
A TWO-SCALE RATE DEPENDENT CRACK MODEL FOR QUASI-BRITTLE
MATERIALS UNDER DYNAMIC LOADING

A. Karamnejad, V. P. Nguyen, L. J. Sluys

Faculty of Civil Engineering and Geosciences, Delft University of Technology

Abstract. A multi-scale numerical approach for modeling cracking in heterogeneous quasi-
brittle materials under dynamic loading is presented. In the model, a discontinuous crack
model is used at macro-scale to simulate fracture and a gradient enhanced damage model has
been used at meso-scale to simulate diffuse damage. The traction-separation law for the co-
hesive zone model at macro-scale is obtained from the meso-scale through the discontinuous
computational homogenization method [1] which is developed based on the so-called failure
zone averaging scheme [2] in which the averaging theorem is used over the active damage
zone of the meso-scale. Unlike standard averaging, this method is objective with respect to the
local-scale sample size in the softening regime. In order to evaluate the macroscopic traction
at each integration point on the crack, at each time step of the macro model solution, a static
boundary value problem is solved for the representative volume element (RVE) whose size is
significantly smaller than the macro length-scale and the macroscopic wave-length. The ef-
fect of the crack opening rate on the macro cohesive law is taken into account by relating the
material properties of the meso-scale model to the macro crack opening rate. The objectivity
of the model response with respect to the representative volume element size is demonstrated
for wave propagation problems. The model is verified by comparison with a direct numerical
simulation (DNS).

Keywords: Dynamic loading, Homogenization, Multi-scale, Quasi-brittle materials, Repre-
sentative volume element (RVE).

1. INTRODUCTION

Optimal design of quasi-brittle materials is of great interest nowadays for civil and
defense structures. Many of the materials which are used in such engineering structures are
heterogeneous and have more than one length scale. Modeling heterogeneous materials using
a direct numerical simulation (DNS) in which detailed heterogeneities are modeled directly
in the macro-scale can give accurate results but this method needs enormous computational
efforts and is in most cases not practical.

Homogenization-based multi-scale methods are widely used to obtain the macroscopic
behavior of the heterogeneous materials by averaging local-scale properties. The multi-scale
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methods can be analytical or computational. Analytical methods are limited to simple prob-
lems and cannot be applied to more complex structures. Therefore, numerical [3] and compu-
tational homogenization [4,5] methods have received significant attention. In computational
homogenization methods, heterogeneous material is replaced by a homogeneous one with un-
known macroscopic constitutive behavior. Then, a representative volume element (RVE) is
associated to each material point and the constitutive law is obtained by solving a boundary
value problem for the RVE.

Existence of the RVE is a crucial issue in such techniques. A sample volume can be
defined as RVE when homogenized properties do not change significantly with varying RVE
size. When a standard homogenization method is used, in linear and hardening regimes, the
RVE can be defined but in the softening regime a RVE cannot be defined [6].
The existence of a RVE for quasi-brittle materials with random complex heterogeneous struc-
tures is shown in [2], where a failure zone averaging scheme is introduced. In [1], based on
the failure zone averaging scheme, a homogenization model for modeling cohesive crack in
quasi-brittle materials has been developed. Using this scheme, macroscopic cohesive laws
which are independent of RVE size can be obtained from the local-scale with localized defor-
mation.

Wave propagation problems in heterogeneous materials using the multi-scale method
are studied by many researchers. A dispersive wave model for wave propagation in hetero-
geneous materials is developed in [7] based on higher order mathematical homogenization
with multiple spatial and temporal scales. In [8] a multi-scale model for composite materials
under impact loading is developed in which damage is introduced in the model using locally
homogeneously distributed microcracks through a cohesive zone model. In their multi-scale
model, the macroscopic problem is solved dynamically while the local scale is considered a
static problem.

In the present work, the proposed homogenization scheme by Nguyen et. al. [1] is
extended to wave propagation problems. Furthermore, rate effects are added to the model
by relating the material properties of the RVE to the rate of the macroscopic crack opening.
Numerical results are given to show the capability of the model.

2. COMPUTATIONAL HOMOGENIZATION APPROACH

In the multi-scale method, local scale averaged properties are used to obtain macro-
scopic behavior of the heterogeneous material. Figure 1 shows a schematic description of the
classical computational homogenization method. As shown in this figure, the heterogeneous
material is substituted with a homogeneous one. For each point in the macro model with strain
εM , the strain is imposed as a boundary condition on the external boundary of the RVE asso-
ciated to this point. After solving the boundary value problem for the RVE, the corresponding
macroscopic stress σM and tangent moduli CM are obtained.

