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Abstract. Current design loops for shape optimizations allows significant improvements in
relation to the functions that need to be optimized, and are widely used in industry. Among
these approaches, parametric shape optimization allows rapid enhancement of the shape, on
the condition that the design space is confined enough in order to be explored within a rea-
sonable computational time.

This paper introduces a CAD-based large-scale shape optimization method for prod-
ucts requiring significant computational cost, for instance in multiphysics simulations. A
two-step scheme is used to achieve the intended results. The first step is to build a base of
meta-parameters from an initial learning set. The number of meta-parameters is defined ac-
cording to the final computational cost that is intended.

These meta-parameters are generated by an artificial neural network pre-trained on a
sample set of simulations. The meta-parameters represent a combination of parameters hav-
ing a similar influence towards the variation of objective functions.

Subsequently, the previous meta-parameters are used to rapidly reach a limited design
space close to the optimum. To prove the efficiency and accuracy of the method, the workflow
schedule is applied on shape optimization of a car body. The objective is to optimize both the
side force coefficient and the yaw moment coefficient, all while taking into account the drag
coefficient.

Keywords: Shape optimization, Parameterization, Multiphysics.

1. INTRODUCTION

Within the framework of mechanical products, designers aim at finding an optimal
shape with regard to a set of multiphysics constraints such as aerodynamics, aeroacoustics,
thermo-mechanics, aesthetics, etc.

The development process in CFD today is based exclusively using CAD models. Cur-
rent design loops begin with the drafting of technical specifications, followed by the definition
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of the available volume for the design space. A pre-study is then conducted to define the archi-
tecture of the part. The next step is to create the initial geometric model: the working drawing
is evaluated through numerical evaluations with regard to each engineering field involved in
the study. The analysis of the results identifies the necessary changes to enhance the initial
model. In the end, a design that fulfills most requirements is adopted, completing the design
loop.

During the research of the optimal shape, this loop is repeated sequentially several
times to cover a larger design space. The optimum obtained during this process corresponds
to an overall compromise with regards to the requirements. Advanced methods try to use an
optimization on the CAD parameters of the design that allows enhancing the shape of the
geometry, with the exception that the design space should be confined enough in order to be
explored within a reasonable computational time.

To cover a design space as large as possible, i.e. the one offering the most freedom, it
is necessary to have an extremely flexible geometry. To achieve this, it is worth multiplying
the geometric parameters that define the shape. The multiplication of parameters increases
the effort needed to determine the influence that variation of each parameters have on design
sensitivity. This limitation makes it very difficult to design a generic CAD model that adheres
to a large neighborhood of solutions, all while restricting the number of parameters.

In an industrial context, due to the lack of parameterization approaches, the complexity
of large-scale parametric optimizations and the short design lead-time, the roll-out methods
in optimization face difficulties.

2. STATE OF THE ART

Within the framework of mechanical part design, shape optimization is usually used
to reduce design time and provide a reliable and efficient powerful solution to avoid expensive
experiments. A wide range of approaches are available to perform such optimizations. Ac-
cording to [1, 2], these approaches can be classified into three categories: shape optimization,
topology optimization and parametric optimization. Each kind of shape optimization has its
pros and cons that are summarized in table 1.

The ability of an optimization method to provide an innovative and efficient design
depends on the initial geometric parameterization. Both shape and topologic parameteriza-
tions provide a larger design space than parametric optimization (sizing optimization) but this
is done to the detriment of the computational resources required. On the other hand, increas-
ing the number of parameters in a geometric optimization (CAD) involves the increase of the
design space, which entails an increase in the number of optimization loops.

The parameterization for shape optimization relies on the displacement of the initial
grid nodes [3, 4]. Thus, the optimal shape design is given by a mesh deformation of the
initial part. This parameterization allows a wide domain of exploration that depends on the
initial design, the initial discretization of the part and the allowed range of displacement for
the nodes. The underlying idea of topology optimization is to find the optimal density dis-
tribution in an initial design space [5]. Since the parameters of this method are the density
of each element, the topologic parameterization depends on the initial discretization of the
design space. This space has no physical meaning. Parametric optimization (CAD) is based



on a set of dimensions (radii, lengths...) which allows changes to the geometry thanks to a
design table [6].

