotropy is described by the above mentioned dependence ofψe on the struc-
ture tensors. The resulting relation for the second Piola-Kirchhoff stress tensorS is obtained
by differentiation according to (7), i.e.
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and
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K1,K2, γ1, γ2 are material constants describing the elastic anisotropy.It should be noted that
due to the fact that both the Helmholtz free energyψ and the yield potentialΦ depend on
the non-constant structure tensorsM1 andM2, which live in the intermediate configuration,
we end up with a model for evolving elastic and plastic anisotropy. From (3) it is obvious
that the larger the plastic deformation, the larger the deviation of the anisotropy axes in the
intermediate configuration with respect to the anisotropy axes in the reference configuration.

3. RESULTS AND DISCUSSION

The proposed constitutive framework of finite strain elastoplasticity with evolving
elastic and plastic anisotropy and combined hardening is implemented as a user material sub-
routine UMAT into the commercial finite element software package ABAQUS/Standard. In
this section, we investigate the performance of the new material model by means of two nu-
merical examples: deep drawing of a cylindrical cup and thermoforming of polymer blends.
The results are compared to the results obtained with our recently published model for con-
stant Hill-type plastic anisotropy [11].

3.1. Cylindrical cup drawing

The first example discusses the application of the material model to the simulation of
the cylindrical cup drawing process to study the earing profile after forming. Deep drawing
is an important process including a die, a blankholder, and apunch. The blank is mounted
between the die and the blankholder and is formed into the dieby means of the downwards
moving punch. The specific dimensions of the tools and the process parameters are chosen
according to [12].

Figure 1: Accumulated plastic strain, step 1: (left) present model, (right) model of [11]



Figure 2: Accumulated plastic strain, step 2: (left) present model, (right) model of [11]

Figure 3: Accumulated plastic strain, step 3: (left) present model, (right) model of [11]

Figure 4: Accumulated plastic strain, step 4: (left) present model, (right) model of [11]

Figures 1 to 4 show the distribution of accumulated plastic strain at different stages
of deep drawing, as computed by both models. No elastic anisotropy is considered in the
simulations. The values of the material parameters for bothmodels are identical:µ = 80769

MPa,Λ = 121154 MPa, σy = 155 MPa,Q = 202 MPa, β = 15.5, F = 0.3, G = 0.7,



H = 0.5, L = M = N = 1.5. Thus, the only reason for the occurrence of different results
should be the fact that the new model allows evolution of plastic anisotropy.

As expected, in the beginning the two simulation results areidentical (Fig. 1). The rea-
son for this is the fact that the description of initial plastic anisotropy is in both models based
on a Hill-type orthotropy. With the increase of plastic deformation, the results commence to
deviate (Fig. 1) and, quite interestingly, different number of ears is predicted (Figures 3 and
4). Obviously, for this set of parameters of plastic anisotropy (F = 0.3,G = 0.7 andH inter-
mediate of them) the classical Hill result would be 2 ears. This result has been already stated
in Hill’s original paper ([2]). The present model, however,is capable of predicting eventually
6 ears (Fig. 4). This is a new result which, according to the authors’ best knowledge, has not
yet been presented in the literature by using a quadratic yield function.
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Fig. 5 illustrates the simulated earing profiles of the cups obtained by the two models.
The new model predicts stronger anisotropy (higher ears, lower valleys) and 6 ears instead of
2. Obviously, evolution of plastic anisotropy together with a rotation of the anisotropy axes
take place.

Fig. 6 shows the punch force-displacement curves for the twoanisotropic models.
Due to the fact that for small plastic deformations the structure tensors in the intermediate
configuration do not differ much from the structure tensors in the reference configuration,
the anisotropic force-displacement curves remain almost identical up to a displacement of
approximately 20 mm. Beyond that, plastic deformation is considerable and the two curves
begin to deviate significantly.
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3.2. Thermoforming

The second example deals with the simulation of the process of thermoforming of
TPO (Thermo-Plastic Olefin) sheets. TPO polymer/filler blends are used extensively in the
automotive industry. The process of thermoforming is one ofthe oldest and most common
methods of processing plastic materials. It represents a reshaping of a thermoplastic forming
material onto moulded tools at its own forming temperature.Basically, such a process consists
of inserting a thermoplastic sheet in a cold state into the forming clamp area, pre-heating it to
the desired temperature, and then moving the mould upwards to form the sheet. The trapped
air is sucked out with the help of a vacuum system and once cooled a reverse air supply is
activated to remove the plastic part from the mould.

