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Abstract. This paper presents an application of uncertainty quantification to numerical reser-
voir simulation using the Sparse Probabilistic Collocation Method (SPCM). Reservoir simu-
lation is used in several phases of the development and exploitation of a field, from the initial
planning of the production strategy to sophisticated automated control schemes that schedule
the operation of well controls on a daily basis in smart fields. It basically consists of solving
numerically the complex nonlinear partial differential equations (PDEs) that models the fluid
flow in porous media. The petrophysical properties of the rock matrix determine the coeffi-
cients in the PDEs and associated algebraic system of equations. Due to technological and
economic constraints, the available data to determine these properties is scarce and subject to
human interpretation. This problem becomes even more important for offshore fields, where
wells are kilometers apart, the reservoirs several kilometers underground, there are very few
wells and there is very little or no production history. The petrophysical properties are there-
fore very uncertain, and can be described only in a probabilistic manner. The simulation
can no longer be considered deterministic, since uncertain inputs leads to uncertain results.
Uncertainty propagation techniques become necessary tools for the robust and reliable appli-
cation of numerical reservoir simulation. In the probabilistic collocation method, statistics of
the uncertain output are computed directly through numerical integration, based on efficient
quadrature rules like Gauss and Clenshaw-Curtis. However, this method is not suitable for
dealing with high-dimensional models, because it suffers from the “curse of dimensionality”.
Sparse grid integration techniques can be used with the probabilistic collocation method to
alleviate this problem, creating the sparse probabilistic collocation method. We present our
implementation of the SPCM and apply it to estimate the statistics of uncertain variables such
as the cumulative oil production and water breakthrough date, using a simple but realistic
reservoir model. Comparisons of the efficiency of this technique against classical methods
such as Monte Carlo are shown, as well as a discussion on the necessary computational re-
sources for this kind of analysis and it’s practical use.
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1. INTRODUCTION

Uncertainty quantification is used in almost all oil industry activities. From data
acquisition to economic evaluations, companies are applying advanced techniques to better
characterize the field and it’s production life. The reservoir engineering team is particularly
interested in quantifying uncertainty during the fluid flow simulation [7], where the lack of
knowledge about the petrophysical properties and geological formations lead to unsafe pre-
dictions. One could argue that, sometimes scarce data isn’t a real issue because 3D seismic is
available even in the presence of geological signal attenuators. Unfortunately, the uncertainty
is still present; geological interpretation is one of the most notorious sources of it.

Uncertainty due to lack of knowledge is called epistemic uncertainty and is being
studied with alternative theories other than probability theory. Eldred et al purposed an en-
capsulation method trying to avoid strong structures on the data [9]. In this paper we adopted
the probabilistic approach [5] though, because it’s well established in several application areas
and is consistent with the main geostatistical approaches used for reservoir modeling.

Most current reservoir simulators are essentially sequential solvers, it’s not feasible to
treat uncertainty without some form of parallel processing because each run could take hours
to complete. The probabilistic collocation method [10] uses a decoupled formulation such that
is trivial distribute the runs among many computational nodes. In [2], the authors made very
clear two important features of stochastic collocation: high convergence rate from polynomial
chaos expansions and easy implementation as found in sampling methods.

In the next section, we give a brief timeline of the recent work on probabilistic collo-
cation, how it was developed chronologically and the reasons for such. Next, we review the
method, as simply as possible, to clarify what we understand by probabilistic collocation. The
general Smolyak combination technique is then explained, showing that is easy to achieve par-
allelism by task farming. Finally, we apply the SPCM to a reservoir model to better illustrate
the workflow of adapting a deterministic solver to uncertainty quantification.

2. BACKGROUND

Several researchers on stochastic analysis have been developing efficient alternatives
for the widely employed sampling methods used in uncertainty quantification (UQ). The need
to decrease the number of simulator runs when estimating statistics of interest in problems
where each run is computationally expensive has led to the study of high-order polynomial
expansions.

This first attempt was characterized by an intense study of the polynomial chaos ex-
pansion (PC) itself and error estimation [6]. The PC strategy was invaluable to derive conver-
gence rates, giving a solid mathematical basis for the subsequent methods here discussed.

