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Hybrid formulations have been widely used in computational mechanics associated
with primal or mixed finite element methods. Recently, hybrid formulations have been de-
veloped associated with Discontinuous Galerkin methods. In this work we propose a new
primal hybrid finite element method for linear elasticity. Using a stabilization strategy typical
of Discontinuous Galerkin methods, we choose as multiplier the displacement field itself and
add stabilization and symmetrization terms to generate a stable and adjoint consistent formu-
lation allowing greater flexibility in the choice of basis functions of approximation spaces for
the displacement field and the Lagrange multiplier. The local problems, in the displacement
field, can always be solved at the element in favor of the Lagrange multiplier defined on each
edge of the elements. The global system is assembled involving only the degrees of freedom
associated with the Lagrange multipliers, as usual in a hybrid method, where the continuity
on the element edges is imposed weakly. Polynomial bases are adopted to approximate both
the displacement field and the Lagrange multipliers considering Lagrangian polynomial base.
Result of some numerical experiments are presented to illustrate the potential of the proposed
formulation.
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1. INTRODUCTION

It is well known that standard Galerkin finite element approximations for elasticity
problem degrade when the Poisson’s ratio tends to 1/2, corresponding to near incompressible
elasticity. This nonrobustness of the FEM is widely termed “locking”. To avoid the locking
effects, several approaches have been introduced. We mention here the mixed finite element
methods in [4, 10, 11], the nonconforming methods proposed in [14], the higher-order meth-
ods in [18] and the Discontinuous Galekin (DG) methods in [17, 13, 19, 5]. All these methods
have been quite extensively studied within an a priori context.

Robustness and flexibility for implementing h and p-adaptivity strategies are well
known advantages of Discontinuous Galerkin (DG) methods stemming from the use of fi-
nite element spaces consisting of discontinuous piecewise polynomials. The natural connec-
tion between DG formulations and hybrid methods have been successfully exploited to derive
new finite element methods with improved stability and reduced computational cost but still
keeping the robustness and flexibility of DG methods [9, 6, 7, 8].
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Based on hybridization techniques we propose here a primal hybrid finite element
method for linear elasticity combining the advantages of Discontinuous Galerkin methods
with an element based data structure and reduced computational cost. As multiplier was cho-
sen the displacement field itself and add stabilization and symmetrization terms to generate
a stable and adjoint consistent formulation allowing greater flexibility in the choice of basis
functions of approximation spaces for the displacement field and the Lagrange multiplier. The
method is derived from a stabilized hybrid formulation consisting of a set of local problems
defined at the element level coupled to a global problem on the multiplier only. we choose
as multiplier the displacement field itself and add stabilization and symmetrization terms to
generate a stable and adjoint consistent formulation allowing greater flexibility in the choice
of basis functions of approximation spaces for the displacement field and the Lagrange multi-
plier.

The remainder of the paper is organized as follows. A review of notation required and
the linear elasticity problem is presented in Section 2. The Interior Penalty Discontinuous
Galerkin formulations is briefly presented in Section 3. The proposed Stabilized Hybridized
primal formulation is introduced and discussed in Section 4. Numerical results on conver-
gency studies are presented in Section 5. Concluding remarks are drawn in Section 6.

2. PRELIMINARIES

2.1. Notation

To introduce the stabilized hybrid formulation, we first present some definitions and
notations. Let Ω ∈ Rd, d ≥ 1, be a bounded domain with a Lipschitz boundary Γ = ∂Ω, and
L2(Ω) the space of square integrable functions, equipped with the usual norm ‖ · ‖0,Ω. Let
Hm(Ω) be the usual Sobolev space of all functions in L2(Ω) whose weak derivatives up to the
nonnegative integer order m are also L2(Ω)-integrable [1]. The corresponding Hm(Ω) norms
and semi-norms are denoted by ‖ · ‖m,Ω = ‖ · ‖m and | · |m,Ω = | · |m, respectively.

For a given function space V (Ω), let V (Ω)d and V (Ω)d×d be the spaces of all vector
and tensor fields whose components belong to V (Ω). Without further specification, these
spaces are furnished with the usual product norms (which, for simplicity, are denoted similarly
as the norm in V (Ω)). For vectors v,w ∈ Rd, and matrices σ, τ ∈ Rd×d, we use the standard
notation

(gradv)ij = ∂jvi, (div σ)i =
d∑

j=1

∂jσij and σ : τ =
d∑

i,j=1

σijτij.

