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Abstract.  The purpose of this work is to perform a nonlinear analysis of plane frame struc-

ture using a corotational formulation and a layered plastic modeling. The plane frame is dis-

cretized with a 2D Timoshenko beam element. Plasticity is introduced by rate-independent 

Von-Mises model with isotropic hardening. Numerical integration over the cross-section is 

performed for obtain the internal force vector and tangent stiffness matrix of these elements.  

At each integration point, the backward-Euler algorithm is used for integration in the consti-

tutive equations. Some examples are used in order to check the performances in the elements 

and the path-following procedures.  

Keywords: Nonlinear analysis of structures; Corotational formulation; Plasticity in layers; 

Finite element method. 

1. INTRODUCTION 

The linear analysis presents difficulties for analysis the real behavior of unusual struc-

tures, when the loading conditions is not common, or in structures close to collapse. In this 

context, the nonlinear material and geometric has wide applicability in structural engineering. 

In the geometric nonlinear analysis using finite element method, three different types of 

kinematic descriptions have been widely used: total lagrangian description, updated lagrangi-

an description and corotacional description [10]. The latter is originates from the polar de-

composition theorem which states that the total deformation of a solid surface can be decom-

posed into rigid body motion and relative deformation [6] – Figure 1.  

The concept of kinematic description corotacional was introduced in a context FEM in 

the 60s of last century with the work of Argyris [1], is the latest of the formulations used in 

geometrically nonlinear analysis and has a wide variety of subjects to be investigated [5].  
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Figure 1. Kinematic description of the corotacional formulation. 

When the answer in the solid structure is elastic, ceased loading, the body does not ex-

hibit deformation. However, when the answer is plastic after ceased the loading the material 

shows residual strain [7][8]. The theory of plasticity provides laws and models capable of 

describing the constitutive behavior of materials with elastoplastic response. 

2. METHODOLOGY APPROACH 

In this work used a 2D Timoshenko beam element (C0) without coupling of the axial and 

bending effort. To perform numerical simulations with the described formulation, implement 

in the finite element program 2D_Beam_f90 the beam elements mentioned above using the 

corotational formulation. In the treatment of plasticity has been used a layered unidimensional 

bilinear model with isotropic hardening. Integrates this model using an implicit algorithm 

named backward-Euler [11]. For the sectional efforts, integrate normal stresses using seven or 

fifteen Gauss points along the depth of the cross section. Vector of internal forces and tangent 

stiffness matrix of element mentioned above was determined through the principle of virtual 

work. The coefficients of these vectors and matrices were obtained by numerical integration. 

For the trajectory equilibrium nonlinear adopts an analysis based on the iterative incremental 

Newton-Raphson method and arc length technique. 

3. COROTATIONAL FORMULATION OF PLANES FRAMES 

The formulation described here is presented in Battini [2], which differs slightly from 

the other one shown in Crisfield [3]. 

3.1  Kinematic description of a beam element  

In Fig 1 shows the coordinates of the nodes 1 and 2 in the global coordinate system

 ,x z  -  1 1,x z  and  2 2,x z , respectively (Figure 2). The global displacement vector is defined 

by: 
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Figure 2. Corotacional Fomulation – beam kinematics. 

    

  Furthermore, the local displacement vector is given by: 

                                                          
l

u  1 2 
T

u  .                                                                     (2) 

The 
l

u
 
components can be calculated by the following equations, 

                                 
0nu l l   ,        1 1            and         2 2    .                                   (3) 

In the equations above 
0l  and 

nl  denote the initial and current lengths, respectively. Us-

ing simple trigonometric relationships the lengths may be rewritten as: 

       
1

2 2 2

0 2 1 2 1l x x z z    
 
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1
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2 2 1 1 2 2 1 1nl x u x u z w z w        
 

         (4) 

where  denotes the rigid body rotation. This may be related trigonometrically by 

                                       
0 0sen c s s c         and  

0 0cos c c s s   ,                                               (5) 

which, after developed, leads: 
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Thus, for   ,   is given by: 

 1sen sen   if 0sen   and  cos 0  ;   1cos cos   if 0sen   and  cos 0 

 1sen sen   if 0sen   and cos 0  and  1cos cos    if 0sen  and cos 0  (7) 

