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Abstract. It is widely known that compressible flow solvers usually behave badly in terms of
both accuracy and convergence rate at the incompressible limit. The present paper focuses on
presenting the fundamentals of low-speed preconditioning techniques in a detailed approach,
with particular emphasis on the Euler equations in two-dimensional generalized coordinates.
Issues related to eigenvalue scaling, local time-stepping correction, artificial dissipation ad-
justment and boundary conditions implementation are discussed. The computational tests are
conducted using a finite difference code, which is constructed for structured grids in general
curvilinear coordinates. Spatial discretization uses central differences plus added artificial dis-
sipation. The time march can be performed with either explicit or implicit time discretization
methods. Although the investigation is performed with a specific code, the conclusions reached
in the process of the present research are quite general and, therefore, useful for CFD practition-
ers regardless of the type of method they work with. Several airfoil simulations are addressed
in order to demonstrate the benefits or even the necessity of using low-speed preconditioning
techniques in the context of aerospace applications.
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1. INTRODUCTION

Historically, once academia began to recognize difficulties in simulating low-speed
flows with codes based on general compressible formulations, there was an active effort in
devising solvers based directly on the incompressible flow equations. In return of such effort,
successful techniques were developed for the simulation of incompressible flows, as the well
known pressure-based schemes [6] or the pseudo-compressibility methods [3]. On the other
hand, low-speed preconditioning techniques were created not only because it is more practical
to have a single code capable of dealing with both compressible and incompressible regimes,
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instead of separately maintaining different dedicated codes, but mainly because there is a vari-
ety of situations in which only a solver capable of simultaneously handling well both regimes
can give satisfactory results, such as in Ref. [1]:

• high-speed flows with large embedded regions of low velocity, e.g., subsonic flows up-
stream of a strongly converging nozzle;

• low-speed flows that are compressible due to density changes induced by heat sources,
e.g., surface heat transfer and combustion simulations;

• flows where compressible and incompressible regimes occur side by side and interact
freely, e.g., propulsion and high-lift configurations.

The simplest way to understand the need for preconditioning is perhaps by noticing the
disparity between convection and acoustic speeds at the incompressible limit. Considering the
one-dimensional Euler equations, one would have the set of eigenvalues {u, u+a, u−a}, where
u and a are the particle and sound speeds, respectively. The so called condition number (CN ),
defined as the ratio between the highest eigenvalue (in absolute value) and the lowest eigenvalue
(in absolute value), may be understood as a measure of time step restriction, or stiffness, when
considering the eigenvalues of the Jacobian matrix of a hyperbolic system of equations to be
numerically simulated [1]. For the subsonic regime, where u − a < 0 < u + a, the condition
number can be written as a function of the local Mach number (M ) by

CN =
max{|u| , |u+ a| , |u− a|}
min{|u| , |u+ a| , |u− a|}

=
|u|+ a

|u|
=
M + 1

M
. (1)

Once limM→0CN = +∞, common flow solvers present serious time step restrictions
at low-speed regions and, consequently, overall convergence problems. The approach in low-
speed preconditioning techniques consists, essentially, in altering the original partial differential
equations in order to have more appropriate eigenvalues, therefore avoiding, or at least delay-
ing, the condition number divergence at the incompressible limit. This way, codes based on
general compressible formulations become capable of simulating nearly incompressible flows
with relative easiness.

At the moment, there is a pacified understanding among researchers that precondition-
ing methods consist of successful and well established techniques for dealing with simula-
tions involving low-speed flows. Despite of that, one can have great difficulty in finding an
introductory-level contribution that discuss the physical essence common to all of the precondi-
tioning approaches as well as the basic implementation issues in a detailed manner. The present
study comes in to address such difficulty and basically intends to popularize and make low-
speed preconditioning techniques better understood among general CFD practitioners. To that
end, the two-dimensional Euler equations of gas dynamics are solved using the classical finite-
difference discretization in generalized curvilinear coordinates, although the discussed concepts
and principles have much wider applicability.