Furthermore, let v ⊗ w be the matrix with components (v ⊗ w)ij = viwj . We will also use
the identity

v · σw =
d∑

i,j=1

viσijwj = σ : (v ⊗w).

For simplicity we restrict our finite element formulation to two dimension elasticity
problems. Let

Th = {K} := union of all elements K

be a regular finite element partition of the two-dimensional domain Ω and let

Eh = {e : e is an edge of K for all K ∈ Th}



denote the set of all edges of all elements K of the mesh Th.

E0
h = {e ∈ Eh e is an interior edge}

is the set of interior edges, and
E∂

h = Eh ∩ Γ,

the set of edges of Eh on the boundary of Ω. We assume that the domain Ω is polygonal and
Th is a regular partition of Ω. Thus, there exists c > 0 such that h ≤ c he, where he is the
diameter of the edge e ∈ ∂K and h, the mesh parameter, is the maximum element diameter.
For each edge e we associate a unit normal vector ne.

For a scalar-valued function v ∈ L2(Ω) with v|K ∈ Hm(K) for all K ∈ Th, let ‖v‖m,h

be the usual broken Hm-type norm of v defined by

‖v‖m,h =

( ∑
K∈Th

‖v‖2
m,K

)1/2

.

If v is vector-valued or tensor-valued function, the corresponding term ‖v‖m,h is defined in a
similar manner. For a vector or a tensor v, denote by |v| the quantity (v · v)1/2 or (v : v)1/2.

Let K+ and K− be two adjacent elements of Th, x be an arbitrary point of the set
e = ∂K+ ∩ ∂K−, n+ and n− be the corresponding outward unit normals at that point. For
a scalar-valued function, q, a vector-valued function, v, or a matrix-valued function, τ , that
are smooth inside each element K±, let us denote by (q±,v±, τ±) the traces of (q,v, τ ) on
e taken from within the interior of K±, respectively. Then we define averages at x ∈ e as
follows:

{{q}} =
1

2
(q+ + q−), {{v}} =

1

2
(v+ + v−), {{τ}} =

1

2
(τ+ + τ−) on e ∈ E0

h.

Similarly, the jumps at x ∈ e on e ∈ E0
h are given by

[[p]] = p+n+ + p−n−,

[[v]] = v+ · n+ + v− · n−,

[[τ ]] = τ+n+ + τ−n−.

If x is on an edge e lying on the boundary ∂Ω, i.e., e ∈ E∂
h , the above average and jump

operators are defined by

{{p}} = p, {{v}} = v, {{τ}} = τ ,

[[p]] = pn, [[v]] = v · n, [[τ ]] = τn.

where n is the unit outward normal vector on ∂Ω. We define a matrix-valued jump [[[·]]] of a
vector v as in [5]

[[[v]]] =
1

2
(v+ ⊗ n+ + n+ ⊗ v+ + v− ⊗ n− + n− ⊗ v−), if x ∈ e ∈ E0

h,

[[[v]]] =
1

2
(v ⊗ n + n⊗ v), if x ∈ e ∈ E∂

h .



2.2. Model problem

Let Ω inRd, d = 2 denote an open bounded domain with piecewise Lipschitz boundary
Γ = ΓD∪ΓN = ∂Ω of an elastic body subjected to external force f ∈ L2(Ω)2. The kinematical
model of linear elasticity in two dimensions consists in finding a displacement vector field u
satisfying

− div σ(u) = f in Ω,
σ(u) = Dε(u) in Ω,

u = g on ΓD

σ(u)n = h on ΓN

(1)

where σ(u) is the symmetric Cauchy stress tensor, ε(u) = 1
2
(gradu + graduT ) is the linear

strain tensor, h are the given boundary loads; g is a given boundary displacement and n is
the exterior unit normal vector to Γ [15, 12]. For linear, homogeneous and isotropic material
σ(u) given by

σ(u) = Dε(u) = 2µε(u) + λ(tr ε(u))I, (2)

where tr ε(u) = div u, I is the identity tensor and λ and µ are called the Lamé parameters.
In terms of the modulus of elasticity, E, and Poisson’s ratio, ν, we have, in the case of plane
strain, that

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

In our model problem we will only consider homogeneous Dirichlet condition on ΓD = Γ.