3.1.1  Virtual displacements  

Deriving the equation (3) obtains the virtual local displacements, 

                     2 1 2 1 0 0u c u u s w w c s c s           g
u ,                             (8) 

                1 1 1                  0        and                                                        (9) 

                2 2 2        .                                                                                              (10) 

On the other hand,  can be calculated by differentiation of Equation (6d) 

                                      2 1 2 2 1 12
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where  nl u 
 
is given by Equation (8). Using Eq (6d), the expression  becomes 

                             2
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which, after simplifications produces 
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1

0 0
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c s c s
l
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Thus, the transformation matrix B is defined as 

                                                                   
l

u B u
g ,                                                                     (14) 

and given by, 
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3.1.2 Internal force vector 

The relationship between the internal local force vector 
l

f
 
and global g

f
 
is obtained by 

the equation of virtual work in local and global systems 



 

 

                                               
T T T T

g g l l g l
V     u f u f u B f                                           (16) 

Equation (16) must be applied to any g
u arbitrary. Thus, the global internal force vec-

tor is given by 

                                                              
T

g l
f B f                                                                    (17) 

in which the local internal force vector  
T

l 1 2N M Mf depends on the definition of the 

finite element beam specific employed. 

3.1.3  Tangent stiffness matrix 

The global tangent stiffness matrix g
K defined by 

                                                                 g g g
 f K u                                                                      (18) 

is obtained by variation of Equation (17). Thus, 

                                          
T

g l 1 1 2 2 3
N b M b M b       f B f .                                              (19) 

In the above equation 
2b  is, for example, the second column of 

T
B . The following no-

tations are introduced, 

                         0 0
T
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T

s c s c  z                     (21) 

which by differentiation become, 

                                                         r z      and     z r .                                                  (22) 

The equation (8) and (13) may be rewritten as 
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Introduces auxiliary expressions, 
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derivatives produce, 
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The first term in Eq (19) is calculated by the introduction of the local tangent stiffness 

matrix l
K , which depends on the element definition. 

                                                               l l l l g
   f K u K B u                                                       (26) 

Finally, from Equation (18), (19), (25a), (25b) and (26), the expression of the global 

stiffness matrix tangent becomes 

                                             2

1

n

T T T T

g l 1 2

n

N
M M

l l
    K B K B zz rz zr                             (27) 

The equation (14) and (27) provide the connection between the internal forces and stiff-

ness matrices tangent local and global. These relationships are independent of the local defini-

tion of the element. This is obtained by adopting assumptions: Bernoulli deformation, linear 

elastic constitutive relation, the principle of virtual work (PTV) - 

1 1 2 2
v

V dv N u M M       . 

3.2  Timoshenko beam element   

A classical two node Timoshenko beam element is defined with linear interpolations for 

u, w and θ in the local co-rotational coordinate system. These are given by: 

                                                          
x

u u
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                                                          0w   and                                                                (28.b) 
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 

.                                              (28.c) 

The curvature k, shear deformation γ and strain ε are defined by 
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    and                             (29.b) 
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x L L

 
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

.                                             (29.c) 

3.2.1 Local internal force vector 

The local internal forces are calculated using the following assumptions: definition of 

linear deformation of Timoshenko; linear elastic constitutive relation and; the principle of 

virtual work, which in this case accounts for shear deformation and is expressed as: 

                                                 1 1 2 2

v

V dv N u M M         .                     (30) 



 

 

The calculation of   and   by differentiation of (29b-c) and its introduction in the 

previous equation yields, 

                                   2 1 1 21
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The internal forces are calculated of (30) and (31) with 2x L  for avoid shear locking, 

obtaining in this way: 
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It is a new integration along the depth of the cross section of the element determining 

the coefficients of internal forces in the same format that was implemented - Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Algorithm to obtain the internal force vector location. 

