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Abstract. The paper proposes a hyperelasticity-based concept of finite strain plasticity with
combined hardening using evolving structure tensors to represent the evolution of elastic and
plastic anisotropy in the material. By defining the Helmholtz free energy density and the
yield surface as functions of the evolving structure tensors, we are able to describe both
evolving elastic and plastic anisotropy, respectively. The model considers also nonlinear
kinematic and isotropic hardening and is derived from a thermodynamic framework based
on the multiplicative split of the deformation gradient. The kinematic hardening component
represents a continuum extension of the classical rheological model of Armstrong-Frederick
kinematic hardening. Exploiting the dissipation inequality leads to the important result that
the model includes only symmetric tensor-valued internal variables. Evolution of elastic and
plastic anisotropy is numerically investigated by means of simulations of cylindrical deep
drawing of metal sheets and thermoforming of thermoplastic polymer blends.

Keywords: Evolving anisotropy, Structure tensors, Deep drawing.

1. INTRODUCTION

Finite element analysis is increasingly being used in modern sheet forming processes,
provided that it relies on modules that capture the realistic behaviour sufficiently well. One
of the important factors influencing the simulation result is the underlying material model.
Due to the characteristic anisotropy of sheet metals, the material model should be capable
of predicting initial and deformation-induced anisotropy. Sheet metals exhibit anisotropic
plastic behaviour due to their orientation-dependent microstructure. Many problems in sheet
metal forming processes arise due to the inherent sheet anisotropy. During the rolling process
of the sheet, large plastic deformations occur which may induce texture and are responsible
for the initial anisotropy. In addition, sheet metal parts are subjected to stretching, bending
and reverse bending during forming, and an accurate prediction of e.g. the blank springback
requires the use of an appropriate material model, which is capable of modelling the kinematic
and isotropic hardening behaviour of metals.

Various approaches for introducing plastic anisotropy into the finite element analysis
of sheet metal forming are popular nowadays. The initial plastic anisotropy can be incorpo-



rated either through an anisotropic yield surface or diyday means of a crystallographic
texture model. Here, one basically distinguishes betweepirecal and phenomenological
anisotropic yield functions ([2], [1], [8]), where the aatsopy coefficients can be obtained
from mechanical tests, and texture-based models ([3] tbicients of which are directly de-

termined based on experimentally obtained grain oriesratistributions. Nowadays many
scientists utilize the microstructural behaviour intoithenstitutive concept. Despite the
significant progress achieved in material modelling at masd micro scales, however, the
methods are still computationally too expensive and timesaming. Approaches based
on phenomenological continuum mechanics are frequentyd dsie to their relatively low

computational effort, which makes them especially adganas for the simulation of real

forming processes. Anisotropic continuum mechanical @ggines in the regime of large de-
formations can be, in general, separated into two groupditiegel formulations, either in the

logarithmic strain space ([4]) or using generalized sts#sgin measures ([5]), and multiplica-
tive formulations utilizing the classical split of the defmation gradient ([7], [11]).

In this work, we discuss a finite strain continuum mechameatlel combining both
nonlinear isotropic hardening and nonlinear kinematiaaamg. The kinematic hardening
component represents a continuum extension of the clagsiocestrong-Frederick concept
based on a strain-like tensor-valued internal variablee faterial model includes, in addi-
tion, evolving elastic and plastic anisotropy and can beeustdod as an extension of a re-
cently published finite-strain framework for plastic arirepy and combined hardening [11].
In the present model, the evolution of elastic anisotropse@esented by representing the
Helmholtz free energy as a function of a family of evolvingusture tensors. In addition,
plastic anisotropy is modelled via the dependence of thd gierface on the plastic deforma-
tion and on the same family of structure tensors. Exploitivegdissipation inequality leads to
the important result that all tensor-valued internal Malea are symmetric. Thus, the integra-
tion of the evolution equations can be efficiently perfornbgdneans of a newly-developed
form of the exponential map algorithm [9] based on an imptione integration scheme. It
automatically satisfies plastic incompressibility in gvéme step, and in addition, has the
advantage of retaining the symmetry of the internal vaeisbl