Table 1. Comparison between different types of shape optimization
Optimisation

type
Parameters Number of

parameters
Design
space

Topologic
changes

Manufacturing
process

Shape Nodes
position

− +++ ++ +

Topology Elements
density

− +++ +++ −

Parametric
(CAD)

Set of
dimensions

+ + + +++

Another important aspect for parameterization is its ability to integrate a given man-
ufacturing process [7, 8, 9, 4]. A solution provided by a shape optimization has to be post-
processed in order to meet manufacturing constraints. The post-processing step generally
deteriorates the performance of the theoretical solution since it had not been taken into ac-
count during parameterization and optimization steps. A solution provided by a parametric
optimization is disposed to respect the manufacturing process since it is directly implemented
into the geometry parameterization.

The purpose of this paper is to present a framework for shape optimization, which im-
plements a parametric optimization (CAD) without limiting the number of geometric parame-
ters. We propose to master the amount of necessary evaluations by the use of meta-parameters,
without degrading the quality of the convergence to an optimal design.

3. DESCRIPTION OF THE PROPOSED WORKFLOW SCHEDULE

The proposed method is based on a CAD model, developed from a dead geometry
(stemmed from a neutral format such as IGES, STEP). The CAD model meets a hierarchical
construction and allows parameterizing rapidly a dead geometry. It includes manufacturing
constraints. Parameter ranges are defined according to engineering rules. There is no re-
striction regarding the number of parameters n. From this model, different configurations are
chosen by using design of experiments. An automatic process generates k-geometries.

Secondly, a model of simulation is defined for each engineering field. These mod-
els are fully automated and receive the previous k-geometries as inputs. The automation
of the computational workflow schedule includes the mesh generation, the physical model,
its calculation and the post-processing. This allows making the most of high performance
computing: parallel simulations are run automatically for each physics continuum. Thus, a
server is exploited to its full potential without any break in continuity. The aim is to enrich
a database as early as possible, from which the base of meta-parameters will be built. The
latter allow circumventing the difficulties of large-scale optimizations because the number of
meta-parameters m is significantly below the number of geometric parameters n. So, the con-
vergence to the optimum is slightly degraded.

Then, meta-parameters are used in design of experiments. Additional simulations are
run, so the Pareto front is hence reached and fully populated. Last, the design team is able



to choose the Pareto-optimal with regards to requirements, namely the chosen optimal shape
cannot improve a performance while deteriorating another one. Figure 1 summarizes the
workflow schedule.

Figure 1. Block diagram of the workflow schedule.

3.1. Description of an industrial case

The proposed workflow schedule is applied to an industrial case. We focus on opti-
mizing the external shape of a vehicle with respect to aerodynamic performance. This opti-
mization is particularly time consuming: as a first step, a parametric model that mimics the
design spirit needs to be created, i.e. it should respect the rays of light. As a matter of fact,
the distinctive feature lines of a vehicle has to be preserved. Only modifications that mimic
the design are allowed and these should increase the aerodynamic performance. After an
optimization of the shape, we should be able to recognize the original design of the model
(shape of the vehicle as envisioned) without any difficulty. Moreover, the CAD model should
be stable while generating geometries from a design table; secondly, we need to be able to
exploit the number of geometric parameters (hundreds). Influential physical parameters for
the performances with headwind conditions are already known and engineering rules were
created so that new designs meet these requirements in the early sketches. These engineering
rules were correlated during wind tunnel experiments and are used for instance to define the
profile of the rear quarter panels. What is more, they incorporate manufacturing constraints.



To provide more security and reduce the carbon footprint of vehicles, influential pa-
rameters with crosswind conditions need to be identified. The objective is to re-use the phys-
ical parameters coming from headwind experiments to characterize performances with cross-
wind conditions, then to optimize the external shape of the vehicle for performances with
crosswind conditions without deteriorating ones with headwind conditions. The equations are
for headwind conditions the drag coefficient CD (cf. eq. (1)), and in particular the coefficient
SCD (cf. eq. (2)) and for crosswind conditions the side force coefficient Cy (cf. eq. (3)) and
the yaw moment coefficient Cn (cf. eq. (4)) [10].