To use computational homogenization theory, the problem must meet the following
requirements. Firstly, the RVE should exist for the heterogeneous material. The RVE exists
if an increase in size does not change homogenized properties and the sample is large enough
so that the meso-/micro- structure randomness does not affect the homogenized properties.
The second important issue in computational homogenization is the principle of seperation of



Figure 1. Computatinal homogenization scheme.

scales which indicates that the macroscopic characteristic length scale, lM , is assumed to be
much larger than the local-scale length, lm (see figure 1).

The third requirement is the strain averaging theorem which states that the macro-
scopic strain (stress) at any point is defined as the volume average of strain (stress) over the
RVE associated with that point and mathematically can be written as:

εM =
1

|Ωm|

∫
Ωm

εmdΩ σM =
1

|Ωm|

∫
Ωm

σmdΩ (1)

where εM (σM ), εm(σm) and Ωm are macroscopic strain (stress), local-scale strain (stress)
and RVE volume, respectively. Energy consistency in transition of scales is satisfied by the
Hill-Mandel macro-homogeneity principle which states that the macroscopic work rate must
be equal to the volume average of local-scale work rate over the RVE, according to:

σM : ε̇M =
1

|Ωm|

∫
Ωm

σm : ε̇mdΩ (2)

The macro-scale mass density can be defined as:

ρM =
1

|Ωm|

∫
Ωm

ρmdΩ (3)

where ρM and ρm are macro-scale and meso-scale mass densities, respectively.
In wave propagation problems, if the length of the propagating wave at macro-scale

is significantly larger than the meso-scale length, lm, one can neglect wave effects at meso-
scale and it is possible to simplify the meso-scale problem to a quasi-static one. By using this
assumption, it is not possible to model wave dispersion effects. But, in case of low frequencies
in which this simplification will be used, dispersion effects are insignificant.

3. DISCONTINUOUS COMPUTATIONAL HOMOGENIZATION SCHEME

When strain localization occurs in the material, strain and stress homogeneity over the
meso-scale domain is not valid and in such cases the multi-scale solution depends on the size



of the fine scale which means that a RVE cannot be defined. Nguyen et. al. [1] developed an
objective homogenization scheme for such strain localization problem in which stress/strain
averaging and the Hill-Mandel theories are performed over the localization band instead of
the whole domain of the fine scale. In the discontinuous homogenization scheme, at macro-
scale the crack is exhibited using a cohesive zone model in a homogeneous solid. Then, the
traction-separation law for the crack is obtained from the meso-scale model.

3.1. Macro-scale model

The macro-scale model is illustrated in figure 2. Macro cracking is modeled using the
XFEM. In the finite element model, the momentum equation can be written as:

MüM = fext
M − (fBulk

M + fCoh
M ) (4)

where üM represents the macroscopic acceleration vector,M is the mass matrix. fext
M is the

external force vector, fBulk
M and fCoh

M represent the bulk force vector and the cohesive force
vector, respectively and are given as:

fBulk
M =

∫
ΩM

BTσMdΩ fCoh
M =

∫
Γd
M

NT tMdΓ (5)

in which tM is the macro-scale traction andN andB are the matrix of nodal shape functions
and the matrix of derivatives of the shape functions, respectively. The bulk macro-stress can
be computed as:

σM = D0 : εM (6)

The fourth-order tensor D0 is the bulk homogenized tensor which can be computed using a
standard homogenization technique. The macro traction, tM , is obtained from the cohesive
law via:

ṫM = TM
˙[[u]]M (7)

where [[u]]M is the displacement jump for the macro crack and TM is the macro cohesive
tangent. At each time step, the displacement jump is obtained for each integration point on
the crack and the corresponding macro traction, tM , and macro cohesive tangent, TM , are
computed using the discontinuous homogenization scheme from the meso-scale model.

3.2. Meso-scale model

At meso-scale, failure is modeled using the implicit gradient-enhanced damage model
[9]. The stress-strain relation is given as:

σm = (1− ω)D : εm (8)

where ω is the scalar damage variable (0 ≤ ω ≤ 1) and D is a fourth-order tensor which
contains the elastic moduli. The damage evolution law is written as:

ω =

{
0 if κ ≤ κI
1− κ

κI
[1− γ + γexp−β(κ−κI)] if κ > κI

(9)



Figure 2. Macro-scale model.

where γ, β and κI denote residual stress, softening slope and damage threshold, respectively.
κ is a scalar measure of the largest strain ever reached and is defined by loading function f as:

f = ε̄eq − κ (10)

f and κ satisfy the KuhnTucker conditions:

f ≤ 0, κ̇ ≥ 0, f κ̇ = 0 (11)

ε̄eq is the nonlocal equivalent strain which is implicitly related to the local one according to:

ε̄eq − c52 ε̄eq = εeq (12)

In this equation, c is defined as c = 1
2
l2c and lc represents the length scale. The local equivalent

strain is defined as:
εeq =

√
〈ε1〉2 + 〈ε2〉2 (13)

where εi are the principle strains and 〈x〉 means the positive part of x.
The discrete system of equations for meso-scale model can be written as:

fext
m = f int

m (14)

The internal force vector for the meso-scale model can be obtained from f int
m =

∫
Ωm
BTσmdΩ

and fext
m is a function of the macroscopic displacement jump. For time step ti, at each iteration

of the macro-scale model solution, equation (14) is solved for the meso-scale model.