This paper is organized as follows. Section 2 reviews the two-dimensional Euler equa-
tions in Cartesian and curvilinear coordinates, introduces the preconditioned formulation and



discusses how the eigenvalues are modified by the preconditioning. Section 3 addresses im-
portant details such as how to alter the CFL-based local time step in order to obtain maximum
efficiency from the preconditioning technique, as well as issues related to artificial dissipation
adjustment and boundary conditions implementation. In section 4, several airfoil simulations
are analyzed in order to demonstrate the benefits or even the necessity of using low-speed pre-
conditioning techniques in the context of aerospace applications.

2. PRECONDITIONING THE EULER EQUATIONS

2.1. The General Compressible Formulation

In conservative form, the two-dimensional Euler equations in Cartesian coordinates are
given by

∂Q

∂t
+
∂Fx
∂x

+
∂Fy
∂y

= 0 , (2)

whereQ = [ρ, ρu, ρv, E]T is the vector of conserved variables and Fx = [ρu, ρu2+p, ρuv, (E+

p)u]T and Fy = [ρv, ρvu, ρv2 + p, (E + p)v]T are the inviscid flux vectors. Moreover, ρ stands
for density, u and v are the Cartesian components of the velocity vector, E = ρ[ei+(u2+v2)/2]

is the total energy per unit volume, and ei is the specific internal energy. The static pressure p
is obtained using the equation of state for a perfect gas, namely, p = ρ(γ − 1)ei, where γ is the
fluid ratio of specific heats, which assumes the value γ = 7/5 for the air.

For codes based on structured grids, the Euler equations are re-written in generalized
curvilinear coordinates as

∂Q̄

∂t
+
∂F̄ξ
∂ξ

+
∂F̄η
∂η

= 0 , (3)

where Q̄ = J−1Q, F̄ξ = J−1(ξxFx + ξyFy), F̄η = J−1(ηxFx + ηyFy), and J−1 = xξyη − xηyξ
is the reciprocal value of the transformation Jacobian. The metric terms composing the flux
vectors can be calculated through the identities [4][

ξx ξy
ηx ηy

]
=

[
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

]
= J

[
yη −xη
−yξ xξ

]
= J

[
∂y/∂η −∂x/∂η
−∂y/∂ξ ∂x/∂ξ

]
. (4)

As will be seen in the following sections, it is convenient, for preconditioning purposes,
to work with the Euler equations written in terms of the vector of primitive variables Z =

[p, u, v, ei]
T , such that

∂Q̄

∂t
=

∂Q̄

∂Z̄

∂Z̄

∂t
=

∂Q

∂Z

∂Z̄

∂t
, (5)

∂F̄ξ
∂ξ

=

(
ξx
∂Fx
∂Z

+ ξy
∂Fy
∂Z

)
∂Z̄

∂ξ
= A

∂Z̄

∂ξ
, (6)

∂F̄η
∂η

=

(
ηx
∂Fx
∂Z

+ ηy
∂Fy
∂Z

)
∂Z̄

∂η
= B

∂Z̄

∂η
. (7)



Naturally, Z̄ = J−1Z, A = (∂Fx/∂Z)ξx + (∂Fy/∂Z)ξy and B = (∂Fx/∂Z)ηx + (∂Fy/∂Z)ηy.
Furthermore, the Jacobian matrices ∂Q/∂Z, ∂Fx/∂Z and ∂Fy/∂Z are given explicitly by

∂Q

∂Z
=


1/[(γ − 1)ei] 0 0 −ρ/ei
u/[(γ − 1)ei] ρ 0 −ρu/ei
v/[(γ − 1)ei] 0 ρ −ρv/ei
1

(γ−1)

(
1 + u2+v2

2ei

)
ρu ρv −ρ(u2+v2)

2ei

 , (8)

∂Fx
∂Z

=


u/[(γ − 1)ei] ρ 0 −ρu/ei

1 + u2/[(γ − 1)ei] 2ρu 0 −ρu2/ei
1 + uv/[(γ − 1)ei] ρv ρu −ρuv/ei
u

(γ−1)

(
γ + u2+v2

2ei

)
ρ
(
γei + 3u2+v2

2

)
ρuv −ρu(u2+v2)

2ei

 , (9)

∂Fy
∂Z

=


v/[(γ − 1)ei] 0 ρ −ρv/ei

1 + vu/[(γ − 1)ei] ρv ρu −ρvu/ei
1 + v2/[(γ − 1)ei] 0 2ρv −ρv2/ei
v

(γ−1)