3.2.2 Local tangent stiffness matrix 

The same assumptions used in the acquisition of the internal force vector are taken. The 

consistent tangent operator defined by 

 
 

 
 

do   
 

   

   

   

  
 elastic case :  ; 

 
   elastoplastic case: call backward-Euler algorithm

 

   

   

   
end do 

 



 

 

                                                                
1 3

3 2

t t

t t

C C

C C

 

 

    
     

    
                                             (33) 

will be seen in Section 3.3. Equation (33) can be rewritten as   

                                                                1 3t tC C                                                  (34.a) 

                                                                1 2t tC C                                                   (34.b) 

which, by using (29b–c) gives 
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Differentiation of (32) gives 
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Finally, from (35) and (36), the local tangent stiffness matrix is 
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21 12K K   ,   31 13K K   and   32 23K K . 

Integrating numerically the previous coefficients along the depth of the cross section of 

the element can be get them in the same format that was implemented (Figure 4). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Algorithm to obtain the tangent stiffness matrix. 

3.3 Constitutive equations  

In the plastic rate equations for the Timoshenko beam two strains  ,  and two stress-

es  ,   are involved. There are many different algorithms to integrate these equations and 

among the iterative procedures, the most popular one is the backward-Euler scheme. It takes a 

simple form in case of the von Mises yield criterion and it allows the generation of a con-

sistent tangent operator which maintains the quadratic convergence of the Newton-Raphson 

method. The formulation descript here is mainly taken from Battini [2].  

3.3.1 Plane beam equations 

The relations for the plane beam are derived from the von Mises material with isotropic 

hardening under plane stress conditions [3] by setting 

 

 

 

 

 

 
 

do  
 

  

  
 elastic case :   

    

   
 

   elastoplastic case: 
 

     

     

     

    

    

    

    

    

     
 

end do
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The von Mises yield function is 
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The hardening parameter H is calculated from the uniaxial stress-strain law 
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which gives 
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where 
Y  is the yield stress. The Prandtl-Reuss flow rules associated to (39) are 
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The stress changes are related to the strain changes via 
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By assuming that the stresses must remain on the yield surface in case of plastic loading 

( 0  ), it is obtained 
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which by using (44) gives 
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Since 0Z  , the second equation of (44) gives 
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which by introduction in the first and third equations of (44) gives 
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Substitution of equations (48) and (49) in (47) gives after some algebra 
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Finally, introducing (47) in (44) gives 
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where tC  is the tangent operator. The backward-Euler algorithm shown in Figure 6 consists in 

applying an elastic forward step ( AB ) followed by a return mapping ( BC ) on the yield sur-

face – Figure 5. 

                                          C B C A C       σ σ Ca σ C Ca                                        (52) 

 
Figure 5: Bacward-Euler scheme. 

 

The vector Ca is normal to the yield surface at C, which is not known and therefore an 

iterative procedure must be used. Since 0zC zA   , the second equation of (52) gives 
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which, by substitution into the first and third equations, gives after some algebra 
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By introducing the notations 

                                                     x       xz     xz                                                  (55) 

and new definitions for C ,σ , ε , a  
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equations (43), (49), (50) and (54) can be combined and rewritten as 
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T

T H
 



a Cε

a Ca
                                                      (59) 

                                                   C B C A C       σ σ Ca σ C Ca                               (60) 

It is therefore proved by comparing (44), (47) and (52) with (58), (59) and (60) that the 

equations for the plane beam can be written in the same form as those under plane stress 

conditions. It can be noted that the elastic forward step in the backward-Euler scheme does 

not give 0zB  , but the Equation (60) proves that zB  does not need to be calculated.  

3.3.2 Backward-Euler scheme 

The algorithm of the backward-Euler scheme is taken from Battini [2]. The first estima-

tion of Cσ  is calculated with
 

                                            C B B A B       σ σ Ca σ C Ca                                      (61) 

where Ba  is calculated from (57) and   is determined from a first order Taylor expansion of 

the yield function around point B 
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Bσ is the calculated from (58) as  

                                                           
 B B    σ C a                                                  (63) 

with  ε 0 since the total strain has already been applied in the elastic step (AB). Introducing 

(62) in (63) and setting 0f   gives 
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Equation (61) gives stresses which do not satisfy the yield function since the normal at 

B is not the same as the normal at the final position C. The iterative process is performed by 

introducing the vector r defined by the difference between the current stresses and the back-

ward-Euler ones 

                                                         
 C B C  r σ σ Ca                                                  (65) 

A truncated Taylor expansion of (65) gives 
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where 
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and σ  is the change in Cσ  and  is the change in Δλ. The subscript C is from now dropped in 

order to simplify the notations (all the notations without subscripts refer to C). Setting r to 

zero in (66) gives 
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A truncated Taylor expansion of the yield function at C gives 

                                     

0
0 0

0

T
T

ps B

ps

f f
f f f H


 

 

  
     

  
σ a σ

σ
                               (69) 

further, setting 0f   and using (68) gives 
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 Figure 6. Backward-Euler algorithm. 