3.3. Macro-meso transition

Figure 3 depicts the discontinuous homogenization scheme. The connection between
macro-scale and meso-scale is given by:

uR(um) = (w− l(um))C0tM + [[u]]M + u0
dam (15)

where uR is the total displacement at the right edge of the RVE. The first term in the RHS
represents the linear displacement and u0

dam is the compatibility displacement. w and l denote



Figure 3. Discontinuous homogenization scheme.

the width of the RVE and the averaged width of the localization band, respectively (figure 3).
Matrix C0 is the projection of compliance tensorD−1

0 on the crack plane and is obtained as:

C0 = ∆TD−1
0 ∆, ∆ =

1 0

0 0

0 1

 (16)

The failure zone averaging scheme is used to compute averaged quantities for the
meso-scale model. It should be noted that in this scheme, the averaged quantities are cal-
culated over the active damaged zone which contains integration points which are dam-
aged and are loading. The active damage zone, Ωd, can be expressed mathematically as
Ωd = {x ∈ Ωm | ω(x) > 0, f(x) = 0}. The meso-scale quantities can be defined through:

l =
| Ωm |

h
, 〈εm〉dam =

1

| Ωd |

∫
Ωd

εmdΩ, udam = 〈εm〉dam · (ln) (17)

where | · | represents the area of the domain and h is the height of the RVE. u0
dam is calculated

at the moment of crack initiation using above equations. By solving the system of equations
(14) and (15), one can find the macroscopic traction, tM , and cohesive tangent, TM . More
details on theoretical and computational aspects can be found in [1,10].

4. NUMERICAL RESULTS

To study wave propagation in strain localization problems, a heterogeneous beam is
subjected to a constant velocity at both ends (figure 4). Tensile waves propagate through the
beam and after superposition of the waves at the center of the beam, the stress at this point
exceeds the tensile strength and a crack initiates. Figure 5 shows the multi-scale model of the
problem. Voided structures with different sizes are chosen as RVE for this problem. It should
be mentioned that the multi-scale scheme is applied only on the crack and the bulk part is
solved using the standard finite element method. The material properties for the RVE and the



bulk material are given in table 1. A constant velocity equal to 0.3 (m/s) is applied at both ends
of the beam. Cohesive laws computed from different RVE sizes, according to the failure zone
averaging scheme, are illustrated in figure 6. It can be observed that the results are objective
with respect to RVE size. In order to verify the multi-scale model, the results are compared
with a DNS model. Figure 7 depicts the DNS model in which the material properties of the
voided part and bulk part are similar to those of the RVE and the bulk part of the multi-scale
model. Averaged stress over active damage zone (similar to the averaged strain in equation
(17)) versus damage opening, udam, for the DNS model and the multi-scale model are shown
in figure 8 which shows good agreement. The difference between the results in elastic branch
is due to the fact that the mesostructure is not present in the multi-scale model before crack
initiation and we do not use averaged properties for the bulk part before crack presence.

The RVE failure mode using the multi-scale model is also compared to that of the
DNS model at time step t=0.0128e (ms) in figure 9. This comparison also demonstrates that
the development of the damage zone for both models is similar.

Figure 4. Benchmark problem.

Figure 5. Multi-scale model and different RVE sizes.

5. RATE-DEPENDENT COHESIVE LAW

There are two sources for rate dependency in concrete materials [11]: (i) the viscoelas-
ticity of the material behavior in the bulk of the structure, (ii) the rate process of the bonds
breakage in the fracture process zone. Both mechanisms are important for concrete but in high
strain rate dynamic loading, the latter is the dominant mechanism which causes the cohesive
law to be rate dependent. Bažant [11,12], by considering fracture as a thermally activated



Table 1. Material properties for bulk material and RVE.

Bulk RVE
E [GPa] 50e9 50e9
ν [−] 0.2 0.2
κI [−] 0.3 8e-5
α [−] 0.99 0.99
β [−] 1500 1500
ρ [kg/m3] 1200 1200
c [m2] 4e-8 4e-8
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Figure 6. Computed cohesive law for different RVE sizes.