3. PRIMAL DISCONTINUOUS GALERKIN FORMULATION

In this section we recall interior penalty Discontinuous Galerkin formulations for our
model problem [19, 5, 13, 17]. Following Wihler [19], on the partition Th we define the space

V =
{
v ∈ (

L2(Ω)
)2

;vi|K ∈ H1(K),∀K ∈ Th, i = 1, 2
}

. (3)

The Symmetric Interior Penalty Discontinuous Galerkin (SIP-DG) method for our
model problem is formulated as follows:

Find u ∈ V such that,
∑

K∈Th

∫

K

Dε(u) : ε(v)dx −
∑

K∈Th

∫

∂K

Dε(u)n · vds−
∑

K∈Th

∫

∂K

Dε(v)n · (u− u′)ds

+
∑

K∈Th

∫

∂K

β

h
(u− u′) · vds =

∑
K∈Th

∫

K

f · vdx, ∀v ∈ V, (4)

with u′ = u|K′ for all K ′ ∈ N (K), the set of all neighbors of K, and u′ = u = 0 on Γ.
The residual term has been consistently added according to the following Symmetric Interior
Penalty Discontinuous Galerkin (SIP-DG) formulation. Discontinuous Galerkin methods are
normally formulated and analyzed using well known average and jump operators defined on
interior edges as in Section 2.1. Therefore, using the identity that has been demonstrated by
Chen et al [5] (see Lemma 2.1)

∑
K∈Th

∫

∂K

(τn) ·wds =

∫

E0
h

[[τ ]] · {{w}}+ {{τ}} : [[[w]]]ds, (5)



this class of Discontinuous Galerkin method can be formulated as [19]:
Find u ∈ V such that

aDG(u,v) = f(v) ∀v ∈ V (6)

with

aDG(u,v) =
∑

K∈Th

∫

K

Dε(u) : ε(v)dx−
∑
e∈Eh

∫

e

({{Dε(u)}} : [[[v]]] + [[[u]]] : {{Dε(v)}}) ds

+
∑

e∈E0
h

∫

e

β

h
[[[u]]] : [[[v]]]ds +

∑

e∈E∂
h

∫

e

β

h
[[[u]]] : [[[v]]]ds, (7)

f(v) =
∑

K∈Th

∫

K

f · vdx. (8)

The numerical analysis of this discontinuous Galerkin methods is provided in refer-
ence [13] following the unified framework for the analysis of DG methods introduced in [3]
for closely related diffusion problems.

4. STABILIZED HYBRID FORMULATION

4.1. Stabilized Hybrid Discontinuous Finite Element Method

We now present a Stabilized Hybrid Discontinuous formulation for the linear elasticity
problem in its primal form with the multiplier λ defined as the trace of u: λ = u|e on each
edge e ∈ Eh. This presentation will be restricted to the finite dimension spaces:

Vh = {v ∈ (L2(Ω))2 : v|K ∈ [Sk(K)]2 ∀K ∈ Th} (9)

Mh = {λ ∈ (L2(Eh))
2 : λ|e = [Pl(e)]

2, ∀e ∈ E0
h, λ|e = 0, ∀e ∈ E∂

h}, (10)

where Sk(K) = Pk(K) (the space of polynomial functions of degree at most k in both vari-
ables) or Sk(K) = Qk(K) (the space of polynomial functions of degree at most k in any vari-
able), and Pl(e) is the space of of polynomials of degree at most l on each edge e. These finite
dimension spaces are usually associated with triangular or quadrilateral elements, however
the proposed formulation can be naturally applied to any finite element partition consisting of
general polygons. The Stabilized Hybrid Discontinuous Galerkin method is formulated as:

Find the pair (uh,λh) ∈ Vh ×Mh such that for all (vh,µh) ∈ Vh ×Mh

∑
K∈Th

∫

K

Dε(uh) : ε(vh)dx−
∑

K∈Th

∫

∂K

[
(Dε(uh)n) · vh + (Dε(vh)n) · (uh − λh)