Concurrently, new polynomial families were included to treat non Gaussian proba-
bility distributions. Xiu and Karniadakis [12] presented a map between probability density
functions and orthogonal polynomial families which is known as the Wiener-Askey scheme.
Within this scheme, the developer could choose the optimal polynomial family for obtain the
desired exponential convergence rate. This technique became known as Generalized Polyno-
mial Chaos (gPC) [13].



The main reason to develop alternative methods was the fact that, in the PC approach
using stochastic Galerkin projections, the underlying system of equations becomes coupled.
The implementation could be very difficult, especially in cases where non-linearities and/or
coupled multiphysics are present. To overcome that inconvenience, the target deterministic
solver was modeled as a black box and the collocation techniques emerged.

Collocation based methods were very important for application of UQ to problems
with complex physics. The complexity of the target solver could be ignored and the only
requirement was a smooth response of interest over the parametric domain. At this point,
each probability distribution induced an efficient quadrature rule associated to a polynomial
basis given by the Wiener-Askey scheme. If all random variables were independent in the non-
deterministic model, nothing would be more natural than employing multivariate quadrature
rules to estimate statistics.

3. PROBABILISTIC COLLOCATION METHOD

Let ξ(ω) = [ξ1(ω), ξ2(ω), . . . , ξn(ω)] be a random vector mapping Ω 7−→ Γ ⊂ Rn

and ρ =
∏n

i=1 ρi it’s joint probability density function (pdf). For any well-behaved function
f : Γ ⊂ Rn 7→ R of these random variables, the first two statistical moments are given by:

E[Y = f(ξ)] =

∫
Γ

f(ξ1, ξ2, . . . , ξn)
n∏
i=1

ρi dΓ (1)

V[Y = f(ξ)] =

∫
Γ

[
f(ξ1, ξ2, . . . , ξn)− E[Y ]

]2 n∏
i=1

ρi dΓ (2)

By exploiting independence, these integrals can be decoupled for each density function
and a multivariate quadrature is direct constructed from univariate rules.

For a general one dimensional integral of the form
∫ b
a
w(x)f(x)dx, where w(x) ≥ 0

over (a, b) is a measurable weight function and a, b ∈ [−∞,+∞] are symbols on the extended
line, there are efficient quadrature rules. And more important, the most common used pdfs
seen as weight functions induces Gaussian quadratures as the optimal choice for numerical
evaluation:

Table 1. Linkage between probability distributions and quadrature rules

Distribution PDF Weight Support Range Quadrature Rule
Uniform(a,b) 1

b−a 1 [−1, 1] Gauss-Legendre Pn(x)

Normal(µ,σ2) 1√
2πσ

e−
1
2

(x−µ)2

σ2 e−x
2

[−∞,∞] Gauss-Hermite Hen(x)

Log-normal(µ,σ2) 1
x
√

2πσ
e−

1
2

(lnx−µ)2

σ2 e−x
2

(0,∞] Gauss-Hermite Hen(x)

Exponential(λ) λe−λx e−x [0,∞] Gauss-Laguerre Ln(x)

Gamma(α) xαe−x

Γ(α+1)
xαe−x [0,∞] Gauss-Laguerre L(α)

n (x)



Thus, after normalization of the support range, the appropriate univariate rule is cho-
sen by table lookup and all the work is done by gathering the contributions of individual
dimensions: the collocation grid is generated by Cartesian product and the multi-dimensional
weights by the product of weights for each dimension.

As mentioned earlier, the probabilistic collocation method is really simple to imple-
ment, given the code for univariate rules. One problem that arise from this approach is related
to the curse of dimensionality: the number of collocation points grows exponentially with the
number of dimensions in the stochastic model. This implies that the probabilistic collocation
method described so far is not adequate for high-dimensions and the parametric space must
be small for the problem to be tractable.

A combination technique for multivariate quadrature formulas was developed a part
of the context of uncertainty quantification by Smolyak [11]. Gerstner and Griebel [8] studied
further the Smolyak algorithm and it’s variants pushing researchers to use it in many different
areas.

4. GENERALIZED SMOLYAK COMBINATION

To explain the Smolyak technique we need to introduce some auxiliary constructs.
Let’s begin by indexing 1D quadrature rules of the same type with increasing order:

{U1(f),U2(f), . . . ,U i(f), . . . } (3)

Here, the position in the list is referred as the level. Each level has an order associated
with, depending on the rule type or some another external knowledge:

U i(f)(ξ) =

mi∑
j=1

wijf(ξij) (4)

The order mi can take different forms such as linear mi = i; powers of two mi =

2i−1; etc. Quadrature nesting is also related to that functional form or order growth, and will
be recap later.