Fx =
1

2
· ρ · V 2 · S · Cx (1)

SCD = S · CD (2)

Fy =
1

2
· ρ · V 2 · S · Cy (3)

N =
1

2
· ρ · V 2 · S · L · Cn (4)

with:

• S: frontal area

• L: length of vehicle

• ρ: density of the ambient air

• V : road speed

Between each design evolution during the development of a vehicle, the time allotted
to evaluate the aerodynamic potential and to propose improvements of the shape is restricted
to less than 3 weeks.

3.2. Development of the method

3.2.1 Parameterized geometric model of the vehicle

The starting point is a file with a neutral format (such as IGES or STEP) to which
no specific information is attached. The first step of the method is to create a parameterized
model of the body inspired by the engineering rules established with headwind conditions.
The model must be as close as possible from the dead geometry in order to be validated by
the wind tunnel experiments conducted previously (cf. figure 2).



Figure 2. Comparison between the dead geometry (sand color) and the parameterized geom-
etry (orange color).

This model is defined by (100) physical parameters. In order to get the best possible
reconstruction rate when generating new geometries, the model adopts a hierarchical and
ordered construction that ensures stability while generating geometries from a design table.
Initially, all physical parameters related to headwind conditions are integrated. Then, the
model is enriched with other parameters in order to ensure both a maximum flexibility and
scan a large design space. There is no restriction regarding the number of parameters. The
validity of geometries in terms of physical sense is ensured by rules defined on and between
parameters: parameter ranges are defined according to engineering rules and manufacturing
constraints. Finally, all parameters are listed in a design table with their physical senses (angle
of the windshield, wheelbase, overhang...) (cf. figure 3).

(a) Decrease of the overall height. (b) Increase of the rear overhang.
Figure 3. Variation of parameters.

3.2.2 Geometric model of the wind tunnel

In order to compare numerical results with experimental results, the flow of the empty
wind tunnel was measured to develop a numerical model able to reflect more accurately the
real geometry.

The numerical model incorporates the position of the vehicle for crosswind conditions:
the vehicle is rotated 20 degrees in the counter-clockwise.

3.2.3 Simulation model

This second step aims at building an automated simulation model which takes the ge-
ometries of both the wind tunnel and the vehicle as inputs and gives the values of the drag



coefficient, the yaw moment coefficient, etc. as outputs. For each simulation, only the geom-
etry of the vehicle is re-imported every time.

The geometries generated by the parameterized model revolve in a solution space
round the dead geometry. Thus, the dead geometry is taken as reference. The mesh and
refinement volumes are defined by this geometry. Refinement volumes must cover all ge-
ometries and are positioned to capture all separations of the boundary layer flow that may
occur, particularly around the hood, the mirrors, the underbody and the rear (cf. figure 4).
Mesh sizes are defined according to the existing engineering rules. A trimmer model is used,
mostly made of hexahedral elements, with a prism layer mesher. Finally, the mesh contains
25 million elements.

(a) Refinement volumes.

(b) Wake refinement volume.
Figure 4. Position of the refinement volumes.

In order to have the same conditions as the experiments, it is assumed that the ground
scrolls and that the air inlets of the vehicle are clogged.

In addition, it is necessary to capture the sensitivity of the measured physical quantities
(SCD, Cy, Cn) due to a geometric modification. These sensitivities are in the range of some
thousandth of m2 for the SCD. Thus, the computer code should be enough predicative to
validate the variations of the physical quantities. So, we initially use a steady-state RANS
method with a K-Omega turbulence model and then an unsteady DES method [11].