(
γ + u2+v2

2ei

)
ρvu ρ

(
γei + u2+3v2

2

)
−ρv(u2+v2)

2ei

 . (10)

Therefore, the Euler equations in general curvilinear coordinates can be rewritten as

∂Q

∂Z

∂Z̄

∂t
+ A

∂Z̄

∂ξ
+B

∂Z̄

∂η
= 0 , (11)

where it should be noted that absolutely no preconditioning was applied up to this point. In order
to obtain the eigenvalues associated with Eq. (11), it should be pre-multiplied by (∂Q/∂Z)−1,
which gives

∂Z̄

∂t
+Mξ

∂Z̄

∂ξ
+Mη

∂Z̄

∂η
= 0 , (12)

where

Mξ =

(
∂Q

∂Z

)−1
A , (13)

Mη =

(
∂Q

∂Z

)−1
B , (14)

whose sets of eigenvalues are the usual (curvilinear) ones, namely,

λ(Mξ) =
{
U,U, U ± a

(
ξ2x + ξ2y

)1/2} , (15)

λ(Mη) =
{
V, V, V ± a

(
η2x + η2y

)1/2} , (16)

where a = (γp/ρ)1/2 is the speed of sound and U = uξx + vξy and V = uηx + vηy are the
well-known contravariant velocity components [4].



2.2. Introducing the Preconditioning Matrix

Different preconditioning methods are obtained depending on how the eigenvalues are
modified. The present work follows the technique introduced in Ref. [9], which was found to
perform very well for a diversity of flow cases. The main idea is to multiply the first column of
the matrix ∂Q/∂Z by a 1/ε factor, which can be incorporated into the Γ matrix, given by

Γ =


1/[ε(γ − 1)ei] 0 0 −ρ/ei
u/[ε(γ − 1)ei] ρ 0 −ρu/ei
v/[ε(γ − 1)ei] 0 ρ −ρv/ei
1

ε(γ−1)

(
1 + u2+v2

2ei

)
ρu ρv −ρ(u2+v2)

2ei

 . (17)

Thus, Eq. (11), after preconditioning, becomes

Γ
∂Z̄

∂t
+ A

∂Z̄

∂ξ
+B

∂Z̄

∂η
= 0 . (18)

In order to obtain the eigenvalues associated with Eq. (18), it should be premultiplied
by Γ−1, which gives

∂Z̄

∂t
+Mpc

ξ

∂Z̄

∂ξ
+Mpc

η

∂Z̄

∂η
= 0 . (19)

The new matrices are defined as
Mpc

ξ = Γ−1A , (20)

Mpc
η = Γ−1B , (21)

whose sets of preconditioned eigenvalues are

λ(Mpc
ξ ) =

{
U,U,

1

2

[
U(1 + ε)±

[
U2(1− ε)2 + 4εa2(ξ2x + ξ2y)

]1/2]} , (22)

λ(Mpc
ξ ) =

{
V, V,

1

2

[
V (1 + ε)±

[
V 2(1− ε)2 + 4εa2(η2x + η2y)

]1/2]} . (23)

The preconditioned eigenvalues return the original ones as ε→ 1.

It is now important to consider the effect of preconditioning in the steady-state solution
of the modified equation. For this sake, Eq. (18) can be written as

∂Z̄

∂t
= Γ−1R, (24)

where R stands for the residue of the Euler equations which, recalling Eqs. (6) and (7), is given
by

R = −
(
A
∂Z̄

∂ξ
+B

∂Z̄

∂η

)
= −

(
∂F̄ξ
∂ξ

+
∂F̄η
∂η

)
. (25)

This term is, naturally, equal to zero when the steady-state solution is reached by means of
the preconditioned formulation, as indicated in Eq. (24). Therefore, in both formulations, i.e.,
original or preconditioned, the same result is obtained at the steady state.