4.1. Isotropic interpolant

Now, for clarity, assume all n dimensions are being approximated with the same
quadrature rule above. Probabilistic collocation, as described earlier in it’s purest version,
is to set n orders mi1 ,mi2 , . . . ,min and take the tensorial product:

Q(f) = (U i1 ⊗ · · · ⊗ U in)(f) =

mi1 ,mi2 ,...,min∑
j1,j2,...,jn=1

(wi1j1 ⊗ · · · ⊗ w
in
jn

)f(ξi1j1 , . . . , ξ
in
jn

) (5)

Note that i1, i2, . . . , in are fixed levels for which the chosen orders match, and the
obtained full grid has

∏n
j=1mij collocation points. Remembering Lagrange interpolation, the

following Pascal’s triangle illustrates the inefficiency in two dimensions:
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Figure 1. Pascal’s triangle arrangement showing the full product inefficiency. Desired mono-
mials in blue, undesired monomials in red.

Only “half” of the monomials in the full product contributes for the desired precision.
The incomplete diagonals in the above scheme inserts errors of the same order and the goal is
to eliminate those extra monomials drawn in red. Formally, define the sets:

X(w, n) :=

{
i ∈ Nn, i ≥ 1 :

n∑
k=1

(ik − 1) ≤ w

}
, (6a)

Y (w, n) :=

{
i ∈ Nn, i ≥ 1 : w − n+ 1 ≤

n∑
k=1

(ik − 1) ≤ w

}
(6b)

where w ∈ N = 1, 2, . . . is the maximum allowed level sum. Also, define the incre-
mental interpolant ∆i := U i − U i−1 by setting U0 = 0. The isotropic Smolyak algorithm is
presented in two forms [5], with completely different implementations:

A(w, n) =
∑

i∈X(w,n)

(∆i1 ⊗ · · · ⊗∆in) (7a)

=
∑

i∈Y (w,n)

(−1)w+n−|i|
(

n− 1

w + n− |i|

)
· (U i1 ⊗ · · · ⊗ U in) (7b)

The second equation (Eq. 7b) is a explicit combination of low level tensor products
where |i| := i1 + · · ·+ in is the sum of entries in the multi-dimensional Smolyak index. There
is no additional work other than finding the indices and combining the rules. However, the
task of finding indices can be challenging in high-dimensions, the cost of naive loop-based
implementations is prohibitive. We propose an algorithm based on integer partitions as a
viable solution, Algorithm 1.

The first equation above (Eq. 7a) has a great impact on the performance when nested
quadrature rules are being applied. These rules produce nested grids, meaning that as the level
is increased, many or all collocation points overlap. An efficient implementation should keep
track of the lower order grid evaluations to use in posterior higher order interpolants.

Is important to note that the order growth can be more aggressive with nested rules,
where the number of new evaluations is reduced compared to a non-nested scenario. For refer-



Input: (w,n) - level sum and dimensionality
Output: M - matrix whose rows are the Smolyak indices

// matrix size
for m← max(n,w + 1) to w + n do1

nrows← nrows +
(
m−1
n−1

)
2

end3

ncols← n4

M← zeros(nrows,ncols)5

// filling the matrix
for m← max(n,w + 1) to w + n do6

maxElm← m− n+ 17

row← (1, 1, . . . , 1,maxElm)8

Assign row to M9

while firstElm(row) < maxElm do10

pos← lastPos(row)11

while row[pos] = 1 do pos← pos− 112

row[pos− 1]← row[pos− 1] + 113

row[pos]← row[pos]− 114

if pos 6= lastPos(row) then15

swap(row[pos], row[lastPos(row)])16

end17

Assign row to M18

end19

end20

return M21

Algorithm 1: Compute Smolyak indices



ence: Clenshaw-Curtis and Gauss-Patterson are nested, Gauss-Legendre and Gauss-Hermite
are weakly nested, Gauss-Laguerre isn’t nested, and in general, Gauss rules are not nested [1].

4.2. Anisotropic interpolant

In many cases, the model is known beforehand to be anisotropic, making the use of the
same maximum order for all random variables inadequate. The isotropic Smolyak algorithm
can be adapted to fit the more critical dimensions first, through a simple geometric idea.