]
ds

+
∑

K∈Th

∫

∂K

β

h
(uh − λh) · vhds =

∑
K∈Th

∫

K

f · vhdx, ∀vh ∈ Vh,

(11)

∑
K∈Th

∫

∂K

(Dε(uh)n) · µhds +
∑

K∈Th

∫

∂K

β

h
(λh − uh) · µhds = 0, ∀µh ∈ Mh. (12)



In the above formulation the boundary condition u = 0 on Γ is weakly imposed
using the same Nitsche’s approach adopted in the associate DG method. For this reason the
unknown λh is restricted to Mh and on each e ∈ E∂

h we set λh = 0. Also, a symmetrization
term to generate a stable and adjoint consistent formulation allowing greater flexibility in
the choice of basis functions of the approximation spaces for the displacement field and the
Lagrange multiplier was added. Here, β is a penalty parameter introduced to stabilize the
displacement field uh and the multiplier λh and has dimension equal to the Young module. In
the next sections we show that the proposed Stabilized Hybrid formulation preserves basically
the same properties of the corresponding Symmetric Interior Penalty Discontinuous Galerkin
method.

4.2. Consistency

The pair (u, λ), with u solution of the model problem (1) and λ = u|e on each edge
e ∈ Eh, satisfies

∑
K∈Th

∫

K

Dε(u) : ε(vh)dx−
∑

K∈Th

∫

∂K

(Dε(u)n) · (vh − µh)ds

−
∑

K∈Th

∫

∂K

(Dε(vh)n) · (u− λ)ds +
∑

K∈Th

∫

∂K

β

h
(u− λ) · (vh − µh)ds =

∑
K∈Th

∫

K

f · vhds,

(13)

for all {vh, µh} ∈ Vh ×Mh.
Given that u ∈ [H2(Ω)]2, then λ = {u}|e = u|e and [[Dε(u)]]|e = 0, ∀e ∈ E0

h ,
equation (13) reduces to

∑
K∈Th

∫

K

Dε(u) : ε(vh)dx−
∑

K∈Th

∫

∂K

(Dε(u)n)·vhds =
∑

K∈Th

∫

K

f ·vhds ∀vh ∈ Vh, (14)

which integrated by parts leads to
∑

K∈Th

∫

K

[− div(Dε(u))− f ] · vhdx = 0 ∀vh ∈ Vh, (15)

proving consistency.

4.3. A stabilized DG formulation

To compare the stabilized hybrid formulation with the Interior Penalty Discontinuous
Galerkin method analyzed by Hansbo et al [13] we consider the option of eliminating the
multiplier at the level of an edge e on each element K ∈ Tc as follows. For l ≥ k, we can
solve equation (12) exactly, obtaining

λh = {uh} − h

2β
[[Dε(uh)]] on each interior edge e ∈ E0

h. (16)

Replacing (16) in (11) and using identities

u1 =
1

2
(u1 + u2) +

1

2
(u1 − u2),

u2 =
1

2
(u1 + u2)− 1

2
(u1 − u2), (17)



and (5), we obtain the following stabilized DG formulation:
Find uh ∈ Vh such that

aSH(uh,vh) = f(vh) ∀vh ∈ Vh (18)

with

aSH(uh,vh) =
∑

K∈Th

∫

K

Dε(uh) : ε(vh)dx−
∑
e∈Eh

∫

e

{{Dε(uh)}} : [[[vh]]]ds

−
∑
e∈Eh

∫

e

{{Dε(vh)}} : [[[uh]]]ds− h

2β

∑

e∈E0
h

∫

e

[[Dε(uh)]] · [[Dε(vh)]]ds

+
β

2h

∑

e∈E0
h

∫

e

[[[u]]] : [[[v]]]ds +
β

h

∑

e∈E∂
h

∫

e

[[[u]]] : [[[v]]]ds. (19)

Comparing the bilinear for aSH(·, ·) with the bilinear form aDG(·, ·) corresponding to
the DG formulation (6) we observe that the Stabilized Hybrid Discontinuous formulation is
not an exact hybridization of this DG formulation. The only difference between these bilinear
forms is the presence of the term