2. MATERIAL MODEL

The derivation of the constitutive model is based upon théipligative split of the
deformation gradier¥ into elasticF. and plastid’, parts, where, in order to model kinematic
hardening, the plastic deformation gradient is additigné&composed into elastE,, and
inelasticF,, parts. The Helmholtz free energy is assumed to read

1/} = we (Cea Mla MZ) + Q/ka (Cpe> + wiSO (H) (1)

wherey, is an isotropic function of the elastic right Cauchy-GreamsbrC, and two structure
tensorsM; and M,. These second order structure tensors livaCadn the intermediate
configuration. The corresponding structure tensors ingference configuration are defined
as dyadic products of the preferred material orientatinasprincipal axes of anisotropy:

Mref,i = Nref,i ® Nref,ia 1= 17 27 3 (2)



The unit vectors of the preferred material orientationshim teference configuration are as-
sumed to be mapped to the intermediate configuration by mefaihe plastic deformation
gradientF, and are subsequently normalized (see [6]):

Fp [Nref,i]
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Exploiting the Clausius-Duhem form of the second law of thedynamics yields the impor-
tant result that the so-called Mandel-type stress tensors
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are symmetric. A consequence of this latter symmetry is dioé that only the symmetric

parts of the corresponding thermodynamically conjugakecity gradients are relevant. This
yields a framework with symmetric tensor-valued strakelinternal variables. The Clausius-
Duhem inequality
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is satisfied by a physical expression for the second PioteKpff stress tensor
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and evolution equations for the internal variables. Nog th this work no evolution equa-
tions for the structure tensoM.,.¢; are proposed, thus the stress-like tendgrdo not have
to be computed. Clearly, experimental evidence of evolanigotropy is required in order
to define realistic evolution equations for the structurestes as internal variables. Never-
theless, due to the dependence on the non-constant seuengordVl;, the effect of large
plastic deformation on the evolution of elastic and plaatisotropy is still taken into account
in the current approach.

Due to numerical reasons the constitutive model is spedtfidite undeformed or ref-
erence configuration. After a pull-back to the referencdigaration, the evolution equations
for the internal variables of the mode€l, (plastic deformation)C,, (kinematic hardening)
and« (isotropic hardening) read

CPZQAYC”, Cp._2AbYkmei, P St (8)
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Here,Y andYy;, are stress-like quantities resulting from the pull-backhaf Mandel-type
stress tensor® andX,;, into the reference configuration:

Y=CS-C,X+C,Gy+C,Gg, Yun=0C,X 9)



The stress-like second-order tens@ks and G¢ are derived from the anisotropic Helmholtz
energy part.,,

2 e,
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whereasY reads as follows:
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Plastic anisotropy is included in the model by defining anliekmlependence of the
yield function on the structure tensors. Here, the classidhanisotropic yield criterion of
[2] has been used
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where the expression for the equivalent stresgg is given as
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The plastic anisotropy parameters, mo, ms, l1, [, 3 can be set in relation to the classical
Hill parametersF’, G, H, L, M, N.

Elastic anisotropy is described by the above mentionedratkepee of). on the struc-
ture tensors. The resulting relation for the second PiataHKoff stress tensd$ is obtained
by differentiation according to (7), i.e.
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K, K5, 71, 72 are material constants describing the elastic anisotiopiiould be noted that
due to the fact that both the Helmholtz free energwand the yield potentiab depend on
the non-constant structure tenstwls andM,, which live in the intermediate configuration,
we end up with a model for evolving elastic and plastic amgmt. From (3) it is obvious
that the larger the plastic deformation, the larger the atemi of the anisotropy axes in the
intermediate configuration with respect to the anisotrosan the reference configuration.

3. RESULTS AND DISCUSSION

The proposed constitutive framework of finite strain elpkisticity with evolving
elastic and plastic anisotropy and combined hardeningpdamented as a user material sub-
routine UMAT into the commercial finite element software kage ABAQUS/Standard. In
this section, we investigate the performance of the new maataodel by means of two nu-
merical examples: deep drawing of a cylindrical cup andrtteéorming of polymer blends.
The results are compared to the results obtained with oentlscpublished model for con-
stant Hill-type plastic anisotropy [11].