By looking at the Pascal’s triangle (Figure 1), the λ-line represents the frontier in
traversing the monomials with the same total degree uniformly. The line slope can be manip-
ulated to a value other than 45◦ producing anisotropic formulas.

The predicates in the description of the auxiliary sets are modified to accommodate an
anisotropy vector α = (α1, . . . , αn) ∈ Rn

+:

Xα(w, n) :=

{
i ∈ Nn, i ≥ 1 :

n∑
k=1

(ik − 1)αk ≤ wα

}
, (8a)

Yα(w, n) := Xα(w, n) \Xα(w − |α|
α
, n) (8b)

=

{
i ∈ Nn, i ≥ 1 : wα− |α| <

n∑
k=1

(ik − 1)αk ≤ wα

}
(8c)

where |α| := α1 + · · · + αn and α := min(α1, . . . , αn). The anisotropic Smolyak
formula, in it’s combinatorial representation, is then written as [3]:

A(w, n, α) :=
∑

i∈Yα(w,n)

cα(i) · (U i1 ⊗ · · · ⊗ U in) (9)

with the cα(i) coefficients given by:

cα(i) :=
∑

j∈{0,1}n
i+j∈Xα(w,n)

(−1)|j| (10)

That means, for each index i ∈ Yα(w, n), find all perturbation vectors j whose entries
are 0 or 1, such that i + j is still on the sparse grid. The coefficient cα(i) is a sum over all it’s
acceptable perturbations where again, |j| := j1 + · · ·+ jn.

By restricting α ∈ Zn+ in the library design, Algorithm 1 can be easily adapted for the
anisotropic interpolant. It was not shown due to technical constraints on the article size. For
the general case with real entries, a different implementation is required [1].

Yet more general formulas, like “corner” grids, were constructed for sparse inter-
polants, all sharing similar ideas explained in this section, built on top characteristic sets
[8].



5. APPLICATION TO A RESERVOIR MODEL

Having explained the SPCM (PCM + Generalized Smolyak algorithm), we’re now
able to apply the method to a simple, yet realistic, reservoir model. Consider the following
problem description:

5.1. Deterministic characterization

44× 24× 5 blocks, each with 200× 200 m2 basis area, adding up to 42.24km2 field
extension, are located approximately between 2958–3425m depth, their thickness varies block
to block according to a map assembled from geological processing.

Figure 2. Reservoir numerical grid

Figure 2 shows the reservoir structure. The anticline formation is represented with
gradient colors translating macroscopically the porosity of each layer. Darker regions at the
bottom present lower porosity as in the majority of reservoir models. This phenomena is
often referred in geology as the stratigraphic deposition principle, in which the more recent
layers act compressing the older ones below it. Table 2 contains the important petrophysical
properties for this case study: effective porosity and absolute permeabilities. Hereafter, the
top layer is labeled “Layer 1”.

Table 2. Petrophysical properties per layer and from top to bottom

Layer φef κx κy κz
1 0.15 550mD 550mD 220mD
2 0.15 — — —
3 0.15 — — —
4 0.14 — — —
5 0.13 — — —

The effective compressibility is 1 × 10−4(kgf/cm2)−1 at 1.033kgf/cm2 reference
pressure, the pore volume is 165588m3 and the volumes of the fluids in place are given in



Table 3. There is no gas in place, all produced gas is the result of phase transformation
along the isothermal (88◦C) elevation. Hence, it’s a black oil reservoir with no gas cover, but
with a considerably large subjacent aquifer that will guide the production, due to the water
influx mechanism, see Figure 3. A gas-liquid ratio of RGL ≈ 0.11m3std/m3std, as well
as a minimum reservoir pressure of Pmin ≈ 316kgf/cm2, higher than the bubble pressure
Pb = 211kgf/cm2, both ratify the previous affirmative.

Table 3. Fluid volumes

Fluid Volume(m3)
Oil STD 60830
Total gas 7024
Free gas —
Water 79808
Oil in place 85413
Gas in place —
Water in place 80175

Figure 3. Reservoir subjacent aquifer. Oil-water contact 3105m deep.