3.3.3 Consistent tangent operator 

The tangent operator tC  assumes infinitesimal strain and stress changes. However, in 

order to eliminate numerical elastic unloading, a path-independent strategy is adopted. In or-

der to maintain the quadratic convergence inherent in the Newton-Raphson method, a tangent 

operator ctC , consistent with the backward-Euler scheme is derived [3]. Differentiation of 

(60) gives (subscript C is dropped) 
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where the last term in equation (71) is omitted in the derivation of the standard 

tangent operator. From (71), it is obtained 
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The stresses must remain on the yield surface, which, from (46), gives 
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and hence 
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Introducing (74) in (72) finally gives 
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4. NUMERICAL EXAMPLES 

4.1 Lee’s frame 

The loading conditions, boundary, geometry and material parameters of structure are 

shown in Figure 4. This frame was shown by Lee [9] for analysis of large displacement and 

stability of elastic frames. Battini [2], in turn, used to study beam elements co-rotational in-

stability problems. The equilibrium trajectories of the structure for linear analysis are known 

in the literature as snap-back in the degree of freedom (DOF) u and snap-through in the DOF  

v, so there are two points limit in the load-displacement diagram – Figure 7.  

 

Figure 7. Geometry, boundary conditions and physical parameters. 

E = 720 

 = 0,3 

Et = E/10 

y = 10,44 



 

 

It is shown in the Figure 8 that the results are practically the same when using points 7 

or 15 Gauss along the depth of the beam. The elastoplastic response (Figure 9 above) in turn 

both the DOF u and v have the snap-through behavior. As we can see, there is an excellent 

convergence of the results obtained in this study with those obtained by Battini [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Elastic response - mesh with 20 elements – 7 and 15 Gauss points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Elastoplastic response - mesh with 20 elements – 7 Gauss points. 

 



 

 

4.2 Williams toggle frame 

In this work it was used an equivalent rectangular section (with the same inertia and ar-

ea) to simulate a circular section. The loading conditions, geometric (real and equivalent), 

boundary, and the material properties of toggle frame studied here can be seen in Figure 10. It 

was originally solved analytical and experimentally by Williams [12]. Remo [4] also studied 

in the investigation of large displacements experienced by inelastic frames.  

As can be seen by snap-through elastic and elastoplastic paths (Figure 10), although 

they have the same behavior, the responses of this analysis are less stiffness than those ob-

tained by Remo [4].  

 
Figure 10: Dimensions, boundary conditions and material properties. 

 

 
Figure 11: Response elastic and elastoplastic -  mesh with 20 elements and 15 Gauss points. 

E = 10
7
       = 0,3       

Et = E/2     y = 3x10
3
 



 

 

This fact is probably due to the mixed formulation implemented by this author whereas 

this article uses a formulation in displacement. Furthermore, in the present work we adopted 

the hypothesis of an equivalent rectangular section. 

5. CONCLUSIONS 

This study evaluated the efficiency of a beam element 2D Timoshenko applied in a finite 

element program that takes into account the geometric and physics nonlinearity. In the exam-

ples studied – Lee´s frames and Williams toggle frames - there is a decrease in bearing ca-

pacity of the structure when one considers the phenomenon of elastoplasticity. In addition, 

highlights the ability of corotational formulation to capture large displacements and rotations. 

In elastoplastic analysis, the use of fifteen points Gauss at the time of cross-section instead 

of seven does not produce a significant improvement in results. Finally, we conclude that the 

use of simple strategy of equivalent rectangular sections in the study of other types of cross 

sections provide satisfactory results. 
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