Finally, Eq. (24) can also be solved for the vector of the conserved variables through Eq.
(5), which gives

∂Q̄

∂t
= MpcR , (26)

where Mpc = (∂Q/∂Z) Γ−1 is called the preconditioning matrix in the present study. This
matrix is given explicitly by

Mpc = (ε− 1)


1
ε−1 + u2+v2

2ei
−u/ei −v/ei 1/ei

u(u2 + v2)/(2ei)
1
ε−1 −

u2

ei
−vu/ei u/ei

v(u2 + v2)/(2ei) −uv/ei 1
ε−1 −

v2

ei
v/ei

(2ei+u
2+v2)(u2+v2)

4ei
−u(2ei+u

2+v2)
2ei

−v(2ei+u
2+v2)

2ei

ε
ε−1 + u2+v2

2ei

 . (27)

It is worth noting that Eq. (26) makes very clear that, even though the steady-state solution of
the preconditioned equation is precisely the same of the original one, the intermediate states are
not, since the preconditioning matrix does alter the coherence of the temporal evolution. Hence,
preconditioning techniques alone are of no use when there is interest in transient states or when
simulating unsteady flows. Fortunately, preconditioning techniques are easily extendable to
unsteady flow applications in conjunction with dual time stepping algorithms.

2.3. Analyzing the Eigenvalue Scaling

Up to this point, no definition was given for the factor ε. In order to better visualize
how this parameter affect the eigenvalues, it is useful to consider once again (as in section 1)
the one-dimensional Euler equations in Cartesian components. The eigenvalues obtained by
preconditioning such equations would be

λ(Mpc) =

{
u,

1

2

[
u(1 + ε)±

[
u2(1− ε)2 + 4εa2

]1/2]} . (28)

The main strategy is to define ε as a function of the Mach number in order to maintain
the condition number ”well behaved” in low-speed flow regions. This work follows the simple
suggestion of Ref. [8], where

ε = min
{

1,max
{
M2,M2

∞
}}

, (29)

being M the local Mach number (since the preconditioning matrix has to be evaluated at each
grid node when performing a numerical simulation) and M∞ is a reference free-stream Mach
number value (for external airfoil flows of interest here, M∞ is the prescribed Mach number at
infinity).

Figures 1 to 4 illustrate how the set of eigenvalues in Eq. (28) behaves as function of
the local Mach number M for different values of the free-stream Mach number M∞ when ap-
proaching the incompressible limit. In such figures, each color is associated with one eigenvalue
(u+ a in blue, u in green and u− a in red). The condition number CN is given in black. Also,
curves shown with “empty dots” refers to the original eigenvalues and curves with “full dots”
refers to the preconditioned ones.



Figure 1. Eigenvalues and condition number analysis for M∞ = 0.3.

Figure 2. Eigenvalues and condition number analysis for M∞ = 0.2.



Figure 3. Eigenvalues and condition number analysis for M∞ = 0.1.

Figure 4. Eigenvalues and condition number analysis for M∞ = 0.05.



As can be seen in figures 1 to 4, the original and preconditioned eigenvalues coincides
if M > 1. For M = 1, a well-known CN divergence is observed since the lowest eigenvalue (in
absolute value) approaches zero. Such divergence is not critical for most flow cases and is not
addressed here. The reader is referred to Ref. [2] and references therein for further discussions.

For subsonic cases, figures 1 to 4 show effective difference between the original and
preconditioned eigenvalues, but such difference becomes effective for the condition number
only when M < M∞, precisely where a discontinuous change of inclination can be noted in the
curves associated with the preconditioned eigenvalues. Clearly, the preconditioned condition
number shows better behavior in terms of divergence when compared with the original condition
number, effect caused by the clustering of eigenvalues around the “central” one, which is not
modified by the preconditioning and goes to zero at the incompressible limit, resulting in a
bounded ratio of eigenvalues.

It is also important to point out that the divergence of the preconditioned condition
number is delayed appropriately with decreasing M∞, assuring that the stiffness problem is
properly bypassed, as expected of a good low-speed preconditioning method.

3. HANDLING IMPORTANT DETAILS

3.1. Adjusting the CFL-Based Time Step Restriction

Numerical experiments show that if the same constant, or fixed, time step is used to
simulate a given flow case, the preconditioned formulation will be less efficient in terms of
convergence rate than the original formulation, and this difficulty becomes worse with decreas-
ing Mach number. Such assertion sounds contradictory since the preconditioning main purpose
is obviously the gain in terms of convergence rate, specifically when dealing with low-speed
flows.