3.2.4 Creation of meta-parameters

The meta-parameterization is achieved by the use of an artificial neural network. Its
main properties are the selection of variables. The input vector of the artificial neural network
is made of geometric parameters. The network consists of a succession of layers whose num-
ber is previously defined by the number of meta-parameters wanted in the end. The number
of meta-parameters is directly related to the time that we have for the study. Each layer (i) is
composed of ni neurons, whose inputs are the ni−1 neurons of the preceding layer. The arti-
ficial neural network is trained on a learning set, constituted in our case by the k-simulations
conducted previously. The last layer corresponds to the meta-parameters [12].

Figure 5. Artificial Neural Network.

Each meta-parameter represents a combination of the geometric parameters whose in-
fluence is similar towards the physical simulations φi. The design space described by the geo-
metric parameters is hence reduced intelligently, browsing an interesting subspace to quickly
reach the optimum.

4. RESULTS DISCUSSION

4.1. Number of parameters

As mentioned earlier, the aim is to design a generic CAD model that adheres to a large
neighborhood of solutions, so it should be flexible. The CAD model has about a hundred
geometric parameters that characterize the external shape of the vehicle. The number of meta-
parameters is defined according to the time allotted to deliver the results. The number of layers
was set to four so as to keep about 20% of the number of the initial parameters.

4.2. Design of experiments to create the learning base

The issue concerns the choice of the k-geometries for the learning base. Some calcu-
lation points should be chosen in a space of n parameters. Hence, a supersaturated design of
experiments is used: the criteria chosen for the algorithm is the minimization of the maximum
of the absolute value of the correlation coefficient over all possible pairs in a linear model.



4.3. Computational time

The entire optimization loop is automated, in order to make the most of high perfor-
mance computing resources available. Each simulation is run on 64 cores and takes about
thirty hours for completion; ten simulations are run in parallel.

A complete design of experiments would need about 2100 calculations, which is impos-
sible with current resources. Similarly, a fractional orthogonal plan would be time-consuming
compared to the theoretical gains (few thousandths for each performance).

Our method provides the same gains in a fortnight. The number of meta-parameters is
adjusted according to the time allotted to the study. With a limited number of meta-parameters,
the initial problem is brought back to a usual problem on which conventional methods can be
applied (kriging, etc.).

4.4. Results of simulations

In order to compare numerical results with experimental results, physical quantities
are measured in the same coordinate system as the ones of the wind tunnels. Thus, forces
applied on the vehicle are measured in the vehicle coordinate system (indeed, the weighing
machine turns simultaneously with the vehicle) and tomographies are taken in the wind tunnel
coordinate system.



(a) Front view.

(b) Top view.

(c) Side view.

(d) Scale.
Figure 6. Streamlines of the velocity.



(a) Top view.

(b) Scale.
Figure 7. Dimensionless pressure coefficient Cp (cf. eq. (5)).

Cp =
p− p∞

1
2
· ρ · V 2

∞
(5)

with:

• p∞: static pressure

• V∞: free-stream velocity

(a) Rear view.

(b) Scale.
Figure 8. Tomography at the rear of the vehicle.

The comparison of results with the experimental data gives an accuracy of the com-
puter code in the range of 2%, that is to say about 0,010 m2 for SCD. This difference is
reasonable knowing that the repeatability of a same experiment in the wind tunnel is in the
range of ±0,003 m2 for the SCD.

These results are used to reach and to populate the Pareto front. The optimum within
the meaning of Pareto gives a gain for both SCD and Cn in the range of some tens of thou-
sandths.



5. CONCLUSION

We have presented in this paper a shape optimization method for products with a
short design lead-time in an industrial context. New geometries are generated thanks to a
parameterized model, without any restriction regarding the number of parameters that can be
used. Then multiphysics simulations are run. Both CAD parameters and simulation results
are used in an artificial neural network to create a limited set of meta-parameters. The latter
are used in design of experiments. The Pareto front is reached and fully populated, enabling
the design team to make better and faster choices with regards to design constraints. This
method, breaking away from the usual industrial process, was applied on shape optimization
of a car body. The objective was to optimize performances with crosswind conditions without
deteriorating performances with headwind conditions. Last, the results were compared with
ones obtained by experiments in order to prove the efficiency and accuracy of the method.
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