Figure 7. DNS model.

phenomenon, derived a rate-dependent softening law. Here, we consider mode I and for the
traction in normal direction x to the crack surface, the rate dependent softening law can be
written as:

txM

(
[[u]]xM ,

˙[[u]]
x

M

)
=

[
1 + c1asinh

(
˙[[u]]
x

M

c0

)]
t0xM (18)

where ˙[[u]]
x

M denotes the macro crack opening rate and t0xM is the traction under static loading
condition. c0 and c1 are material parameters.
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Figure 8. Comparison of averaged stress over failure zone vs. damage opening for multi-scale
model and DNS model.

Figure 9. Comparison of failure modes for multi-scale model and DNS model.

Here, we assume that, when a crack initiates, the strain threshold, κI , in the gradient
damage model which is used for meso-scale model, is dependent on the crack opening rate
through:

κI

(
˙[[u]]
x

M

)
=

[
1 + c1asinh

(
˙[[u]]
x

M

c0

)]
κ0
I (19)

in which κ0
I is the static strain threshold. In order to investigate this assumption, cohesive laws

are computed for various values of κI which are obtained from equation (19) for ˙[[u]]
x

M= 0.0,
0.25, 0.5, 1.0 (m/s). Here, c0 and c1 are taken equal to 0.8 and 0.5, respectively. In figure 10,
these results are shown with solid lines. The dashed lines depict the static cohesive law, t0xM ,
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Figure 10. Traction-macro crack opening for various κI .

multiplied by
κI( ˙[[u]]

x

M)
κ0I

. From figure 10, it can be concluded that:

txM

(
[[u]]xM ,

˙[[u]]
x

M

)
'
κI

(
˙[[u]]
x

M

)
κ0
I

t0xM or
txM

(
[[u]]xM ,

˙[[u]]
x

M

)
t0xM

'
κI

(
˙[[u]]
x

M

)
κ0
I

(20)

The above relation shows that equations (18) and (19) are almost equivalent. So, in
order to capture rate dependency effects in the macro-scale cohesive law, one can insert rate
effects in the meso-scale model using equation (19). In the solution procedure, at time step ti,
for a certain crack in the macro-scale model, the crack opening rate is calculated and then the
strain threshold for the RVE corresponding to the integration points on this crack is updated
using equation (19). To obtain a more accurate result, the problem is solved again for time
step ti with updated values for strain threshold, κI .

The problem described in figure 4 is now considered for a crack with a rate-dependent
cohesive law. The multi-scale problem is solved for different loading rates. Figure 11 illus-
trates the computed cohesive laws for various RVE sizes at different loading rates. As it can
be observed in this figure, for a given crack opening, the traction increases with loading rate.
It is also obvious that the obtained softening laws are objective with respect to the RVE size.

In order to verify the model, a DNS model is presented as before. In the DNS model,
the relative velocity values between RHS and LHS of the voided part (parts shown with red
lines in figure 7), after damage initiation, is taken as the crack opening rate. A comparison
of crack opening rate in multi-scale model and DNS model for V0=0.3 (m/s) is shown in fig-
ure 12. The averaged stress over the active damage zone versus damage opening is given in
figure 13 for the multi-scale and the DNS model at various loading rates. It can be observed
that for lower velocities the results are in good agreement. But, at higher loading rates, the
curve obtained for the DNS model is above the multi-scale curve and the difference between
these two curves increases with loading rate. This difference stems from the inertia forces
around the damaged zone in the DNS model. In the multi-scale model, as discussed before,
the inertia forces at meso-scale are neglected in the present work and as a result the effects of
inertia forces cannot be captured. Nevertheless, even at high rates, the multi-scale model is



capable of properly calculating the material response. To illustrate this fact, the density of the
voided part in the DNS model is assumed to be very small so that the inertia forces around the
damaged zone are negligible. Averaged stress-damage opening curves are shown for V0=1.0
(m/s) in figure 14. It can be observed that the curves for the DNS model and the multi scale
model lie on top of each other when the inertia forces are neglected in the voided part.
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Figure 11. Computed cohesive laws for different RVE size at various loading rates.
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6. CONCLUSION

For the modeling of wave propagation in heterogeneous materials using multi-scale
methods, one can perform a quasi-static analysis at lower-scale as long as the length of the
macroscopic propagating wave is significantly larger than the lower-scale length. In case of
strain localization problems where standard homogenization methods cannot be used due to
the dependence of the results on RVE size, the discontinious homogenization scheme, based
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Figure 14. Inertia force effect on averaged stress-damage opening curve.

on a failure zone averaging technique, is applied to obtain objective results with respect to the
RVE size.

Good agreement between results obtained from the multi-scale model and the DNS
model, not only certifies the capability of the discontinuous homogenization method but also
supports the idea of neglecting wave propagation at the lower-scale problem.

Rate effects due to bond breakage in the fracture process zone can also be modeled in
the multi-scale scheme by using a rate dependent material model at meso-scale.
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