In order to understand such problem, it is useful to consider the classical shock-tube
problem [7]. In such problem, the temporal evolution happens through the traffic of informa-
tion carried by shock and expansion waves (and also by the contact discontinuity) which are
associated with the standard set of eigenvalues {u, u+ a, u− a}. Essentially, the information
speed is directly related with the magnitude of the problem’s eigenvalues. The fact is that
such concepts can be extended naturally for general numerical flow simulations since, begin-
ning from a given initial condition, information waves transmit modifications on the physical
proprieties during convergence until a steady-state is achieved.

As seen if figures 1 to 4, the magnitude of the preconditioned eigenvalues is very lit-
tle (especially at the incompressible limit) when compared with the original ones, and that is
the reason why, when using a same constant/fixed time step, one gets slower convergence for
the preconditioned formulation. Such disadvantage, however, comes from the same root that
makes low-speed preconditioning techniques so efficient for low-speed flows, namely, the clus-
tering of eigenvalues. The explanation is that the preconditioned system of equations admits a
much larger time step (at the limit of numerical divergence) than the original system of equa-
tions, since the original eigenvalues easily extrapolates the boundaries of the stability envelope



(having in mind constant/fixed time-stepping algorithms) because of their magnitude disparity.
Therefore, the effectiveness of preconditioning consists essentially in allowing larger numerical
time steps. The simplest way to explore such capacity is by using a CFL-based preconditioned
local time step.

The alteration in the CFL-based time step is straightforward and basically consists in
using the preconditioned eigenvalues instead of the original ones. For the one-dimensional
Euler equations with no preconditioning, a typical expression for the time step based on the
CFL number would be

∆t =
CFL
|u|+ a

∆x . (30)

For the preconditioned equations, the eigenvalues in (28) would be used instead, giving

∆t =
CFL

1
2

[
|u| (1 + ε) + [u2(1− ε)2 + 4εa2]1/2

] ∆x . (31)

Now, for the bi-dimensional formulation (in curvilinear coordinates) with no precondi-
tioning, a typical CFL-based time step would be

∆t =
CFL
rξ + rη

, (32)

where rξ and rη are obtained from (15) and (16), being given by

rξ = |U |+ a
(
ξ2x + ξ2y

)1/2 , (33)

rη = |V |+ a
(
η2x + η2y

)1/2 . (34)

Analogously, for the preconditioned equations, the preconditioned eigenvalues should
be used, giving

∆t =
CFL

rpcξ + rpcη
, (35)

where rpcξ and rpcη are now obtained from (22) and (23), being given by

rpcξ =
1

2

[
|U | (1 + ε) +

[
U2(1− ε)2 + 4εa2(ξ2x + ξ2y)

]1/2] , (36)

rpcη =
1

2

[
|V | (1 + ε) +

[
V 2(1− ε)2 + 4εa2(η2x + η2y)

]1/2] . (37)

3.2. Dealing with Numerical Dissipation and Boundary Conditions

In this work, where artificial dissipation is added explicitly to the formulation, it was
found convenient to leave the dissipation term unaltered (in its original form) and to accom-
modate it with the residue R given in (25), being the stabilized version of equation (26) given
by

dQ̄

dt
= MpcRstab , (38)



where Rstab = R + D would be the stabilized residue, being D the original dissipation term.
By doing this, the steady state solution obtained is precisely the same given by the original
formulation, namely, the one corresponding to Rstab = 0. Such implementation is obviously in-
dependent of the specific numerical viscosity model being used and is, therefore, quite general.

It has been shown that numerical dissipation generally scales badly as the Mach num-
ber is reduced [5], but it was found in the present study that such problem becomes significant
only for extremely low free-stream Mach numbers, being of no practical importance for a wide
variety of low-speed test flow cases simulated. Additionally, it is also known that better per-
formance can in fact be extracted of the preconditioned formulation if the dissipation term is
modified according to the preconditioned eigenvalues. In order to avoid the overhead associated
with the evaluation of preconditioning matrices for the artificial viscosity in each grid node, the
present work did not followed such modification ideas further, since the performance gain was
found already very satisfactory. The reader interested in how to modify the dissipation term
may consult Ref. [8].