− h

2β

∑

e∈E0
h

∫

e

[[Dε(uh)]] · [[Dε(vh)]]ds (20)

in the bilinear for aSH(·, ·). Clearly, this term (20) does not affect the consistency of the the
DG method (18) derived from the hybrid formulation. We also observe that, for sufficiently
large β, stability and continuity of aSH(·, ·) is proved using the same arguments adopted for
proving these properties for the bilinear form aDG(·, ·). Consequently, the error estimates
derived for the DG method, as in references [2, 16], are applicable to the stabilized DG for-
mulation (18). From the computational point of view eliminating the multiplier λh in favor
of the discontinuous displacement field uh is not a good choice. However, this decoupling
strategy is very interesting concerning numerical analysis and error estimates of the proposed
stabilized hybrid formulation. In the next section we present a different strategy to decou-
ple the hybrid system consisting in eliminate the discontinuous displacement field uh at the
element level and assembling a global system involving only the multiplier.

4.4. Hybridization

Given that the multiplier of the proposed formulation is identified with the trace of
the primal variable u on the element edges, we observe that, for β sufficiently large, we can
always eliminate the degrees-of-freedom of the primal variable uh at the element level in favor
of the degrees-of-freedom of the multiplier leading to a global system in the multiplier only.
Computationally this is the best choice for leading to a global system with a much smaller
dimension compared to the DG global system in uh.

Considering that vh, belonging to the broken function space Vh, is defined indepen-
dently on each element K ∈ Th, we observe that equation (11) can be split into a set of local
problems defined on each element K coupled to the global problem (11) defined on Eh, as
follow:



Find uh|K ∈ Vh(K) = Vh|K and λh ∈ Mh, such that
∫

K

Dε(uh) : ε(vh)dx−
∫

∂K

(Dε(uh)n) · vhds−
∫

∂K

(Dε(vh)n) · (uh − λh)ds

+

∫

∂K

β

h
(uh − λh) · vhds =

∫

K

f · vhdx, ∀vh|K ∈ Vh(K), (21)

∑
K∈Th

∫

∂K

(Dε(uh)n) · µhds +
∑

K∈Th

∫

∂K

β

h
(λh − uh) · µhds = 0, ∀µh ∈ Mh. (22)

Defining the local bilinear forms:

aK(uh,vh) =

∫

K

Dε(uh) : ε(vh)dx

−
∫

∂K

(Dε(uh)n) · vhds−
∫

∂K

(Dε(vh)n) · uhds +
β

h

∫

∂K

uh · vhds;(23)

bK(λh,vh) = −
∫

∂K

(Dε(vh)n) · λhds− β

h

∫

∂K

λh · vhds; (24)

cK(λh, µh) =
β

h

∫

∂K

λh · µhds, (25)

and the linear functional
fK(vh) =

∫

K

f · vhdx, (26)

the system (21)-(22) can be presented as:
Find uh|K ∈ Vk(K), for each K ∈ Th, and λh ∈ Mh such that

aK(uh,vh) + bK(λh,vh) = fK(vh), ∀vh ∈ Vk(K), (27)
∑

K∈Th

bT
K(uh, µh) +

∑
K∈Th

cK(λh,µh) = 0, ∀µh ∈ Mh, (28)

or in matrix form:

AKU + BKΛ = FK , ∀K ∈ Th (29)∑
K∈Th

BT
KU +

∑
K∈Th

CKΛ = 0. (30)

Inverting the local matrix AK we have

U = A−1
K (FK −BKΛ), ∀K ∈ Th. (31)

Replacing (31) in (30), we obtain the global system in the multiplier only:
∑

K∈Th

(CK −BT
KA−1

K BK)Λ =
∑

K∈Th

−BT
KA−1

K FK . (32)

After solving the global (32), the vector U is obtained from (31) with Λ given by (32).