The motivation for investigating this application into thepresent study comes from the
fact that thermoforming involves large elastic strains (upto 15 %, see [10]). The assumption
of small elastic strains usually made in metal plasticity istherefore no longer justified. Thus
we see here a very interesting example for a situation where large elastic strains have to
be incorporated into the modelling approach. Furthermore,considering the thermoforming
simulation of a material with large elastic strains allows us to study the influence of elastic
anisotropy on the results.

Figures 7, 8 and 9 show the stress-strain curves for a TPO blend, obtained at orienta-
tions of0, 45 and90 degrees with respect to the rolling direction. The elasticity and hardening
parameters are taken from [10] and read:µ = 2 MPa,Λ = 198.7 MPa,σy = 0.6 MPa,H = 1.

MPa (linear isotropic hardening, i.e.R = −H κ), b = 0.001, c = 0.6 MPa.
Fig. 7 depicts the stress-strain curves for an elastically anisotropic (K1 = 1 MPa,

K2 = 3 MPa,γ1 = γ2 = 1) but plastically isotropic (F = G = H = 0.5, L =M = N = 1.5)
material. Analogously, Fig. 8 shows the stress-strain behaviour of an elastically isotropic
(K1 = 2 MPa,K2 = 2 MPa,γ1 = γ2 = 1) but plastically isotropic (F = 0.534, G = 0.634,
H = 0.418, L = M = 1.5 andN = 2.05) material. Finally, combining both elastic and
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plastic anisotropy and utilizing the same sets of material parameters as stated above results in
the response shown in Fig. 9.

Fig. 10 shows the simulation of the thermoforming process, as performed in this re-
search. A quarter of a circular thermoplastic sheet is clamped at the nodes along its perimeter
and is placed into contact with an upwards moving rigid mould. After the mould reaches the
prescribed forming distance, vacuum is simulated by applying a negative pressure on the top
surface of the sheet. This results in the sheet sticking closely to the mould and obtaining its
final shape (Fig. 10).

The FE simulation is again performed by means of ABAQUS/Standard. A fine mesh
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Figure 10: Thermoforming, distribution of von Mises stress: (left) elastic anisotropy and
plastic anisotropy, (right) elastic isotropy and plastic anisotropy

of approximately 12000 (radius x circumference x thickness= 80 x 126 x 2) C3D8R reduced
integration continuum elements is used. It should be noted that due to the purely mechanical
material model formulation, no temperature influences are taken into account. The thermo-
forming simulation is performed by utilizing the three setsof anisotropic material parameters
(i.e., elastically anisotropic - plastically isotropic, elastically isotropic - plastically anisotropic,
and elastically anisotropic - plastically anisotropic). In addition, a complete isotropic simu-
lation with neither elastic nor plastic anisotropic properties is added for comparison purpose.
The computed force-displacement curves for the rigid mouldare illustrated in Fig. 11. Ob-
viously, elastic anisotropy plays an important role in the simulation. The calculated force is
generally higher for the materials with elastic anisotropydue to the fact that the amount of
the anisotropic elastic Helmholtz strain energy functionψean is added to the isotropic one,
yielding an additional stressSan.
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4. CONCLUSIONS

A finite strain material model for evolving elastic and plastic anisotropy and combined
hardening has been presented. The numerical results show that more pronounced anisotropy
can be predicted, as compared to the results obtained by a Hill-type plastic orthotropy. Inter-
estingly, the new model is capable of simulating rotation ofthe preferred material orientations
and predicting 6 ears. Clearly, experimental evidence of evolving elastic and plastic anisotropy
is required in order to be able to tune the model and investigate its capabilities of realistically
describing material anisotropies.
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