3.1. Cylindrical cup drawing

The first example discusses the application of the matemaatto the simulation of
the cylindrical cup drawing process to study the earing [@@fiter forming. Deep drawing
is an important process including a die, a blankholder, apdreech. The blank is mounted
between the die and the blankholder and is formed into théygimeans of the downwards
moving punch. The specific dimensions of the tools and theqa® parameters are chosen
according to [12].
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Figure 1: Accumulated plastic strain, step 1: (left) préseadel, (right) model of [11]
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Figure 4. Accumulated plastic strain, step 4: (left) préseadel, (right) model of [11]

Figures 1 to 4 show the distribution of accumulated plagtigirs at different stages
of deep drawing, as computed by both models. No elastic sioppis considered in the
simulations. The values of the material parameters for baitlels are identicalx = 80769
MPa, A = 121154 MPa, 0, = 155 MPa, ) = 202 MPa, 8 = 15.5, F = 0.3, G = 0.7,



H =0.5,L =M = N = 1.5. Thus, the only reason for the occurrence of different tssul
should be the fact that the new model allows evolution oftmdaisotropy.

As expected, in the beginning the two simulation resultsdastical (Fig. 1). The rea-
son for this is the fact that the description of initial plastnisotropy is in both models based
on a Hill-type orthotropy. With the increase of plastic defiation, the results commence to
deviate (Fig. 1) and, quite interestingly, different numbgears is predicted (Figures 3 and
4). Obviously, for this set of parameters of plastic anigyr(F' = 0.3, G = 0.7 and H inter-
mediate of them) the classical Hill result would be 2 eards Tésult has been already stated
in Hill’s original paper ([2]). The present model, howeviercapable of predicting eventually
6 ears (Fig. 4). This is a new result which, according to thb@s’ best knowledge, has not
yet been presented in the literature by using a quadratid fuection.

Deep drawing: F=0.3, G=0.7, full model
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Figure 5: Cylindrical cup drawing, earing distributioniegent model and model of [11], i.e.
(Vlal0)

Fig. 5 illustrates the simulated earing profiles of the cupsimed by the two models.
The new model predicts stronger anisotropy (higher eanger@alleys) and 6 ears instead of
2. Obviously, evolution of plastic anisotropy togethertwét rotation of the anisotropy axes
take place.

Fig. 6 shows the punch force-displacement curves for theamisotropic models.
Due to the fact that for small plastic deformations the stirectensors in the intermediate
configuration do not differ much from the structure tensorshie reference configuration,
the anisotropic force-displacement curves remain almttical up to a displacement of
approximately 20 mm. Beyond that, plastic deformation issiderable and the two curves
begin to deviate significantly.



Deep drawing: F=0.3, G=0.7
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Figure 6: Cylindrical cup drawing, punch force-displacemeurves: present model and
model of [11], i.e. (VIal0)

3.2. Thermoforming

The second example deals with the simulation of the proceiseomoforming of
TPO (Thermo-Plastic Olefin) sheets. TPO polymer/filler deeare used extensively in the
automotive industry. The process of thermoforming is onéhefoldest and most common
methods of processing plastic materials. It representstepng of a thermoplastic forming
material onto moulded tools at its own forming temperat8asically, such a process consists
of inserting a thermoplastic sheet in a cold state into tineilog clamp area, pre-heating it to
the desired temperature, and then moving the mould upwarsr the sheet. The trapped
air is sucked out with the help of a vacuum system and oncesdamlreverse air supply is
activated to remove the plastic part from the mould.

The motivation for investigating this application into fhkesent study comes from the
fact that thermoforming involves large elastic strains f@p5 %, see [10]). The assumption
of small elastic strains usually made in metal plasticitthisrefore no longer justified. Thus
we see here a very interesting example for a situation wreege lelastic strains have to
be incorporated into the modelling approach. Furthermooesidering the thermoforming
simulation of a material with large elastic strains allovesta study the influence of elastic
anisotropy on the results.