Concerning the implementation of eigenvalue-based boundary conditions such as the
usual non-reflecting far-field ones (very common in the context of external flow simulations), a
precise approach should consider the modified characteristic variables (or Riemann invariants)
of the preconditioned system. In the present study, however, it was found that no significant
differences become apparent by using the original (unmodified) boundary treatment, at least for
steady-state problems. Heuristically (yet having in mind the shock-tube problem), in order to
minimize errors from such source, it is important that the symmetric form of the eigenvalues
{u − f(a), u, u + f(a)} is maintained by the preconditioning method being used. The reader
interested in how to modify the far-field boundary conditions may also consult Ref. [8].

4. NUMERICAL RESULTS

In this section, some airfoil low-speed simulations are addressed in order to investigate
the gain in convergence rate and accuracy of the preconditioned formulation over the origi-
nal one. All simulations were performed using the classical 2nd order-accurate Runge-Kutta
(explicit) time-stepping scheme. Also, in all the pairs of compared convergence curves, the
same CFL-based time step was used, as explicitly informed in each figure. The well-known
NACA0012 and RAE2822 airfoils were chosen as examples of typical profiles used in the
aerospace context. Their related computational meshes can be seen in figures 7 and 10, respec-
tively. It should be said that both meshes are of circular type and have 81x40 (NACA) and
129x200 (RAE) grid points along surface and radial coordinates, in that order. For each case,
the far-field was “safely” fixed at a considerable distance (typically tenths of chords) away from
the airfoils.

Figure 5 shows how convergence speed is loosed with decreasing free-stream Mach
number. This effect is true for both preconditioned and original formulations, but it is far more
critical without preconditioning. All charts of figure 5 refer to simulations for the NACA0012
profile with zero angle of atack (AOA). It is important to note that better convergence speed is
obtained with the preconditioned formulation when the such rate is based on iterations. If based



Figure 5. Convergence rate analysis (NACA0012, AOA = 0o)

Figure 6. Cp distribution comparison (NACA0012, AOA = 4o) and (RAE2822, AOA = 0o)



Figure 7. NACA0012 computational mesh with 81x40 grid points

Figure 8. Mach number contours without preconditioning (NACA0012, AOA = 4o, M∞ = 0.05)

Figure 9. Mach number contours with preconditioning (NACA0012, AOA = 4o, M∞ = 0.05)



Figure 10. RAE2822 computational mesh with 129x200 grid points

Figure 11. Mach number contours without preconditioning (RAE2822, AOA = 0o, M∞ = 0.05)

Figure 12. Mach number contours with preconditioning (RAE2822, AOA = 0o, M∞ = 0.05)



on computational time, the convergence speed is not always greater because the evaluation of
the preconditioning matrix for all grid nodes in each iteration is somewhat costly.

The gain in convergence speed, however, is not the only benefit of using preconditioning
techniques. In fact, figure 6 illustrates how steady-state converged flow fields can be wrongly
predicted by using the original formulation at low-speeds. The distributions of pressure coef-
ficient (Cp) are compared to the “exact” ones, which were obtained with XFOIL R©. For each
airfoil referred in figure 6, the error in the Cp distribution may lead to significant errors in the
force and (specially) moment coefficients, since greater differences appears generally at trailing
and leading edges.

To better compare the flow-field differences for the cases referred in figure 6, Mach
number contours obtained with and without preconditioning are put side-by-side in figures 8
and 9 for the NACA0012, and in figures 11 and 12 for the RAE2822. In these four figures,
the colormaps are adjusted for best contrast “individually”, but all the isolines displayed corre-
sponds to the exact same values in order to highlight the clear flow-field differences between
steady-state converged solutions with and without preconditioning.

5. CONCLUDING REMARKS

This work presented a simple way to implement a low-speed preconditioning method
for the Euler equations of gas dynamics with particular emphasis on the finite difference for-
mulation based on generalized curvilinear coordinates. Nevertheless, concepts and principles
common to all of the preconditioning methods were discussed in a detailed and didactically
manner. Several airfoil simulations were performed in order to investigate the benefits or even
the necessity of using preconditioning algorithms within the context of aerospace applications.
It is hoped that the present study may contribute in turning low-speed preconditioning tech-
niques better understood among general CFD practitioners.
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