5. NUMERICAL RESULTS

In this section the proposed formulation is validated on some numerical experiments.
The stabilized hybrid system of Eq. (21-22) is solved using the strategy presented in (31-32).
The performance of the method is tested by presenting some results of convergence studies
for plane-strain problem defined on square domain Ω = (0, 1) × (0, 1) with homogeneous
boundary conditions, considering elasticity modulus E = 1, Poisson ratio ν = 0.3 and forcing
term:

f1(x, y) = µ cos(πx− πy)− 2µ cos(πx + πy)− λ cos(πx + πy) (33)
f2(x, y) = µ cos(πx− πy)− 2µ cos(πx + πy)− λ cos(πx + πy) (34)

such that the exact solution is given by

u1(x, y) =
1

π2
sin(πx) sin(πy) (35)

u2(x, y) =
1

π2
sin(πx) sin(πy). (36)

In this study we will compare the stabilized hybrid approximation uh with the contin-
uous interpolant uI and with the following Local Projections of the exact solution:

For given λ = u|∂K , the trace of the exact solution on the edge of the element K, find
uLP ∈ Vh(K) such that

aK(uLP ,vh) = fK(vh)− bK(λ,vh), ∀vh ∈ Vk(K), for each element K ∈ Th (37)

Figure 1 presents h-convergence comparisons of the stabilized hybrid approximation
uh with the Local Projection uLP and the interpolant uI for k = l = 1 and β = 8. In this
study we adopted a sequence of 2 × 2, 4 × 4, 8 × 8 and 16 × 16 uniform finite element
meshes. Optimal rates of convergence are observed for all approximations in both H1(Ω)
seminorm (O(h)) and L2(Ω) norm (O(h2)), with identical accuracy in H1(Ω) seminorm for
all approximations. In L2(Ω) the stabilized hybrid approximation uh coincides with the Local
Projection and is more accurate than the corresponding interpolant.

In Figure 2 h-convergence results are presented for k = l = 2 and β = 16. In this
cases, optimal rates of convergence are also observed for all approximations in both H1(Ω)
seminorm (O(h2)) and L2(Ω) norm (O(h3)). Again, we observe a great coincidence between
the hybrid approximation and the Local Projection with improved accuracy in L2(Ω) com-
pared to the interpolant.

Figure 3 presents h-convergence studies for the multiplier λh compared to the cor-
responding interpolant λI for k = l = 1 (left) and k = l = 2 (right). Optimal rates of
convergence of O(hk+0.5) in L2(Eh) norm are again observed in both cases.

Figure 4 presents results of p-convergence study for the stabilized hybrid approxi-
mation uh compared to the Local projection uLP and the interpolant uI . In this study we
adopted a uniform mesh with four quadrilateral elements and considered k = l = 1, 2, 3, 4, 5,
with β = 8, 16, 26, 42, 170, respectively. In the H1(Ω) seminorm (left) the three solution
practically coincide. In L2(Ω) norm we observe that the stabilized hybrid approximations and
the Local Projection are more accurate than the interpolant for k = l = 1, 2, 3.
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Figure 1. h-Convergence of Stabilized Hybrid Discontinuous Galerkin approximation (uh)
compared Local Projection (uLP ) and the Interpolant (uI) for Q1Q1-2 in H1(Ω) seminorm
(left) and L2(Ω) norm (right).
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(left) and L2(Ω) norm (right).
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compared the Interpolant (λI) in L2(Ω) norm for Q1Q1-2 (left) and Q2Q2-3 (right).
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Figure 4. p-Convergence of Stabilized Hybrid Discontinuous Galerkin approximation (uh)
compared the Local Projection (uLP ) and the Interpolant in H1(Ω) seminorm (left) and L2(Ω)
norm (right).



6. CONCLUDING REMARKS

A Stabilized Hybrid Discontinuous Galerkin finite element formulation for linear elas-
ticity problems is proposed. The method is developed from a primal hybrid formulation with
the Lagrange multiplier identified with the trace of the displacement field on the edges of the
elements leading to a set of local problems defined at the element level and a global problem
in the multiplier only. We show that the proposed formulation preserves the main properties
of the corresponding Interior Penalty Discontinuous Galerkin method but with reduced com-
putational cost. The proposed method is easily implemented using the same data structure
of continuous Galerkin finite element methods, allowing different degrees of interpolation
polynomials for the primal variable and for the multiplier, giving rise to more flexibility and
improved accuracy. Numerical results on a convergence study show optimal rates of conver-
gence for the primal variable uh and for the Lagrange multiplier λh.
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