The oil and water average saturations can be calculated using the volumes in Table 3
and void space:

S̄o =
85413m3

165588m3
≈ 51.6% S̄w =

80175m3

165588m3
≈ 48.4% (11)

As noted, there is no natural gas, S̄o + S̄w = 100%. The oil and gas densities
are ρo = 890kg/m3 and ρg = 0.8582kg/m3, respectively. The oil compressibility be-
yond the bubble point is 1.2 × 10−4(kgf/cm2)−1 and Figure 4 groups the volume forma-
tion factor, solubility ratio, viscosity, and relative permeability curves for these hydrocarbons.
The water properties are listed for the reference pressure of 1.033kgf/cm2: compressibility,
4.6× 10−5(kgf/cm2)−1; viscosity, 0.4cp; and volume formation factor, 1.02.
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(d) Oil-water relative permeabilities

Figure 4. Volume formation factors, solubility ratio, viscosities and relative permeabilities as
functions of either, pressure or water saturation

Based on the field production mechanism, the oil recovery strategy main directive is
to preserve the aquifer energy. It’s importance is in maintaining the exploitation stable at
high-pressure levels. Thus, the producer wells locations/completions must be sufficiently far
from oil-water contacts to delay production of water. Also, injector wells are placed in the oil
accumulation for pushing the fluids in a radially convergent manner.

Figure 5 contains top and 3D views of all 12 existing wells. Completions vary from
3 to 5 layers, but almost all wells have full completion. They operate with two types of con-
straints, primary flow constraints and secondary pressure constraints. For example, 1100m3/s

is the maximum allowed flow for the NA1A producer, and it’s minimum bottom-hole pressure
is set to 190kgf/cm2. The distinction made between primary and secondary constraints is a
technical detail of the CMGTM software [4] that specifies only primary constraints are subject
to posterior modification, a commonly used feature in history matching. Besides these con-
straints, wells are closed in the case of backflow. Figure 6 shows the cumulative oil production
for the field. All deterministic and stochastic studies were done with IMEXTM reservoir sim-
ulator software [4].



(a) Wells top view (b) Wells 3D view

(c) Oil saturation at the end of simulation (Top
view)

(d) Oil saturation at the end of simulation (3D view)

Figure 5. Oil saturation before and after simulation. 12 wells - Producers: NA1A, NA2,
NA3D, RJS19, Prod[1-4]; Injectors: Inj[1-4].

Figure 6. Cumulative oil production

5.2. Modeling uncertainty

It’s crucial to define what are the most influential input variables and what probability
distributions, if applicable, they should be assigned. Scientific methods for doing parametric
studies and weighted selection are available, and should be used in real life scenarios. Since



this article aims to demonstrate the technique, this phase was neglected in favor to other tasks.
A common approach is to give the pretrophysical properties, such as absolute per-

meabilities, log-normal distributions. With today’s technology is nearly impossible to infer
the subsurface stress state that affects those properties, even in well proximities. Bringing
up the rock plug to standard conditions causes exudation side effects, i.e. depressurization
can alter the physical-chemical state of the specimen, which also invalidates the laboratory
analysis. And, of course, in real reservoir models, the assignment of petrophysical properties
to cell blocks is done with geostatistical algorithms that are stochastic by nature. Therefore,
porosities and permeabilities are good candidates for uncertainty modeling.

Small case studies were created due to time limitation, but also for showing the library
flexibility. At the end, scalability issues and possible solutions are discussed. Monte Carlo
simulations were run for each case to verify our implementation, and to assess its computa-
tional efficiency.

The analysis were run on a time shared 6.13 TFlops computing cluster of CENAPAD-
PE. This machine has 72 (Bull R421 R©) computing nodes, each containing 2 Quad Core
2.66MHz Intel Xeon R© 5355 processors. The machine runs Red HatTM GNU/Linux. Due
to licencing constraints, at most 100 IMEXTM could be done simultaneously.

For each case, the method’s parameters were chosen in such a way the resultant grid
had the same maximum one-dimensional quadrature order. As an example, it’s known that
for a sparse level w, the maximum order used in the isotropic sparse grid is at the quadrature
level w + 1. If the nonlinear sparse growth is chosen (m1 = 1 and mi = 2i−1 + 1, i > 1),
then the maximum quadrature order is mmax = 2(w+1)−1 + 1 = 2w + 1. See Figure 7.