Figures 7, 8 and 9 show the stress-strain curves for a TP@ bidrtained at orienta-
tions of0, 45 and90 degrees with respect to the rolling direction. The elast@nd hardening
parameters are taken from [10] and read= 2 MPa,A = 198.7 MPa,o, = 0.6 MPa,H = 1.
MPa (linear isotropic hardening, i.& = —H k), b = 0.001, ¢ = 0.6 MPa.

Fig. 7 depicts the stress-strain curves for an elasticallgaropic (x; = 1 MPa,
Ky = 3 MPa;; = v, = 1) but plastically isotropick =G = H =0.5,L = M = N = 1.5)
material. Analogously, Fig. 8 shows the stress-strain Wiela of an elastically isotropic
(K1 =2 MPa, K, = 2 MPa;y; = 7, = 1) but plastically isotropic ¥ = 0.534, G = 0.634,

H = 0418, L = M = 1.5 and N = 2.05) material. Finally, combining both elastic and



Stress-strain curves, elastic anisotropy + plastic isotropy
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Figure 7: Uniaxial tension, elastic anisotropy and plasatropy: 0, 45 and90 degrees to
rolling direction

Stress-strain curves, elastic isotropy + plastic anisotropy
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Figure 8: Uniaxial tension, elastic isotropy and plastisatropy: 0, 45 and90 degrees to
rolling direction

plastic anisotropy and utilizing the same sets of mateashmeters as stated above results in
the response shown in Fig. 9.

Fig. 10 shows the simulation of the thermoforming procesgexformed in this re-
search. A quarter of a circular thermoplastic sheet is ctadgi the nodes along its perimeter
and is placed into contact with an upwards moving rigid mo#lffer the mould reaches the
prescribed forming distance, vacuum is simulated by appglg negative pressure on the top
surface of the sheet. This results in the sheet stickingeblds the mould and obtaining its
final shape (Fig. 10).

The FE simulation is again performed by means of ABAQUS/&tanh. A fine mesh



Stress-strain curves, elastic anisotropy + plastic anisotropy
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Figure 9: Uniaxial tension, elastic anisotropy and plaatisotropy:0, 45 and90 degrees to
rolling direction

Figure 10: Thermoforming, distribution of von Mises stregkeft) elastic anisotropy and
plastic anisotropy, (right) elastic isotropy and plasticsatropy

of approximately 12000 (radius x circumference x thickree88 x 126 x 2) C3D8R reduced
integration continuum elements is used. It should be ndtatidue to the purely mechanical
material model formulation, no temperature influences akert into account. The thermo-
forming simulation is performed by utilizing the three setsanisotropic material parameters
(i.e., elastically anisotropic - plastically isotropitastically isotropic - plastically anisotropic,
and elastically anisotropic - plastically anisotropia). dddition, a complete isotropic simu-
lation with neither elastic nor plastic anisotropic prdpes is added for comparison purpose.
The computed force-displacement curves for the rigid manddillustrated in Fig. 11. Ob-
viously, elastic anisotropy plays an important role in timawgation. The calculated force is
generally higher for the materials with elastic anisotroloye to the fact that the amount of
the anisotropic elastic Helmholtz strain energy functign, is added to the isotropic one,
yielding an additional stress;,,,.



Thermoforming, force-displacement curves
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Figure 11: Thermoforming, punch force-displacement csirve

4. CONCLUSIONS

A finite strain material model for evolving elastic and plastnisotropy and combined

hardening has been presented. The numerical results shbwtre pronounced anisotropy
can be predicted, as compared to the results obtained by-typhl plastic orthotropy. Inter-
estingly, the new model is capable of simulating rotatiothefpreferred material orientations
and predicting 6 ears. Clearly, experimental evidence @if/vy elastic and plastic anisotropy
is required in order to be able to tune the model and investitgmcapabilities of realistically
describing material anisotropies.
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