(a) Isotropic SPCM level 5 (b) Isotropic PCM order 25 + 1 = 33

Figure 7. 2D collocation grids using Gauss rule, reproducing Fig. 1 in [5]

CASE 1. Based on Table 2, φef1 ∼ U(0.13, 0.16) and φef2 ∼ U(0.13, 0.16) were
assigned two equally uniform-distributed random variables (R.V.). The isotropic, nonlinear,
SPCM level 5 (mmax = 33) was applied, PCM and Monte Carlo were applied with 33 ×
33 points. The response of interest was the net present value of the field computed by the
simplified formula:

NPV =
T∑
τ=0

Fτ
(1 + )τ

(12)



where Fτ is the cash flow at time τ and  is the constant applied discount factor.
The cash flow is given by Fτ = Rτ − Opexτ . The oil revenue Rτ = P o

τ · qoτ · ∆t and
operational expenditure Opexτ =

∑
l=w,wi

C l
τ · q∗lτ ·∆t due to water injection and production

were attributed constant prices P o
τ = 30U$/bbl, Cw

τ = 5U$/bbl and Cwi
τ = 2U$/bbl. The

minimum attractive rate of return at year was set to 0.093.

Table 4. CASE 1

] Points Wall Time (40 procs) Statistics (µ± σ)
SPCM 371 00:23 h 22808.3U$ ± 7286.7U$
PCM 1089 01:06 h 22757.4U$ ± 7317.0U$
MC 1089 01.05 h 22197.3U$ ± 7237.4U$

CASE 2. φef1 = φef2 = φ ∼ U(0.13, 1.16) as the first R.V. and κx1 = κy1 =

κx2 = κy2 = κhor ∼ logN (µ, σ2) such that E[κhor] = 550mD and V[κhor] = (10mD)2

as the second.∗ The explicit formulas for µ and σ2 are given in Eq. 13. It was decided
the permeability had more impact on the net present value by setting the anisotropy vector
α = (2, 1). The tensor products used by the Smolyak algorithm (Eq. 14) guided the maximum
order for PCM and Monte Carlo, mmax = 2(6−1) + 1 = 33, the orders were then chosen
22× 33 = 726 grid points.

σ2 = log(1 + V/E2) (13a)

µ = log(E)− σ2/2 (13b)

A(5, 2, (2, 1)) = −U1 ⊗ U4 − U2 ⊗ U2 + U1 ⊗ U6 + U2 ⊗ U4 + U3 ⊗ U2 (14)

Table 5. CASE 2

] Points Wall Time (40 procs) Statistics (µ± σ)
SPCM 93 00:07 h 22664.7U$ ± 10417.6U$
PCM 726 00:45 h 22664.1U$ ± 10417.1U$
MC 726 00:44 h 22906.1U$ ± 10316.7U$

CASE 3. The previous case with the additional R.V. κz1 = κz2 = κvert ∼ logN (µ, σ2)

such that E[κvert] = 220mD and V[κvert] = (5mD)2. SPCM with w = 5, α = (2, 1, 1), PCM
and Monte Carlo containing 22 × 33 × 33 points (mmax = 33)†. The response of interest is
the cumulative oil production.

∗In reality, porosity and permeability are correlated.
†PCM with 33 points is generally overmeasure.



Table 6. CASE 3

] Points Wall Time (50 procs) Statistics (µ± σ)
SPCM 695 00:13 h 34279.4m3 ± 638.2m3

PCM 23958 20:01 h 34183.2m3 ± 1562.8m3

MC 23958 1.1 day 34174.8m3 ± 1944.4m3

6. CONCLUSIONS

The benefit of applying SPCM becomes more evident as the dimensionality grows.
The accuracy is not compromised and the computational effort is significantly reduced. De-
spite that fact, it’s not scalable to very high dimensions. For higher dimensions (' 50), even a
2-point integration rule is prohibitive, and the Monte Carlo Method becomes attractive again.

Adaptive sparse grids on top the Smolyak algorithm here discussed are being devel-
oped by the UQ research community. The incremental form presented in Eq. 7a allows the
definition of hierarchical surpluses which serve as error estimators for an automatic refine-
ment procedure [2]. This approach answers the question: What SPCM level to use? Because
the grid is constructed with the minimum level and refined on regions with poor approxi-
mation, the user doesn’t need to specify a sparse level. Scalability issues are not improved
though.

State of the art techniques for uncertainty quantification are being developed and im-
plemented within DAKOTA: An Open Source Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty Quantification and Sensitivity
Analysis. Although the work presented here was done with a home grown UQ library, the
authors plan to use and contribute with DAKOTA in the future.
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